Threat and Alert Analytics in Autonomous Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Green Driver: Driving Behaviors Revisited on Safety
ARCHIVES OF TRANSPORT ISSN (print): 0866-9546 Volume 47, Issue 3, 2018 e-ISSN (online): 2300-8830 DOI: 10.5604/01.3001.0012.6507 GREEN DRIVER: DRIVING BEHAVIORS REVISITED ON SAFETY Nurul Hidayah Binti MUSLIM1, Arezou SHAFAGHAT2, Ali KEYVANFAR3, Mohammad ISMAIL4 1,4 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia 2,3 MIT-UTM MSCP Program, Institute Sultan Iskandar, Universiti Teknologi Malaysia, Skudai, Malaysia 2,3 Department of Landscape Architecture, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia 3 Facultad de Arquitectura y Urbanismo, Universidad Tecnológica Equinoccial, Calle Rumipamba s/n y Bourgeois, Quito, Ecuador 3 Center for Energy Research, Jacobs School of Engineering, University of California, San Diego, USA Contact: 2) [email protected] (corresponding author) Abstract: Interactions between road users, motor vehicles, and environment affect to driver’s travel behavior; however, frailer of proper interaction may lead to ever-increasing road crashes, injuries and fatalities. The current study has generated the green driver concept to evaluate the incorporation of green driver to negative outcomes reduction of road transportation. The study aimed to identify the green driver’s behaviors affecting safe traveling by engaging two research phases. Phase one was to identify the safe driving behaviors using Systematic literature review and Content Analysis methods. Phase one identified twenty-four (24) sub-factors under reckless driving behaviors cluster, and nineteen (19) sub-factors under safe driving practice cluster. Second phase was to establish the actual weight value of the sub-factors using Grounded Group Decision Making (GGDM) and Value Assignment (VA) methods, in order to determine the value impact of each sub-factor to green driving. -
Development & Policy Forecast for Global and Chinese NEV Markets
Development & Policy Forecast for Global and Chinese NEV Markets in 2021 Invited by China EV 100, officials and experts from domestic and foreign government agencies, industry associations, research institutions and businesses attended the 7th China EV 100 Forum in January 15-17, 2021. The summary below captures the observations and insight of the speakers at the forum on the industry trend and policy forecast in the world and China in 2021. Ⅰ. 2021 Global & China Auto Market Trend 1. In 2021, the global auto market may resume growth, and the NEV boom is set to continue. 2020 saw a prevalent downturn of the auto sector in major countries due to the onslaught of COVID-19, yet the sales of NEVs witnessed a spike despite the odds, with much greater penetration in various countries. The monthly penetration of electric vehicles in Germany jumped from 7% to 20% in half a year and is expected to hit 12% in 2020, up 220% year on year; Norway reported an 80% market share of EVs in November, which is projected to exceed 70% for the whole year, topping the global ranking. Multiple consultancy firms foresee a comeback of global sales growth and a continuance of NEV boom in 2021 as coronavirus eases. 2. China's auto market as a whole is expected to remain stable in 2021, 1 with a strong boost in NEV sales. In 2020, China spearheaded global NEV market growth with record sales of 1.367 million units. The Development Research Center of the State Council expects overall auto sales to grow slightly in 2021, which ranges 0-2%. -
ADVANCED DRIVER ASSISTANCE SYSTEMS (ADAS) JUNE 2019 a Guide to Advanced Driver Assistance Systems
ADVANCED DRIVER ASSISTANCE SYSTEMS (ADAS) JUNE 2019 A Guide to Advanced Driver Assistance Systems As technology becomes more advanced, a growing number of vehicles are being built with intelligent systems to help motorists. Advanced Driver Assistance Systems, or ADAS, is a term used to describe these smart features. ADAS includes relatively simple features like rear view cameras to help with parking through to more complicated systems like Lane Departure Warning (LDW) that can detect a vehicle’s surroundings. These advanced systems can actually take some control of the vehicle, such as Autonomous Emergency Braking (AEB). In this guide, we describe the ADAS technology available and their benefits, which could be useful when you and your drivers are selecting your next vehicle. What is ADAS? Whether your car has adaptive high beams, a collision detection system or autonomous night vision, these are all classed as Advanced Driver Assistance Systems (ADAS). If you and your drivers understand what these smart features are and what they do, you can get the most benefit from them, improving your driving experience and making other road users safer. Please be aware that the information in this guide is correct as at June 2019 but things move fast in this area. 1 A guide to advanced driver assistance systems Light Assisted Technology AFLS - Adaptive Front Lighting System System that automatically turns the headlight beam to the right or left dependent on the vehicle’s direction. AHBC – Adaptive High Beam Control ALC - Adaptive Light Control Detects oncoming traffic and vehicles in front, automatically adjusting the headlamp beam high and low. -
Paving the Way to Self-Driving Cars with ADAS (Rev. A)
