Clarkia Tenella Is Tetraploid, Having N 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2Fl32 (Moore and Lewis, I965b)

Total Page:16

File Type:pdf, Size:1020Kb

Clarkia Tenella Is Tetraploid, Having N 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2Fl32 (Moore and Lewis, I965b) VARIATION AND EVOLUTION IN SOUTH AMERICAN CLARKIA D. M. MOORE and HARLAN LEWiS Botany Department, University of Leicester and Botany Department, University of California, Los Angeles Received5.V.65 1.INTRODUCTION THEgenus Clarkia (Onagracee), currently considered to contain 36 species, is restricted to the western parts of North and South America (fig. i). The 35 North American species are distributed from Baja California to British Columbia (300N.to 48° N.), most of them occurring in California. The South American populations, which have a smaller though still considerable latitudinal spread (290 30' S. to 42030'S.), comprise a single variable species, Clarkia tenella (Cay.) H. and M. Lewis (Lewis and Lewis, within which four sub.. species have been recognised (Moore and Lewis, i 965b). Clarkia tenella is tetraploid, having n 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2fl32 (Moore and Lewis, i965b). It is placed in section Godetia, together with seven North American species, and shows its closest affinities with the only tetraploid among these, C. davyi (Jeps.) H. and M. Lewis. A study of artificial hybrids between C. tenella and C. davji, together with pakeo-ecological evidence, led Raven and Lewis (i) to hypothesise that the two species were derived from a common tetraploid ancestor which had traversed the tropics by long-distance dispersal during or since the Late-Tertiary and given rise to the populations now comprising C. tenella. Detailed study of the variation within Clarkia tenella was made possible by a field trip to Chile and Argentina during 1960-61 and by subsequent experimental work at Leicester and Los Angeles. The data thus obtained are given here and are used to examine the inter- relationships of the South American populations and the course of evolution within C. tenella. 2. DISTRIBUTIONAND HABITAT Clarkiatenella occurs mainly on the west side of the Andes (fig. 2), ranging from the region around La Serena, Prov. Coquimbo (29° 30' S.) through central Chile to Prov. Osorno (400 30' S.), with a single disjunct occurrence further south on the island of Chiloe (420 S.). The few stations in Argentina lie between Las Ovejas, Prov. Neuquen (37° S.) and RIo Corcovado, Prov. Chubut (420 30' S.), an area which is climatically comparable to north central Chile because it lies in the rain shadow of the Andes. C2 37 D. M. MOORE AND HARLAN LEWIS Clarkia tenella occurs from sea-level to about 1400 m. and on a variety of substrates, varying from almost pure sand or gravel to shaley Fm. i.—Distributionof the genus Claricia. or even rather clay soils, whose common features seem to be that they are reasonably well-drained and bare or but sparsely vegetated. Characteristically it grows in open maquis or scrubby, scierophyllous, VARIATION AND EVOLUTION IN CLARKIA 39 flTENELLA TENUIFOLIA LA SERENA AMBIGUA ARAU CAN A r 0 0 16 TFI T2.3 I2 TI AR 1.2. Al. A 2 AR3 AR4 Fia. 2.—Distribution of the subspecies of Clarkia tenella in Chile and western Argentina. Populations used in the hybridisation programme are indicated by their crossing code (see table 2):Tssp. tenella, TF ssp. tenufoIia, A ssp. ambigua, AR ssp. araucana. 40 D.M. MOORE AND HARLAN LEWIS savannah-woodland communities in areas having light to moderate winter rainfall (4•2-12•6 cm. per month) and rather dry summers (o-z 8 cm. per month). This type of vegetation is well-developed in the Chilean coast ranges and in the Andean foothills, regions where C. tenella is most frequently encountered. These communities have an open scrub composed of such genera as Acacia, Baccharis, Berberis, Cassia, Litbraea, Peumus and Trevoa, with a ground layer largely comprising spring-flowering herbs, many of them annual, and including several aliens from other warm-temperate regions of the Old and New Worlds. In coastal areas, from Prov. Valparaiso northwards, C. tenella often occurs on stabilised sand dunes. It is frequent in open habitats resulting from man's activities—road verges and ditch margins, sandy washes, road and rail cuttings. This is particularly true towards the south, where the Rio Blo-Blo marks the transition to a higher rainfall area (150-250 cm. per annum) characterised by a much more mesic vegetation type, the Valdivian Forest. For example, two