The Effect of Fire and Grazing on the Cumberland Plain Woodlands Samantha Clarke University of Wollongong

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Fire and Grazing on the Cumberland Plain Woodlands Samantha Clarke University of Wollongong University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2004 The effect of fire and grazing on the Cumberland Plain Woodlands Samantha Clarke University of Wollongong Recommended Citation Clarke, Samantha, The effect of fire and grazing on the Cumberland Plain Woodlands, Master of Science - Research thesis, School of Biological Sciences, University of Wollongong, 2004. http://ro.uow.edu.au/theses/2700 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The Effect of Fire and Grazing on the Cumberland Plain Woodlands A thesis submitted in partial fulfillment of the requirements for the award of the degree Master of Science (Research) from THE UNIVERSITY OF WOLLONGONG By SAMANTHA CLARKE Bachelor of Science (Biology) DEPARTMENT OF BIOLOGICAL SCIENCES 2004 CERTIFICATION I, Samantha Clarke, declare that this thesis, submitted in partial fulfillment of the requirements for the award of Master of Science (Research), in the Department of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Samantha Clarke 20 June 2004 ABSTRACT Temperate grassy woodlands throughout the world have suffered the effects of changed disturbance regimes, in particular, fire and grazing, due to human activities. Since European settlement fire and tree clearing has been used to modify grassy woodland vegetation for livestock grazing and agriculture. As a consequence some species, particularly shrubs and trees, have been reduced or eliminated and both native and introduced grasses have become more dominant. It is important to understand how disturbance regimes are affecting grassy woodlands to ensure long-term survival and diversity of the community. The Cumberland Plain Woodlands are a good example of the magnitude of destruction endured by a typical grassy w~odland community. They are found in small remnants within the western Sydney region and are severely fragmented and disturbed with approximately only 6 % remaining. The Cumberland Plain Woodlands are listed as an endangered ecological community under the Threatened Species ConseNation Act, 1995 and the Environment Protection and Biodiversity ConseNation Act, 1999. This listing is a consequence of widespread destruction and fragmentation of the community due to tree clearing, agriculture and urbanisation. Little is known of the effect of changed disturbance regimes on the Cumberland Plain Woodland remnants and other vulnerable communities growing upon shale in western Sydney with most research focussing on the vegetation communities growing upon Hawkesbury Sandstone, which initiated this research. The study area was located within one of the largest remnants of Cumberland Plain Woodlands, which is found at Holsworthy Military Area, western Sydney. Holsworthy has been part of the army training area for the last 100 years and therefore is isolated from growing urbanisation, agriculture and livestock grazing. The impact of frequent fire is of concern in this area as past management practices were to burn the area regularly to remove vegetation and create an open understorey able to be used for army training activities. Also, small firearms training activities often ignite fires in the woodland due to bullets missing targets and igniting the vegetation. Fires in the area are generally left to burn out without any intervention due to the danger of explosion of unexploded ordnances throughout the training area. High fire frequency and the cessation of livestock grazing at Holsworthy highlighted the necessity to answer the following questions: (i) How do plant species in the Cumberland Plain Woodlands respond to different fire regimes? ('ii) How do these plant species respond to grazing by animals other than domestic livestock, such as macropods and rabbits? And (iii) what effect does the heat and smoke from fire have on grass germination? An exclosure experiment using various fire and grazing treatments was used to answer these questions and determine if the richness and abundance of species changed over a five-year period. Also, a laboratory germination experiment was used to determine how 22 grass