Paving the way to self-driving cars with advanced driver assistance systems Hannes Estl Worldwide Systems Marketing for Advanced Driver Assistance Systems (ADAS), Texas Instruments Recent publicity has attracted the public eye to the development of automated vehicles, especially Google’s experimental cars that have logged thousands of self-driven miles with minimal help from human drivers. These events are truly impressive, and in the long term will help revolutionize vehicle operation and our experience of driving. But the excitement about self-driving cars can make it easy to overlook numerous short-term developments by automotive manufacturers that are equally important in transforming the act of driving. Collectively known as Advanced Driver Assistance Systems (ADAS), these developments are designed to make cars safer, and their gradual introduction is already improving road safety. In addition, ADAS features represent an evolution in vehicle sensing, intelligence and control that will ultimately lead to self-driving cars. ADAS technologies exist at different levels of active Volume production of automobiles with fully assistance and are being introduced in overlapping autonomous control is probably a decade away stages. Driver information systems, such as simple at this time, although as today’s experiments rear-view cameras, surround-view displays, and demonstrate, the essential technology for self- blind spot and lane departure warnings, provide driving cars already exists. However, advanced information but leave the driver in full control at all electronic systems take up much of the space in times. Partially autonomous systems, such as lane- automated test vehicles and are far more expensive keep assistance and active cruise control, enable than the cars themselves. -
MG Gloster, a Premium SUV Owner Will Be Introduced to Level-1 ADAS and Enable the Intelligent Human-Machine Interface
INDIA’S FIRST AUTONOMOUS LEVEL-1 * PREMIUM SUV WITH *Advanced Driver Assistance System (ADAS) is not a substitute for human eye and driver vigilance, it is a driver assist system that enhances driving experience and safety. The driver shall remain responsible for safe, vigilant and attentive driving. WHAT IS AND HOW DOES IT WORK? Almost all vehicle accidents are caused by human error, which can be reduced to an extend with the Advanced Driver Assistance System also known as ADAS*. ADAS is a group of safety and convenience functions intended to improve comfort for drivers and road safety and, preventing or reducing the severity of potential accidents. ADAS can do all this by alerting the driver, implementing possible safeguards in the vehicle & automating driving controls (based on the driving automation level of the vehicle). While Autonomous Level-5 denotes the global future dream of completely driverless cars, Level-1 acts as a driver assitant and the vehicle is dependent on the driver to monitor the driving environment and conditions. The Level-1 ADAS enhances your driving experience and makes it safer, more comfortable and more convenient. With MG Gloster, a premium SUV owner will be introduced to Level-1 ADAS and enable the intelligent human-machine interface. ADAPTIVE CRUISE CONTROL (ACC) Adaptive Cruise Control, also known as ACC is an advanced version of cruise control, particularly 80km/hr 80km/hr helpful for long drives as it senses the road ahead and enables the vehicle to control its acceleration and braking to achieve desired speed but also maintain safe distance from cars ahead. -
General Safety Regulation Draft
EUROPEAN COMMISSION Brussels, 17.5.2018 SWD(2018) 190 final COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT Accompanying the document Proposal for a Regulation of the European Parliament and of the Council on type- approval requirements for motor vehicles and their trailers, and systems, components and separate technical units intended for such vehicles, as regards their general safety and the protection of vehicle occupants and vulnerable road users, amending Regulation (EU) 2018/… and repealing Regulations (EC) No 78/2009, (EC) No 79/2009 and (EC) No 661/2009 {COM(2018) 286 final} - {SEC(2018) 270 final} - {SWD(2018) 191 final} EN EN Table of Contents List of abbreviations and glossary of terms ............................................................................... 5 1. Introduction: Political and legal context ............................................................................. 7 1.1. Political context ............................................................................................................ 7 1.2. Legal context ................................................................................................................ 8 1.2.1. Vehicle safety legislation under the type-approval framework ............................ 9 1.3. Adapting the legislation to vehicle safety developments ............................................. 9 1.4. Contribution of vehicle safety legislation to road safety in general .......................... 10 2. What is the problem and why is it a problem? ................................................................. -
Scenarios for Autonomous Vehicles – Opportunities and Risks for Transport Companies
