Arizona Department of Water Resources Depth to Water and Water - Level Altitude, Sheet 1 of 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CENTRAL ARIZONA SALINITY STUDY --- PHASE I Technical Appendix C HYDROLOGIC REPORT on the PHOENIX
CENTRAL ARIZONA SALINITY STUDY --- PHASE I Technical Appendix C HYDROLOGIC REPORT ON THE PHOENIX AMA Prepared for: United States Department of Interior Bureau of Reclamation Prepared by: Brown and Caldwell 201 East Washington Street, Suite 500 Phoenix, Arizona 85004 Brown and Caldwell Project No. 23481.001 C-1 TABLE OF CONTENTS PAGE TABLE OF CONTENTS ................................................................................................................ 2 LIST OF TABLES .......................................................................................................................... 3 LIST OF FIGURES ........................................................................................................................ 3 1.0 INTRODUCTION .............................................................................................................. 4 2.0 PHYSICAL SETTING ....................................................................................................... 5 3.0 GENERALIZED GEOLOGY ............................................................................................ 6 3.1 BEDROCK GEOLOGY ......................................................................................... 6 3.2 BASIN GEOLOGY ................................................................................................ 6 4.0 HYDROGEOLOGIC CONDITIONS ................................................................................ 9 4.1 GROUNDWATER OCCURRENCE .................................................................... -
The Lower Gila Region, Arizona
DEPARTMENT OF THE INTERIOR HUBERT WORK, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 498 THE LOWER GILA REGION, ARIZONA A GEOGBAPHIC, GEOLOGIC, AND HTDBOLOGIC BECONNAISSANCE WITH A GUIDE TO DESEET WATEEING PIACES BY CLYDE P. ROSS WASHINGTON GOVERNMENT PRINTING OFFICE 1923 ADDITIONAL COPIES OF THIS PUBLICATION MAT BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 50 CENTS PEE COPY PURCHASER AGREES NOT TO RESELL OR DISTRIBUTE THIS COPT FOR PROFIT. PUB. RES. 57, APPROVED MAT 11, 1822 CONTENTS. I Page. Preface, by O. E. Melnzer_____________ __ xr Introduction_ _ ___ __ _ 1 Location and extent of the region_____._________ _ J. Scope of the report- 1 Plan _________________________________ 1 General chapters _ __ ___ _ '. , 1 ' Route'descriptions and logs ___ __ _ 2 Chapter on watering places _ , 3 Maps_____________,_______,_______._____ 3 Acknowledgments ______________'- __________,______ 4 General features of the region___ _ ______ _ ., _ _ 4 Climate__,_______________________________ 4 History _____'_____________________________,_ 7 Industrial development___ ____ _ _ _ __ _ 12 Mining __________________________________ 12 Agriculture__-_______'.____________________ 13 Stock raising __ 15 Flora _____________________________________ 15 Fauna _________________________ ,_________ 16 Topography . _ ___ _, 17 Geology_____________ _ _ '. ___ 19 Bock formations. _ _ '. __ '_ ----,----- 20 Basal complex___________, _____ 1 L __. 20 Tertiary lavas ___________________ _____ 21 Tertiary sedimentary formations___T_____1___,r 23 Quaternary sedimentary formations _'__ _ r- 24 > Quaternary basalt ______________._________ 27 Structure _______________________ ______ 27 Geologic history _____ _____________ _ _____ 28 Early pre-Cambrian time______________________ . -
Arizona 'Highways