species from the Cumberland Plain Woodlands respond to heat and smoke treatments designed to simulate the process of fire. This study found that (i) past fires affected plant community composition in the Cumberland Plain Woodlands at Holsworthy Military Area, generally reducing the abundance of shrubs relative to grasses, although some particular shrub species were not reduced in abundance, (ii) community composition did not appear to be strongly affected by grazing, and (iii) germination of some grass species was stimulated by heat and/or smoke but germination of others was reduced. This research indicates that fire is an important and frequent disturbance in the Cumberland Plain Woodlands at Holsworthy Military Area. Understanding the current fire regime is necessary to determine appropriate management strategies to ensure the survival of the Cumberland Plain Woodlands and other grassy woodland communities. This project enhances the research and monitoring component of the Plan of Management for the recovery of the Cumberland Plain Woodlands, Holsworthy Military Area. It highlights the need for landscape heterogeneity to maintain survival and diversity of the ii community and increases the knowledge of the effect of heat and smoke from fire on the germination of grasses in grassy woodlands. iii Acknowledgments I would like to thank many people for their help and guidance during the course of this project, I cannot name them all here but their support and encouragement has been gratefully appreciated. I would like to make a special thank you to some of them: I would like to thank Marina Peterson from the Department of Defence for her willingness to support the ongoing process of this research, financial support and advice on army procedures. A big thank you to Kris French, my supervisor, for her encouragement to pursue my ambitions and for providing the opportunity to undertake this project. Kris's advice, support and friend~hip have been fantastic. Warrant Officer Mick Blacksland, Holsworthy Range Control and security staff of Total Asset Management Services for help in accessing my study sites. Sarah Hill for help in the initial location of the experimental sites and for sharing valuable information of the study area. Sarah's help has been invaluable and much appreciated. Jean Clarke, Sarah Hill, Maria Adams, Marie Turner and Kris French who were all excellent field assistants. Lotte von Richter, Cathy Offord and staff of the Royal Botanic Gardens, Mt Annan for advice on procedures of the germination experiment and help with species selection and location and for use of the research laboratory. Thanks to Lotte for technical assistance in the field and laboratory. Belinda Pellow has provided help with plant identification, map production and much more. I am very grateful to Belinda for help and advice on so many issues. iv The Janet Cosh Herbarium girls, Belinda Pellow and Jean Clarke, thanks to you both for being so supportive and for your friendship. Thanks to Jack Baker for his encouragement, advice and comments on earlier drafts of this thesis. David Keith for advice on experimental design and analysis and for comments on earlier drafts of the germination chapter. Jane Wasley for assistance with the construction of the smoke machine. Ken Russell for help and advice on statistical analysis. Jocelyn Howell and Doug Benson for advice on the grasses of the Cumberland Plain Woodlands. Lastly, to my family Ginge, Laura and Stacey. Thanks to Ginge for his constant encouragement, patience and tolerance. Thanks to Laura and Stacey, for their patience and acceptance. Without the love and support of my family this project would have been impossible and I am forever grateful. v Table of Contents ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF APPENDIXES Chapter 1 - Introduction 1 1.1 Background 1 1.2 Disturbance in grassy woodlands 1 1.3 Distribution of grassy woodlands 2 1.4 The effect of fire on grassy woodlands_ 4 1.4.1 Fire frequency 4 1.4.2 Fire intensity 5 1.4.3 Season of fire 5 1.5 The effect of grazing on grassy woodlands 6 1.5.1 Domestic livestock 7 1.5.2 Rabbits 7 1.5.3 Native Herbivores 8 1.6 Fire and grazing interactions 8 1. 