populations (AR 3, AR 4) occurring near the town of La Union, Prov. Valdivia, inhabit open, well-drained habitats on the eroding bluffs flanking the flood plain of the Rio Bueno and its tributary the Rio Liollehue. Here, very many plants have spread to bare soil on the banks of a road-cutting and at the margin of a wheatfield. The habitats favoured by Clarkia tenella closely parallel those of the N. American Clarkias. In general, these are associated with well- drained soils of open sites in the oak woodland-savannah and chaparral communities, less frequently with more xcric coastal and desert margin conditions. The northward expansion of such species as C. amwna, C. purpurea and C. rhomboidea, which extend into the higher rainfall areas of the north-western U.S.A. and southern British Columbia, is due to the utilisation of open, well-drained sites. 3.MORPHOLOGICAL AND CYTOLOGICAL VARIATION () Morphology and breeding system Clar/ciatenella varies conspicuously in characters such as habit, leaf shape, petal shape and colour, pubescence, inflorescence structure, hypanthium length, and in characters associated with its pollinating mechanism. On the basis of field and herbarium studies, and cultiva- tion experiments, four taxonomic entities have been recognised, differing in breeding system and in certain morphological characters. Since they intergrade morphologically to some extent, they are most appropriately described as subspecies (Moore and Lewis, i 965b). The characters of the four subspecies are summarised in table r and their distributions are shown in fig. 2. The most southerly of them, ssp. araucana Moore and Lewis, has large flowers and is completely out- crossing, having the receptive stigma raised well above the anthers. It is of robust, well-branched habit and seems to be almost entirely restricted to open, rather "weedy" habitats. Towards its northern VARIATION AND EVOLUTION IN CLARKIA 41 limit, near Concepción, it grows sympatrically with ssp. ambigua (Phil.) Moore and Lewis, which is very similar, though with somewhat smaller petals and a shorter hypanthium. However, ssp. ambigua is self-pollinating and readily distinguished from ssp. araucana because the mature stigma scarcely projects from the hypanthium and never reaches the level of the anthers. The two subspecies are largely isolated by their different flowering periods when sympatric, since ssp. ambigua blooms in November and early December while ssp. araucana does not flower before the end of December. Subspecies tenujfolia (Cay.) Moore and Lewis, has flowers of comparable size to ssp. ambigua but it occurs much further north, typically in coastal localities. It is TABLEi Principal characters distinguishing the subspecies of Clarkia tenella Subspecies Tenella Tenufolia Ambigua Araucana Petal length (mm.) . 8-15 (g-)13-22(-25) (12-)15-18 18-30 Hypanthium length (mm.) 1-3 2-45(-5) 25-5 6-ta Pollinating mechanism .selfing, antherslargely outerossing,selflng, stigmaoutcrossing, stigma in Contact stigma usually v. short, not much exceeding with stigma slightly exceedingreaching anthersanthers ( mm.<) anthers Flowering period. X-I IX-XII XI-XII (early) XII (late)-II Distribution (fig. 2) . N. central to N. central ChileS. central Chile S. central to S. central Chile (coastal) S. Chile Argentina Chromosome number (n) v' 17 17 16, 17 at least partially outcrossing, with the mature stigma usually held above the level of the dehisced anthers. However, many populations have some plants, which constitute the smaller-flowered facies, in- distinguishable from ssp. tenella. Like it they are autogamous, with the dehiscing anthers in contact with the mature stigma, so that pollination is effected at or shortly after anthesis. The small-flowered ssp. tenella is the commonest and most widespread subspecies in Central Chile and the only one in Argentina. There are constant differences in various characters between many populations of ssp. tenella and plants may be glabrous to pubescent, have oblanceolate and truncate to linear and long-petiolate leaves, blue to purple or even "burgundy" red flowers or an elongate to compact inflorescence rachis. This variation cannot be resolved further at present and the pattern un- doubtedly results from the high degree of autogamy producing a series of slightly different biotypes. 