Sc:~r1ic: VOL. XXXIII NO. 3 MARCH 1957 RAYMOND CARLSON, Editor U. S. Highway 89, Arizona's main artery of north GFORGE M. AV EY, Art Editor south trayel, is one of the most scenic of all 0~1r roads. Its JAJ\LCS E. STEVENS, Business Manager some 600 miles through the state offer a Yarietv of eleva LEGEND tion, terrain and scenic interest. Each mile unfoldi1we:, be- "89" ENT ERl'-'G HousEROCK VALLEY FRONT COVER fore the traveler is an interesting mile and different from ~ . R .,, y MANLEY'S PHOTOGRAPH SHOWS the one preceding. "89" brings :--·ou into the state at GLORIOUS NORTHERN ARIZONA VISTA. Fredonia. It leaves the state at Nogales. As eYen the most ARIZONA S CRAPBOOK . 2 S:-.:11PSHOTS OF SCEN IC INTEREST casual glance at a map ·will reveal, "89'' cuts right through ALO ~G "89," BORDER TO BORD ER . the heart of Arizona and covers a lot of interesting· coun PIPE SPRI NG NATIONAL MoNUJVIENT 4 try between Utah and J\1e.\'ico. The Strip, the cool J(aibab, \VF. PAY A VISIT TO HISTORIC the s,1 ·eeping panorama of Houserock Valley, Vermilion SHR INE GLORIFYING OUR PIONEERS. and Echo Cliffs, the lofty forested reg·ion ~f San Fran IO \VE TAKE A TRIP ON A HIGHWAY cisco Peaks, the high pla~eau countr:v ~bet\\·een vVillia1m OF INTE RNAT IONAL GRANDEUR. and Prescott, or by Alternate "89" Oak Creek and the OLD BrLL WrLLTAJVrs' FAVORITE MouNTAIN 34 Verde Va llev, the desert and then the historic Santa Cruz D ESC RIPTIO N OF A MOUNTAIN THAT Vallev- all of these and more, too, make up the travel JS LA NDM ARK IN NORTHERN ARIZONA. -
FACT SHEET of Environmental Quality
SEPTEMBER 2013 Arizona Department FACT SHEET of Environmental Quality Janice K. Brewer, Governor • Henry R. Darwin, Director Publication Number: FS 13-11 Ambient Groundwater Quality of the Upper Hassayampa Basin: A 2003-2009 Baseline Study – June 2013 Introduction A baseline groundwater quality study of the Upper Hassayampa basin was con- ducted from 2003 to 2009 by the Arizona Department of Environmental Quality (ADEQ) Ambient Groundwater Monitor- ing Program. ADEQ carried out this task pursuant to Arizona Revised Statutes §49-225 that mandates ongoing moni- toring of waters of the state including its aquifers. This fact sheet is a synopsis of the ADEQ Open File Report 13-03.1 The Upper Hassayampa groundwater basin covers approximately 787 square miles within Maricopa and Yavapai counties and is located about 60 miles Map 1 – Sample sites in the northwest of Phoenix (Map 1). The basin Upper Hassayampa basin is characterized by mid-elevation moun- are color-coded according to their water quality status: No tains and had an estimated population Water Quality Exceedences, 2 of 10,479 in 2000. The largest popula- Secondary MCLs Exceedences, Primary MCL Exceedances, and Primary and Secondary MCL Exceedances. (Map by Jean Ann Rodine) tion center is the Town of Wickenburg. tions range from approximately 7,000 Other communities include Congress feet above mean sea level (amsl) in the and Groom Creek. Low-intensity livestock Bradshaw Mountains to 1,900 feet amsl grazing is the predominant land use and along the Hassayampa River about five most ranches have limited acreages of ir- miles south of Wickenburg. The basin is rigated pasture to raise additional animal comprised of federal land managed by feed. -
Arizona Wulfenite 2009 3 12
Geologic Settings of Wulfenite in Arizona by Jan C. Rasmussen Curator, Arizona Mining and Mineral Museum and Stanley B. Keith, MagmaChem Exploration March 21, 2009 Arizona is famous for its spectacular wulfenite specimens. The butterscotch-colored, bladed crystals from the Glove Mine in the Santa Rita Mountains south of Tucson and the bright red, chunky blades from the Red Cloud Mine in the Silver district north of Yuma are prized highlights of many mineral collections. Most of these famous mineral localities are no longer available to collectors, making the historic specimens even more valuable. Outline Figure 1. Wulfenite from the Glove mine, Santa Rita Alkali-calcic Pb-Zn-Ag Mountains Laramide (75-65 Ma) Glove, Tyndall, Turquoise, Empire dist. Wulfenite is lead molybdate, PbMoO4. It forms Mid-Tertiary (30-20 Ma) in the oxidized zones of lead deposits where the Hilltop, Tonopah, Hull, Red Cloud white needle-like crystals of cerussite (PbCO3) (Silver dist.), Ripsey, Grand Reef, Purple have developed. Surprisingly, the presence of Passion mines molybdenite is not required. Wulfenite rarely Quartz Alkalic Au-base metal occurs in the same mineral deposits as Jurassic (180-160 Ma) molybdenite, and then only in the later stages of Bisbee the deposits. Even there, wulfenite does not Laramide (75-70 Ma) occur unless cerussite or mimetite is present. Old Yuma There had to be enough lead in the system in a Mid-Tertiary (28-22 Ma) relatively soluble mineral to allow the Tiger, Rowley molybdenum in the ground water to combine Calc-alkalic porphyry copper stage 4 with lead and oxygen as wulfenite. -
The Maricopa County Wildlife Connectivity Assessment: Report on Stakeholder Input January 2012
The Maricopa County Wildlife Connectivity Assessment: Report on Stakeholder Input January 2012 (Photographs: Arizona Game and Fish Department) Arizona Game and Fish Department In partnership with the Arizona Wildlife Linkages Workgroup TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................................ i RECOMMENDED CITATION ........................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................................. ii EXECUTIVE SUMMARY ................................................................................................................ iii DEFINITIONS ................................................................................................................................ iv BACKGROUND ................................................................................................................................ 1 THE MARICOPA COUNTY WILDLIFE CONNECTIVITY ASSESSMENT ................................... 8 HOW TO USE THIS REPORT AND ASSOCIATED GIS DATA ................................................... 10 METHODS ..................................................................................................................................... 12 MASTER LIST OF WILDLIFE LINKAGES AND HABITAT BLOCKSAND BARRIERS ................ 16 REFERENCE MAPS ....................................................................................................................... -
Maricopa County Regional Trail System Plan
Maricopa County Regional Trail System Plan Adopted August 16, 2004 Maricopa Trail Maricopa County Trail Commission Maricopa County Department of Transportation Maricopa County Parks and Recreation Maricopa County Planning and Development Flood Control District of Maricopa County We have an obligation to protect open spaces for future generations. Maricopa County Regional Trail System Plan VISION Our vision is to connect the majestic open spaces of the Maricopa County Regional Parks with a nonmotorized trail system. The Maricopa Trail Maricopa County Regional Trail System Plan - page 1 Credits Maricopa County Board of Supervisors Andrew Kunasek, District 3, Chairman Fulton Brock, District 1 Don Stapley, District 2 Max Wilson, District 4 Mary Rose Wilcox, District 5 Maricopa County Trail Commission Supervisor Max Wilson, District 4 Chairman Supervisor Andrew Kunasek, District 3 Parks Commission Members: Citizen Members: Laurel Arndt, Chair Art Wirtz, District 2 Randy Virden, Vice-Chair Jim Burke, District 3 Felipe Zubia, District 5 Stakeholders: Carol Erwin, Bureau of Reclamation (BOR) Fred Pfeifer, Arizona Public Service (APS) James Duncan, Salt River Project (SRP) Teri Raml, Bureau of Land Management (BLM) Ex-officio Members: William Scalzo, Chief Community Services Officer Pictured from left to right Laurel Arndt, Supervisor Andy Kunasek, Fred Pfeifer, Carol Erwin, Arizona’s Official State Historian, Marshall Trimble, and Art Wirtz pose with the commemorative branded trail marker Mike Ellegood, Director, Public Works at the Maricopa Trail -
Geochronology, Geology, and Listric Normal Faulting of the Vulture Mountains, Maricopa County, Arizona