7 Management of grassy woodlands in Australia 10 1.8 Cumberland Plain Woodlands 11 1.8.1 Fire and grazing at Holsworthy 12 1.9 Aims of the study 12 Chapter 2 - The effect of fire and grazing on plant species richness and abundance 14 2.1 Introduction 14 2.2 Methods 17 2.2.1 Location 17 2.2.2 Experimental design 17 vi 2.2.3 Surveys 18 2.2.4 Total and mean species richness 19 2.2.5 Rainfall 19 2.2.6 Statistical analysis 19 2.3 Results - Part A - Changes in Species Richness 1997-2002 23 2.3.1 Overview of the yearly changes in total species richness 23 2.3.2 Rainfall 26 2.3.3 Differences among fence and fire treatments 28 2.3.4 Multivariate analysis of presence/absence data 29 2.3.4.1 Total species 29 2.3.4.2 Shrubs 31 2.3.4.3 Herbs and Poaceae 32 2.3.5 Grazing and fire interactions 36 2.4 Results - Part B - Changes in Cover_Abundance 2001-2002 37 2.4.1 Multivariate analysis of cover abundance data 37 2.4.1.1 Total species
Recommended publications
  • 2020 Majura Ainslie Plant List.Xlsx
    Plant Species List for Mount Majura and Mount Ainslie, Canberra Base data from Ingwerson, F; O. Evans & B. Griffiths. (1974). Vegetation of the Ainslie-Majura Reserve . Conservation Series No. 2. AGPS Canberra. Re-organised, revised and updated by Michael Doherty, CSIRO Ecosystem Sciences and Waltraud Pix, Friends of Mt. Majura With advice from Isobel Crawford, Australian Botanical Surveys Current version of 01.10.2020 Names: Census of Plants of the Australian Capital Territory, Version 4.1, 2019 Enquiries:Version 3.0 [email protected] (8th June 2012) subsp. = subspecies Form ? = questionable status or identity f = herb, forb sp. aff. = having close affinities with i.e. similar but not quite the sameo = herb, orchid syn. = synonymous with i.e. most recent previous name, or alternativeg = nameherb, grass sens. lat. = in the broad sense of the species concept gl = herb, grass- or sedge-like var. = variety s = shrub (including creeper and climber) sp. = species i.e. identity yet to be finalised st = shrub / small tree spp. = species in the plural i.e. more than one species t = tree MM Mount Majura. Notionally north of “Blue Metal” Road; MA Mount Ainslie. Notionally south of “Blue Metal” Road (VVV) Species occurrence checking; currently focused on Mt. Majura rather than Mt. Ainslie. No ticks next to name = species reported but not yet confirmed for Mt Majura and Mt Ainslie. Status is locally native except for: PE = Planted Exotic PN = Planted Non-local Native WE = Weed Exotic WN = Weed Non-local Native ‘Planted’ status refers to individuals which are planted but not spreading ‘Weed’ status refers to species reproducing in the wild Scientific name Common name MM MA Status Form Family Isolepis sp .
    [Show full text]
  • Notes on Grasses (Poaceae) in Hawai‘I: 2
    Records of the Hawaii Biological Survey for 2009 –2010. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 110: 17 –22 (2011) Notes on grasses (Poaceae ) in Hawai‘i : 31. neil snoW (Hawaii Biological survey, Bishop museum, 1525 Bernice street, Honolulu, Hawai‘i, 96817-2704, Usa; email: [email protected] ) & G errit DaViDse (missouri Botanical Garden, P.o. Box 299, st. louis, missouri 63166-0299, Usa; email: [email protected] ) additional new records for the grass family (Poaceae) are reported for Hawai‘i, including five state records, three island records, one corrected island report, and one cultivated species showing signs of naturalization. We also point out minor oversights in need of cor - rection in the Flora of North America Vol. 25 regarding an illustration of the spikelet for Paspalum unispicatum . Herbarium acronyms follow thiers (2010). all cited specimens are housed at the Herbarium Pacificum (BisH) apart from one cited from the missouri Botanical Garden (mo) for Paspalum mandiocanum, and another from the University of Hawai‘i at mānoa (HaW) for Leptochloa dubia . Anthoxanthum odoratum l. New island record this perennial species, which is known by the common name vernalgrass, occurs natu - rally in southern europe but has become widespread elsewhere (allred & Barkworth 2007). of potential concern in Hawai‘i is the aggressive weedy tendency the species has shown along the coast of British columbia, canada, where it is said to be rapidly invad - ing moss-covered bedrock of coastal bluffs, evidently to the exclusion of native species (allred & Barkworth 2007). the species has been recorded previously on kaua‘i, moloka‘i, maui, and Hawai‘i (imada 2008).