42 D. M. MOORE AND HARLAN LEWIS (ii)Cytology Chromosomenumbers have been determined from material cover- ing virtually the whole range of Clarkia in South America (table 2). TABLE 2 Chromosome numbers in Clarkia tenella. Populations used in experimental programme are indicated by their crossing code. Field collections made by Moore. Vowiliers deposited at Los Angeles and Leicester I Crossing Field code Locality (Chile unless indicated) number up. knella fl 17 Tz Prov. Coquimbo, Frai Jorge 212 Ta Prov. Valparaiso, La Cruz, Fundo Lo Rojas 220 T3 Prov. Valparaiso, La Calera, Cuesta Pucalan 224 1'4 Prov. Valparaiso, Granilos, Cerro de Ia Campana 236 T5 Prov. Valparaiso, Limache, Cerro Cruz 239 Proy. Aconcagua, Cuesta de Chacabuco 242 T6 Pros'. Santiago, Cucsta de Chacabuco 240 T7 Pros'. Santiago, Maipi, Qucbrada de Ia Plata 250 T8 Pros'. Santiago, Maipd, Quebrada de Ia Plata 255 Tg Pros'. Santiago, La Ermita ai8 Txo Pros'. Santiago, Cucsta Lo Prado 209 Prov. O'Higgins, Rio Pangal, Callanas 262 Tii Prov. O'Higgins, Rio Pangal, above Coya 267 Tia Prov. O'Higgins, Rio Pangal, above Coya a68 Argentina, Pros'. Rio Negro, San Carlos de Bariloche up. tenujfolia fl '7 Prov. Valparaiso, Rcñaca 201 TFt Pros'. Valparaiso, Nocornes 232 up. ambigua n =17 Prov. Concepción, between Concepcion and Florida 280 At Prov. Concepción, between Concepción and Florida 406 Prov.
Recommended publications
  • Publications of Peter H. Raven
    Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M.
    [Show full text]
  • THE JEPSON GLOBE a Newsletter from the Friends of the Jepson Herbarium
    THE JEPSON GLOBE A Newsletter from the Friends of The Jepson Herbarium VOLUME 29 NUMBER 1, Spring 2019 Curator’s column: Don Kyhos’s Upcoming changes in the Con- legacy in California botany sortium of California Herbaria By Bruce G. Baldwin By Jason Alexander In early April, my Ph.D. advisor, In January, the Northern California Donald W. Kyhos (UC Davis) turns 90, Botanists Association hosted their 9th fittingly during one of the California Botanical Symposium in Chico, Cali- desert’s most spectacular blooms in fornia. The Consortium of California recent years. Don’s many contributions Herbaria (CCH) was invited to present to desert botany and plant evolution on upcoming changes. The CCH be- in general are well worth celebrating gan as a data aggregator for California here for their critical importance to our vascular plant specimen data and that understanding of the California flora. remains its primary purpose to date. Those old enough to have used Munz’s From 2003 until 2017, the CCH grew A California Flora may recall seeing in size to over 2.2 million specimen re- the abundant references to Raven and cords from 36 institutions. Responding Kyhos’s chromosome numbers, which to requests from participants to display reflect a partnership between Don and specimen data from all groups of plants Peter Raven that yielded a tremendous Rudi Schmid at Antelope Valley Califor- and fungi, from all locations (including body of cytogenetic information about nia Poppy Reserve on 7 April 2003. Photo those outside California), we have de- our native plants. Don’s talents as a by Ray Cranfill.
    [Show full text]
  • NI 43-101 Technical Report
    Independent Technical Report on the Carrizal Cu‐Co‐Au Property Carrizal Alto Mining District, III Region de Atacama, Chile Centred: 308750 mE and 6895000 mN (PSAD56 /UTM Zone 19 Southern Hemisphere) Prepared for: Red Metal Resources Ltd. Suite 102, 278 Bay Street Thunder Bay, Ontario, Canada P7B 1R8 Prepared by: Caracle Creek International Consulting Inc. Scott Jobin‐Bevans, Ph.D., PMP, P.Geo. Principal Geoscientist 2018‐1545 Maley Drive Sudbury, Ontario, Canada P3A 4R7 Effective Date: June 30, 2019 Report Date: November 28, 2020 1 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report DATE AND SIGNATURE PAGE The Report, “Independent Technical Report on the Carrizal Cu‐Co‐Au Property, Chile”, with an Effective Date of June 30, 2019, was authored by the following: “signed and sealed original on file” _______________________________________ Scott Jobin‐Bevans, P.Geo., Ph.D., PMP Caracle Creek International Consulting Inc. Dated: November 28, 2020 November 28, 2020 2 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report Table of Contents Table of Contents ........................................................................................................................................... 2 List of Figures ................................................................................................................................................. 4 List of Tables .................................................................................................................................................