Arizona Geological Society Digest, Volume XII, 1980 89 Geochronology, Geology, and Listric Normal Faulting of the Vulture Mountains, Maricopa County, Arizona by WA. Rehrigi, M. Shafiqullah2, and P.E. Damon2 Abstract Geologic mapping and geochronologic studies in the Vulture Mountains near Wickenburg, Arizona, have led to the recognition of a large, northeast-trending batholith of 68.4-m.y. age that intrudes complex gneissic and granitic rocks of probably Precambrian age. Over- lying the denuded crystalline terrane is a sequence of late Oligocene to Miocene ( .'26 to 16 m.y.) volcanic rocks (vitrophyres, ash-flow tuffs, welded tuffs, breccias, agglomerates, and lava flows) that vary locally. Nearby source areas are suggested. A swarm of north- to north-northwest-trending porphyritic dikes intrudes the volcanics and crystalline basement. Overlying this volcanic sequence in angular unconformity is a thin section of basal conglom- erate and basalt lava flows dated at 13.5 m.y. B.P. The older, tuffaceous sequence is generally calc-alkalic but with a high proportion of rhyolites that are exceptionally rich in potassium and silica. These silicic units are peral- kaline or nearly so, and those with K20/Na2O >3 are ultrapotassic. Initial strontium ratios average 0.7081, whereas an initial ratio for the younger basalt sequence is significantly lower at 0.7054. The silicic volcanics have been severely tilted on multiple, low-angle listric normal faults. The youngest basalt flows are relatively flat lying and postdate this deformation. By geo- logic and radiometric criteria, the transition from tilted silicic volcanics to untilted basalts occurred between about 16 and 14 m.y. -
Geologic Map of the Northeastern Hieroglyphic Mountains, Central Ariz Ora
GEOLOGIC MAP OF THE NORTHEASTERN HIEROGLYPHIC MOUNTAINS, CENTRAL ARIZ ORA by Richard C. Capps, Stephen J. Reynolds, Curtis P. Kortemeier, and Elizabeth A. Scott Arizona Geological Survey Open-File Report 86·10 August 1986 Arizona Geological Survey 416 W. Congress, Suite #100, Tucson, Arizona 85701 Jointly funded by the Arizona Bureau o/Geology and Mineral Technology and the U.S. Geological Survey Cooperative Geologic Mapping Program (COGEOMAP) Contract No. 14-08-0001-A0378 Principal Investigators: Stephen J. Reynolds and lArry D. Fellows This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards INTROOOCTION This report presents a preliminary 1:24,OOO-scale geologic map of the northeastern Hieroglyphic Mountains in central Arizona. The mapping, completed between January and June, 1986, was jOintly funded by the U. S. Geological Survey and the Arizona Bureau of Geology and Mineral Technology as part of the cost-sharing, Cooperative Geologic Mapping Program (COGEOMAP). The aim of COGEOMAP is to produce high-quality geologic maps for areas that have been inadequately mapped and that have high mineral resource or natural hazard potential. The mapping was done on 1:24,OOO-scale topographic maps and on 1:24,000- scale color aerial photographs provided by Raymond A. Brady, U. S. Bureau of Land Management, Phoenix. GEOLOGIC OVERV][EW The Hieroglyphic Mountains are composed of a metamorphic-plutonic basement that is overlain by middle Tertiary volcanic and sedimentary rocks. The oldest rocks in the range are Proterozoic schist, gneiss, metasedimentary and metavolcanic rocks, and several generations of plutonic rocks. -
1 POST-MINERAL NORMAL FAULTING in ARIZONA PORPHYRY SYSTEMS by Phillip A. Nickerson a Dissertation Submitted To
1 POST-MINERAL NORMAL FAULTING IN ARIZONA PORPHYRY SYSTEMS By Phillip A. Nickerson _________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Phillip A. Nickerson entitled Post-Mineral Normal Faulting in Arizona Porphyry Systems and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/30/2012 Eric Seedorff _______________________________________________________________________ Date: 04/30/2012 Mark Barton _______________________________________________________________________ Date: 04/30/2012 George Davis _______________________________________________________________________ Date: 04/30/2012 Peter Reiners _______________________________________________________________________ Date: 04/30/2012 Charles Ferguson Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ________________________________________________ Date: 04/30/2012 -