Position Paper / November 2015 Scenarios for Autonomous Vehicles – Opportunities and Risks for Transport Companies Imprint Verband Deutscher Verkehrsunternehmen e. V. (VDV) Kamekestr. 37–39 · 50672 Cologne · Germany T +49 221 57979-0 · F +49 221 57979-8000 [email protected] · www.vdv.de Contact Martin Röhrleef üstra Hannover, Head of the Mobility Association Department Chairman of the VDV working group “Multimodal Mobility” T +49 511 1668-2330 F +49 511 1668-962330 [email protected] Dr. Volker Deutsch VDV, Head of the Traffic Planning Department T +49 221 57979-130 F +49 221 57979-8130 [email protected] Dr. Till Ackermann VDV, Head of the Business Development Department T +49 221 57979-110 F +49 221 57979-8110 [email protected] Figure sources Title, page 18 VDV Page 5 VDA Page 9 Morgan Stanley Summary: Autonomous vehicles: opportunities and risks for public transport The development and operation of fully automated, driverless vehicles (“autonomous vehicle”) will have a disruptive impact on the transport market and thoroughly mix up the present usage patterns as well as the present ownership and business models. The autonomous vehicle is a game changer, not least because the traditional differences between the various modes of transport become indistinct as an autonomous vehicle can be everything, in principle: a private car, a taxi, a bus, a car-sharing vehicle or a shared taxi. To express it dramatically: the autonomous vehicle could be part of the public transport system – but it could also seriously threaten the existence of today’s public and long-distance transport: The autonomous vehicle can threaten the existence of public transport because it makes driving much more attractive. -
Driver Assistance Technologies Pradip Kumar Sarkar
Chapter Driver Assistance Technologies Pradip Kumar Sarkar Abstract Topic: Driver Assistance Technology is emerging as new driving technology popularly known as ADAS. It is supported with Adaptive Cruise Control, Automatic Emergency Brake, blind spot monitoring, lane change assistance, and forward col- lision warnings etc. It is an important platform to integrate these multiple applica- tions by using data from multifunction sensors, cameras, radars, lidars etc. and send command to plural actuators, engine, brake, steering etc. ADAS technology can detect some objects, do basic classification, alert the driver of hazardous road conditions, and in some cases, slow or stop the vehicle. The architecture of the elec- tronic control units (ECUs) is responsible for executing advanced driver assistance systems (ADAS) in vehicle which is changing as per its response during the process of driving. Automotive system architecture integrates multiple applications into ADAS ECUs that serve multiple sensors for their functions. Hardware architecture of ADAS and autonomous driving, includes automotive Ethernet, TSN, Ethernet switch and gateway, and domain controller while Software architecture of ADAS and autonomous driving, including AUTOSAR Classic and Adaptive, ROS 2.0 and QNX. This chapter explains the functioning of Assistance Driving Technology with the help of its architecture and various types of sensors. Keywords: sensors, ADAS architecture, levels, technologies 1. Introduction In order to enhance road safety as well as to satisfy increasingly stringent government regulations in western countries, automobile makers are confronted with incorporating a range of diverse technologies for driver assistance to their new model. These technologies help drivers to avoid accidents, both at high speeds and for backward movement for parking. -
ADVANCED DRIVER ASSISTANCE TECHNOLOGY NAMES AAA’S Recommendation for Common Naming of Advanced Safety Systems
JANUARY 2019 ADVANCED DRIVER ASSISTANCE TECHNOLOGY NAMES AAA’s recommendation for common naming of advanced safety systems NewsRoom.AAA.com Advanced Driver Assistance Technology Names (this page intentionally left blank) © 2019 American Automobile Association, Inc. 2 Advanced Driver Assistance Technology Names Abstract Advanced Driver Assistance Systems have become increasingly prevalent on new vehicles. In fact, at least one ADAS feature is available on 92.7% of new vehicles available in the U.S. as of May 2018.1 Not only are these advanced driver assistance systems within financial reach of many new car consumers (about $1,950 for the average ADAS bundle2), they also have the potential to avoid or mitigate the severity of a crash. However, the terminology used to describe them varies widely and often seems to prioritize marketing over clarity. The lack of standardized names for automotive systems adds confusion for motorists when researching and using advanced safety systems. The intent of this paper is to create a dialog with the automotive industry, safety organizations and legislators about the need for common naming for advanced driver assistance systems. Within this report, AAA is proposing a set of standardized technology names for use in describing advanced safety systems. AAA acknowledges that this is a dynamic environment, and that further input from stakeholders and consumer research will further refine this recommendation. To date, automakers have devised their own branded technology names which, for example, has resulted in twenty unique names for adaptive cruise control and nineteen different names for lane keeping assistance (section 3.2) alone. A selection of these names is shown in Figure 1. -
Driving Toward a Sustainable Future