    [Show full text]
  • Chile by Martin Nicholas and Ivan.Pdf
    FLAG • The Chilean flag is also known in Spanish as La Estrella Solitaria (The Lone Star). • It was adopted on 18 October 1817. • The flag of Chile consists of two equal horizontal bands of white and red, with a blue square the same height as the white band in the canton, which bears a white five-pointed star in the centre. CAPITAL • The capital of Chile is called ‘Santiago’. • Santiago is the biggest city in Chile. • It sits in a valley surrounded by the snow- capped Andes and the Chilean Coast Range. • Plaza de Armas, the grand heart of the city’s old colonial core, is home to 2 neoclassical landmarks: the 1808 Palacio de la Real Audiencia, housing the National History Museum, and the 18th-century Metropolitan Cathedral. POPULATION • The population of Chile is 18,183,803. • The population rate growth for Chile was decreasing in 1990. • By 2050 the population is expected to reach approximately 20.2 million people. • About 85% of the country's population lives in urban areas, with 40% living in Greater Santiago. FOOD • Pastel de Choclo: corn casserole with meat stuffing. • Empanadas: pastry filled with meat, cheese or mussels. • Cazuela: homemade stew with beef, chicken, corn, rice and potatoes. • Asado: barbeque of beef, pork or chicken. FESTIVALS • Viña del Mar International Song Festival: This festival the largest and best known music festival in Latin America. • Lollalpalooza Chile: this festival is the Chile based version of the popular music festival Lollapalooza. • Ultra Chile: this is an outdoor electronic music festival that is a part of Ultra Music Festival’s worldwide expansion, which has now spread to 20 different countries.
    [Show full text]
  • Bob Allen's OCCNPS Presentation About Plant Families.Pages
    Stigma How to identify flowering plants Style Pistil Bob Allen, California Native Plant Society, OC chapter, occnps.org Ovary Must-knows • Flower, fruit, & seed • Leaf parts, shapes, & divisions Petal (Corolla) Anther Stamen Filament Sepal (Calyx) Nectary Receptacle Stalk Major local groups ©Bob Allen 2017 Apr 18 Page !1 of !6 A Botanist’s Dozen Local Families Legend: * = non-native; (*) = some native species, some non-native species; ☠ = poisonous Eudicots • Leaf venation branched; veins net-like • Leaf bases not sheathed (sheathed only in Apiaceae) • Cotyledons 2 per seed • Floral parts in four’s or five’s Pollen apertures 3 or more per pollen grain Petal tips often • curled inward • Central taproot persists 2 styles atop a flat disk Apiaceae - Carrot & Parsley Family • Herbaceous annuals & perennials, geophytes, woody perennials, & creepers 5 stamens • Stout taproot in most • Leaf bases sheathed • Leaves alternate (rarely opposite), dissected to compound Style “horns” • Flowers in umbels, often then in a secondary umbel • Sepals, petals, stamens 5 • Ovary inferior, with 2 chambers; styles 2; fruit a dry schizocarp Often • CA: Apiastrum, Yabea, Apium*, Berula, Bowlesia, Cicuta, Conium*☠ , Daucus(*), vertically Eryngium, Foeniculum, Torilis*, Perideridia, Osmorhiza, Lomatium, Sanicula, Tauschia ribbed • Cult: Apium, Carum, Daucus, Petroselinum Asteraceae - Sunflower Family • Inflorescence a head: flowers subtended by an involucre of bracts (phyllaries) • Calyx modified into a pappus • Corolla of 5 fused petals, radial or bilateral, sometimes both kinds in same head • Radial (disk) corollas rotate to salverform • Bilateral (ligulate) corollas strap-shaped • Stamens 5, filaments fused to corolla, anthers fused into a tube surrounding the style • Ovary inferior, style 1, with 2 style branches • Fruit a cypsela (but sometimes called an achene) • The largest family of flowering plants in CA (ca.