General Monitoring and Discovery Plan for the City of Phoenix, Maricopa County, Arizona
General Monitoring and Discovery Plan for the City of Phoenix, Maricopa County, Arizona Prepared for City of Phoenix City Archaeology Office Parks and Recreation Department Pueblo Grande Museum 4619 E. Washington Street Phoenix, Arizona 85034 Pueblo Grande Museum Project No. 2017-009 Project Report No. 19-120 Desert Archaeology, Inc. Prepared by: T. Kathleen Henderson Submitted by: Patricia Castalia Desert Archaeology, Inc. 3975 N. Tucson Boulevard Tucson, Arizona 85716 July 31, 2020 ABSTRACT Report Title: General Monitoring and Discovery Plan for the City of Phoenix, Maricopa County, Arizona Project Name: General Monitoring and Discovery Plan Update Project Location: Phoenix, Maricopa County, Arizona Project Sponsor: City of Phoenix Sponsor Project Number(s): None (Pueblo Grande Museum No. 2017-009) Lead Agency: City of Phoenix Other Involved Agencies: Arizona State Historic Preservation Office; Arizona State Museum Applicable Regulations: City of Phoenix Historic Preservation Ordinance (Zoning Ordinance Chapter 8); Arizona Antiquities Act (ARS §41-841 et seq.); Arizona state burial laws (ARS §41-844 and ARS §41-865) Funding Source: City Description of the Project/Undertaking: Provide an updated general monitoring and discovery plan for the city of Phoenix Project Area/Area of Potential Effects (APE): Lands inside the boundary of the city of Phoenix and city-owned facilities that lie outside this boundary; acreage to be established by individual projects conducted under this updated plan Legal Description: To be established by individual -
Uranium in the Basin and Range Province of Arizona
Cenozoic Sediments, Volcanics, and Related Uranium in the Basin and Range Province of Arizona Jan C. Wilt J. C.Wilt & Co. TLcson, Arizona Robert B. Scarborough University of Arizona TLcson, Arizona Concentrations of uranium in Cenozoic deposits of Arizona occur with carbonaceous and siliceous matter in light-colored, calcareous mudstones or fetid carbonates that were deposited in lacustrine, paludal or low= energy floodplain environments. Although uranium was deposited throughout the Cenozoic, the largest uranium resources in the state occur in the Date Creek basin in fine-grained sediments associated with ig- nimbrite volcanism of the mid-Tertiary orogeny. This concentration may be related to the coincidence of three factors: low-energy environments where fine grained, carbonaceous, lacustrine or paludal sediments were accumulating; exposure of large areas of alkalic Precambrian granite; and, extrusion of large volumes of relatively alkalic and silicic volcanics of the mid.Tertiary ignimbrites. In 1975, Union Oil Co. announced that the Anderson 1979). That investigation consisted of a survey of the mine in southern Yavapai County, Arizona, contained literature describing various Xrtiary formations, ex- 80 million pounds of uranium buried beneath rocks of amination of outcrops of uraniferous Tertiary sedi- the Date Creek basin (Sherborne and others, 1979; Eng. ments, and determination of ages of intercalated vol- Min. Jour., 1978). This discovery, coupled with the in- canics. creased price of uranium, touched off a flurry of explora- Earlier papers by Cooley and Davidson (1963), Heindl tion activity throughout the Basin and Range province (1962), and Sell (1968) correlated Cenozoic rock units of Arizona (Peirce, 1977). Much of the leasing and claim according to rock type, structural involvement, and se- staking was directed at the Date Creek basin and sur- quence.