Driving Toward a Sustainable Future 2019 Corporate Sustainability Report Contents 3 INTRODUCTION 36 PRODUCTS 4 CEO Letter 37 Safety Products Visteon Corporation has a longstanding commitment to 5 Our Commitment 38 Autonomous Driving Technology corporate sustainability and citizenship. In support of this 6 Leadership Principles commitment, we are providing this report as a summary 7 Company Profile 39 SUPPLY CHAIN of the company’s corporate responsibility activities. 40 Supplier Sustainability Included are highlights of company initiatives, practices 8 Sustainability Strategy 41 Strategic Supplier Award and achievements related to ethics and governance, 9 Industry Associations environment, health and safety, products, supply chain, 10 Awards 42 QUALITY quality and our people. 13 ETHICS AND GOVERNANCE 43 Quality Policy Visteon is focused on leading the digital revolution in 14 Ethics and Integrity Policy 44 Visteon Quality Awards cockpit electronics, delivering key product platforms that 15 Code of Basic Working Conditions are essential to the cockpit of the future. As a technology- 45 PEOPLE 16 Conflict Minerals driven company focused on cockpit electronics that 46 Employee Engagement 17 Governance – Board of Directors address the digital, electric and autonomous evolution, 47 Learning and Development Visteon has a world-class workforce and an unwavering 48 Leadership Programs dedication to corporate sustainability. 18 ENVIRONMENT 20 Energy Team 49 Diversity and Inclusion 21 Sustainability Programs 50 Diversity Successes 22 Environmental Metrics 51 Employee Resource Groups 24 Environmental Successes 52 Community Outreach 26 CDP Reports 53 Community Successes 27 HEALTH AND SAFETY 29 Metrics 31 Health and Safety Successes 32 Zero Injury Facilities 33 2018 Target Performance 35 2019 Targets 2 INTRODUCTION CEO Letter Responsibly Leading the Digital Cockpit Revolution Our environmental performance also continues to improve Visteon is committed to the highest levels of sustainability across our manufacturing operations. -
Autonomous Vehicles Future: Driverless Cars
Executive Insights Volume XIX, Issue 58 Mapping the Road to Autonomous Vehicles There’s no doubt that over the long term, 3. Industrial: Discovering and organizing the right business autonomous vehicles (better known as self-driving model to produce a commercially viable product cars), combined with electrification and shared While these challenges are significant, they will eventually be overcome. The path forward on No. 3 in particular (creating mobility, will have a massive impact on society. a business model to produce a sellable product) is just becoming clear. Many pundits debate the extent and speed of the expected effects. Will autonomy act as a “lighter fluid” for the spread of shared mobility services? How soon will urban real estate Figure 1 developers be freed from the need to provide space for parking? SAE International’s definitions of automation levels for on-road vehicles What will the impact on logistics do to retail? We like to say that these potential long-term effects depend on • Level 0: No automation (full driver control) how we get “from 1 to 100” — that is, from the launch of self- • Level 1: Driver assistance (vehicle controls either driving cars to a day when autonomous mobility is ubiquitous. steering or speed under certain conditions) But while prognostication is fun, the map to that destination is still far from clear. • Level 2: Partial automation (vehicle controls both steering and speed under certain conditions) What is becoming clearer, however, is the first leg of the journey, • Level 3: Conditional automation (total vehicle control or how we get “from 0 to 1” — from where we are today to the with expected human intervention) successful commercialization of the first fully self-driving vehicle. -
Research Review on Parking Space Detection Method
S S symmetry Review Research Review on Parking Space Detection Method Yong Ma 1,*, Yangguo Liu 1 , Lin Zhang 2 , Yuanlong Cao 3 , Shihui Guo 4 and Hanxi Li 1 1 School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022, China; [email protected] (Y.L.); [email protected] (H.L.) 2 School of Software, Tongji University, Shanghai 201804, China; [email protected] 3 School of Software, Jiangxi Normal University, Nanchang 330022, China; [email protected] 4 School of Informatics, Xiamen University, Xiamen 361005, China; [email protected] * Correspondence: [email protected] Abstract: The parking assist system is an essential application of the car’s active collision avoidance system in low-speed and complex urban environments, which has been a hot research topic in recent years. Parking space detection is an important step of the parking assistance system, and its research object is parking spaces with symmetrical structures in parking lots. By analyzing and investigating parking space information measured by the sensors, reliable detection of sufficient parking spaces can be realized. First, this article discusses the main problems in the process of detecting parking spaces, illustrating the research significance and current research status of parking space detection methods. In addition, it further introduces some parking space detection methods, including free-space-based methods, parking-space-marking-based methods, user-interface-based methods, and infrastructure-based methods, which are all under methods of parking space selection. Lastly, this article summarizes the parking space detection methods, which gives a clear direction for future research. Keywords: parking assist system; parking space detection; symmetrical structures; sensors; reliable detection; free space; parking space marking; user interface; infrastructures Citation: Ma, Y.; Liu, Y.; Zhang, L.; Cao, Y.; Guo, S.; Li, H.