    [Show full text]
  • Efectos De Las Alteraciones Antr Picas Sobre La Estructura Y Composici N De
    AbrilEcología de 2008 Austral 18:13-25. ALTERACIONES Abril 2008 ANTRÓPICAS EN RODALES DE PILGERODENDRON UVIFERUM 13 Asociación Argentina de Ecología Efectos de las alteraciones antrópicas sobre la estructura y composición de rodales de Pilgerodendron uviferum en la Cordillera de la Costa de Chile * DANIEL P SOTO 1, & HERIBERTO FIGUEROA 2 1. Instituto de Silvicultura, Universidad Austral de Chile, Valdivia, Chile. 2. Instituto de Estadística, Universidad Austral de Chile, Valdivia, Chile. RESUMEN. Se estudió la inuencia de las alteraciones antrópicas sobre la estructura y composición de cuatro comunidades de Pilgerodendron uviferum del área norte de su distribución por la Cordillera de la Costa de Chile. Se establecieron tres parcelas de 400 m2 por comunidad donde se caracterizó la estructura y se cuanticó la regeneración y cobertura de la vegetación. Con los datos obtenidos se calcularon Valores de Importancia por rodal, separados por estratos (arbóreo y sotobosque) y se incorporaron a un Análisis de Correspondencia para su ordenamiento. Posteriormente, los datos ordenados se sometieron a un Análisis de Discriminante para clasicar la vegetación de acuerdo al grado de alteración de los sitios. Los resultados mostraron que la regeneración de P. uviferum se asoció a los rodales más alterados (con pérdida de estructura o abiertos). Los rodales sin alteración mostraron escasa regeneración y compartieron el espacio con especies menos tolerantes al anegamiento. Estos resultados sugieren que en estos rodales, la regeneración de P. uviferum necesitaría sitios abiertos y suelos húmedos para persistir en el ecosistema. [Palabras clave: comunidades vegetales, ordenamiento, anegamiento, clasicación de vegetación] ABSTRACT. Effect of anthropogenic disturbances on the structure and composition of Pilgerodendron uviferum stands of the Chilean Coastal Range: The inuence of anthropogenic disturbances on the structure and composition of four communities of Pilgerodendron uviferum in the northernmost portion of the Chilean Coastal range was studied.
    [Show full text]
  • Clarkia Stewardship Acct8mar2002
    Stewardship Account for Clarkia purpurea ssp. quadrivulnera Prepared for the Garry Oak Ecosystems Recovery Team March 2002 by Brenda Costanzo, BC Conservation Data Centre, PO Box 9344 Station Provincial Government, Victoria, BC V8W 9M7 Funding provided by the Habitat Stewardship Program of the Government of Canada and the Nature Conservancy of Canada Clarkia purpurea ssp. quadrivulnera 2 STEWARDSHIP ACCOUNT Clarkia purpurea ssp. quadrivulnera Species information: Kingdom: Plantae Subkingdom: Tracheobionta Superdivision: Spermatophyta Division: Magnoliophyta Subclass: Rosidae Order: Myrtales Family: Onagraceae (Above classification is from U.S.D.A. Plants Database, 2001) Genus: Clarkia Species: purpurea Subspecies: quadrivulnera (Dougl. ex Lindl.) ex H.F. & M.E. Lewis Section Godetia (Lewis, 1955) Clarkia purpurea (Curtis) Nels. & Macbr. ssp. quadrivulnera (Dougl.) H. Lewis & M. Lewis; Small-flowered Godetia Synonyms: Clarkia quadrivulnera (Dougl.) ex Lindl. (Douglas et al., 2001) Clarkia quadrivulnera (Dougl. ex Lindl.) A. Nels. & J.F. Macbr. Godetia quadrivulnera var. vacensis Jepson Godetia purpurea (W. Curtis) G. Don var. parviflora (S. Wats.) C.L. Hitchc. Godetia quadrivulnera (Dougl. ex Lindl.) Spach (Above from ITIS data base, 2001; USDA Plants database, 2001) Oenothera quadrivulnera Douglas (GRIN database, 2001) Hitchcock and Jepson recognized two genera: Clarkia and Godetia based on petal shape The section Godetia consists of a diploid, tetraploid and hexaploid series, of which C. purpurea and C. prostrata is the latter (Lewis and Lewis, 1955). Lewis and Lewis (1955) felt that for Clarkia purpurea there were ephemeral local races due to hybridization. Some of these could be separated based on conspicuous morphological characters to the subspecies level. However, these subspecies were artificial and not distinct geographical nor ecological races.
    [Show full text]
  • THE FLORISTICS of the CALIFORNIA ISLANDS Peter H
    THE FLORISTICS OF THE CALIFORNIA ISLANDS Peter H. Raven Stanford University The Southern California Islands, with their many endemic spe­ cies of plants and animals, have long attracted the attention of biologists. This archipelago consists of two groups of islands: the Northern Channel Islands and the Southern Channel Islands. The first group is composed of San Miguel, Santa Rosa, Santa Cruz, and Anacapa islands; the greatest water gap between these four is about 6 miles, and the distance of the nearest, Anacapa, from the mainland only about 13 miles. In the southern group there are also four islands: San Clemente, Santa Catalina, Santa Bar­ bara, and San Nicolas. These are much more widely scattered than the islands of the northern group; the shortest distance be­ tween them is the 21 miles separating the islands of San Clemente and Santa Catalina, and the nearest island to the mainland is Santa Catalina, some 20 miles off shore. The purpose of this paper is to analyze the complex floristics of the vascular plants found on this group of islands, and this will be done from three points of view. First will be considered the numbers of species of vascular plants found on each island, then the endemics of these islands, and finally the relationship between the island and mainland localities for these plants. By critically evaluating the accounts of Southern California island plants found in the published works of Eastwood (1941), Mill¬ spaugh and Nuttall (1923), Munz (1959), and Raven (1963), one can derive a reasonably accurate account of the plants of the area.
    [Show full text]
  • Simposio Nacional De La Ciencia Del Suelo
    ISSN 0716-6192 BOLETIN Nº 27 6 201 - SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO ORGANIZAN SOCIEDAD CHILENA DE LA CIENCIA DEL SUELO CENTRO DE INVESTIGACIÓN EN SUELOS VOLCÁNICOS (CISVo) UNIVERSIDAD AUSTRAL DE CHILE VALDIVIA, 28 al 30 SEPTIEMBRE, 2016 ISSN BOLETIN Nº 27 SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO ORGANIZAN SOCIEDAD CHILENA DE LA CIENCIA DEL SUELO CENTRO DE INVESTIGACIÓN EN SUELOS VOLCÁNICOS (CISVo) UNIVERSIDAD AUSTRAL DE CHILE VALDIVIA- 28 al 30 DE SEPTIEMBRE - 2016 Boletín Nº 27 de la Sociedad Chilena de la Ciencia del Suelo SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO 1er Encuentro de Jóvenes Investigadores en Ciencias del Suelo - EJICS Editor José Dörner Profesor Titular Universidad Austral de Chile Valdivia, Chile, 28 – 30 septiembre 2016 El contenido de los trabajos presentados en este Boletín es de exclusiva responsabilidad de los respectivos autores y coautores. Valdivia, Chile, 2016 2 Boletín Nº 27 de la Sociedad Chilena de la Ciencia del Suelo DIRECTORIO SOCIEDAD CHILENA DE LA CIENCIA DEL SUELO Presidente: Pablo Cornejo R. Vice-Presidente: José Dörner F. Secretario: Óscar Seguel S. Tesorero: Paula Cartes I. Directora: Marta Alfaro 3 Boletín Nº 27 de la Sociedad Chilena de la Ciencia del Suelo COMITÉ ORGANIZADOR UACh Dr. José Dörner Dr. Dante Pinochet Dra. Susana Valle Dra. Alejandra Zúñiga Dr. Oscar Thiers Dra. Dorota Dec Dr. Víctor Gerding Dr. Oscar Martínez COMITÉ CIENTÍFICO Prof. Dr. Rainer Horn Dr. Francisco Matus Prof. Dr. Winfried Blum Dr. Pablo Cornejo Dr. José Dörner Dr. Oscar Seguel Dra. Susana Valle Prof. Manuel Casanova Dr.
    [Show full text]
  • Geological Framework of the Mineral Deposits of the Collahuasi District
    413 Collahuasi Mineral District / References REFERENCES CITED Aceñolaza, F. G., and Toselli, A. J., 1976, Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del noroeste Argentino: 2º Congreso Latinoamericano de la Geología, p. 755-764. Aeolus-Lee, C.-T., Brandon, A. D. and Norman, M. D., 2003, Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochimica et Cosmochimica Acta 67, 3045–3064. Aeolus-Lee, C.-T., Leeman, W. P., Canil, D., and Xheng-Xue, A. L., 2005, Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions: Journal of Petrology, v. 46, p. 2313-2336. Allen, S. R., and McPhie, J., 2003, Phenocryst fragments in rhyolitic lavas and lava domes: Journal of Volcanology and Geothermal Research, v. 126, p. 263-283. Allmendinger, R. W., Jordan, T. E., Kay, S. M., and Isacks, B. L., 1997, The evolution of the Altiplano-Puna Plateau of the Central Andes: Annual Review of Earth and Planetary Sciences, v. 25, p. 139-174 Allmendinger, R. W., Gonzalez, G., Yu, J., and Isacks, B. L., 2003, The East-West fault scarps of northern Chile: tectonic significance and climatic clues: Actas - 10º Congreso Geológico Chileno, Concepción, 2003. Alonso-Perez, R., Müntener, O., and Ulmer, P., 2009, Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids: Contributions to Mineralpgy and Petrology, v. 157, p. 541–558. Alpers, C. N., and Brimhall, G. H., 1988, Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida; with Suppl.
    [Show full text]
  • Levin Et Al. 2004
    Systematic Botany (2004), 29(1): pp. 147–164 q Copyright 2004 by the American Society of Plant Taxonomists Paraphyly in Tribe Onagreae: Insights into Phylogenetic Relationships of Onagraceae Based on Nuclear and Chloroplast Sequence Data RACHEL A. LEVIN,1,7 WARREN L. WAGNER,1 PETER C. HOCH,2 WILLIAM J. HAHN,3 AARON RODRIGUEZ,4 DAVID A. BAUM,5 LILIANA KATINAS,6 ELIZABETH A. ZIMMER,1 and KENNETH J. SYTSMA5 1Department of Systematic Biology, Botany, MRC 166, Smithsonian Institution, P. O. Box 37012, Washington, District of Columbia 20013-7012; 2Missouri Botanical Garden, P. O. Box 299, St. Louis, Missouri 63166-0299; 3108 White-Gravenor, Box 571003, Georgetown University, Washington, District of Columbia, 20057-1003; 4Departamento de Botan´‡ca y Zoolog´‡a, Apartado Postal 139, 45101 Zapopan, Jalisco, Mexico; 5Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 6Departamento Cienti!co de Plantas Vasculares, Museo de Ciencias Naturales, Paseo del Bosque s/n, 1900 La Plata, Provincia de Buenos Aires, Argentina 7Author for correspondence ([email protected]) Communicating Editor: Thomas G. Lammers ABSTRACT. Onagraceae are a family of 17 genera in seven tribes, with the majority of species in tribes Onagreae and Epilobieae. Despite the species-richness of these two tribes, to date no phylogenetic study has been done with suf!cient taxon sampling to examine relationships between and within these tribes. In this study, we used DNA sequence data from one nuclear region (ITS) and two chloroplast regions (trnL-trnF and rps16) to infer phylogenetic relationships among 93 taxa across the family, with concentrated sampling in the large tribe Onagreae.
    [Show full text]
  • Organizing Evolution: Founding the Society for the Study of Evolution (1939-1950) Author(S): Vassiliki Betty Smocovitis Source: Journal of the History of Biology, Vol
    Organizing Evolution: Founding the Society for the Study of Evolution (1939-1950) Author(s): Vassiliki Betty Smocovitis Source: Journal of the History of Biology, Vol. 27, No. 2 (Summer, 1994), pp. 241-309 Published by: Springer Stable URL: http://www.jstor.org/stable/4331311 Accessed: 15/06/2009 13:04 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=springer. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Springer is collaborating with JSTOR to digitize, preserve and extend access to Journal of the History of Biology. http://www.jstor.org OrganizingEvolution: Founding the Society for the Study of Evolution (1939-1950) VASSILIKI BETTY SMOCOVITIS Department of History University of Florida Gainesville, Florida 32611 There are many instances in the history of biology where the founding of a society or of a journal has signaled a new development.This surely can also be claimed for the founding of the Society for the Study of Evolution and of the journal Evolution.
    [Show full text]