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Border Rivers Maranoa - Balonne QLD Page 1 of 125 21-Jan-11 Species List for NRM Region Border Rivers Maranoa - Balonne, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Notes from Grasses Workshop
    NATIVE GRASSES OF THE MELBOURNE AREA WORKSHOP AT BRIMBANK PARK March 25, 1988 For the Melbourne and Metropolitan Board of Works By Paget and Shim m en Bushland Seeds (14 Seascape Close, FTG 3156. PH:758.5416) INTRODUCTION: Native Grasses covers a wide range of grass species, of wkich there are . species suital~le for a variety of uses, induding erosion control, lawns, parklands, coastal sand dune stabilization, and low fire-hazard plantings. Most grasslands in Victoria are now exotic pastures, co m posed of grasses which have been bred for high l~iomass product5on so they produce Large a mounts of feed for stock, and these grasses are usually winter-growing and die-back severely over sum m er. These sa m e grasses do not necessarily have the rn ost desired characteristics for those orher uses. In lawns, for example, high biomass production means regular mowing, and growing in winter m cans they browning off during summer. Many of our native grasses are not as vigorous and grow over sum mcr, so do not grow so fast as to require constant mowing, and do not brown off over summer. ATTRIBUTES: The above introduction is a broad generalization, and it is important Lo study the charactemcs of each grass species to determine both its suitabtkity for any use, and the manage rn cnt it: requires. The most important attribute to contider is that of the grass's growth period. The table below ouflines the growth periods of the major native grass species: COMMON NAME BOTANICAL NAME GROWS COMMON WHEAT-GRASS A gropyron scabru m Winter COMMON BLOWN GRASS
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • BFS048 Site Species List
    Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No kens01 (FCT23a) Wd? Acacia sessilis Wattle Mimosaceae Dicot WA 3 SH P 48 y Acacia stenoptera Narrow-winged Wattle Mimosaceae Dicot WA 3 SH P 48 y * Aira caryophyllea Silvery Hairgrass Poaceae Monocot 5 G A 48 y Alexgeorgea nitens Alexgeorgea Restionaceae Monocot WA 6 S-R P 48 y Allocasuarina humilis Dwarf Sheoak Casuarinaceae Dicot WA 3 SH P 48 y Amphipogon turbinatus Amphipogon Poaceae Monocot WA 5 G P 48 y * Anagallis arvensis Pimpernel Primulaceae Dicot 4 H A 48 y Austrostipa compressa Golden Speargrass Poaceae Monocot WA 5 G P 48 y Banksia menziesii Firewood Banksia Proteaceae Dicot WA 1 T P 48 y Bossiaea eriocarpa Common Bossiaea Papilionaceae Dicot WA 3 SH P 48 y * Briza maxima Blowfly Grass Poaceae Monocot 5 G A 48 y Burchardia congesta Kara Colchicaceae Monocot WA 4 H PAB 48 y Calectasia narragara Blue Tinsel Lily Dasypogonaceae Monocot WA 4 H-SH P 48 y Calytrix angulata Yellow Starflower Myrtaceae Dicot WA 3 SH P 48 y Centrolepis drummondiana Sand Centrolepis Centrolepidaceae Monocot AUST 6 S-C A 48 y Conostephium pendulum Pearlflower Epacridaceae Dicot WA 3 SH P 48 y Conostylis aculeata Prickly Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis juncea Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis setigera subsp.
    [Show full text]
  • Unconventional Gas Production
    Engineering Energy: Unconventional Gas Production A study of shale gas in Australia. FINAL REPORT PROJECT AUSTRALIAN ACADEMY OF THE HUMANITIES AUSTRALIAN ACADEMY OF SCIENCE ACADEMY OF THE SOCIAL SCIENCES IN AUSTRALIA AUSTRALIAN ACADEMY OF TECHNOLOGICAL SCIENCES AND ENGINEERING SECURING EXPERT AUSTRALIA’S WORKING FUTURE GROUP – PROJECT 6 A three-year research Professor Peter Cook CBE, FTSE (Chair) program funded by the Dr Vaughan Beck FTSE (Deputy Chair) Australian Research Professor David Brereton Council and conducted Professor Robert Clark AO, FAA, FRSN Dr Brian Fisher AO, PSM, FASSA by the four Learned Professor Sandra Kentish Academies through Mr John Toomey FTSE the Australian Council Dr John Williams FTSE of Learned Academies for PMSEIC, through AUTHORS the Office of the Chief Professor Peter Cook CBE, FTSE Scientist. Securing Dr Vaughan Beck FTSE Australia’s Future delivers Professor David Brereton research-based evidence Professor Robert Clark AO, FAA, FRSN and findings to support Dr Brian Fisher AO, PSM, FASSA policy development in Professor Sandra Kentish areas of importance to Mr John Toomey FTSE Australia’s future. Dr John Williams FTSE © Australian Council of Learned Academies (ACOLA) ISBN 978 0 9875798 1 2 This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of it may be reproduced by any process without written permission from the publisher. Requests and inquiries concerning reproduction rights should be directed to the publisher. DATE OF PUBLICATION May 2013 PUBLISHER Australian Council of Learned Academies Level 1, 1 Bowen Crescent Melbourne Victoria 3004 Australia Telephone: +61 (0)3 98640923 www.acola.org.au SUGGESTED CITATION Cook, P, Beck, V, Brereton, D, Clark, R, Fisher, B, Kentish, S, Toomey, J and Williams, J (2013).
    [Show full text]
  • (I) Sections 10-16
    APPENDIX 1 FLORA DETAILS Appendix 1: Flora Details Table 1.1: Flora species observed on the subject site by Keystone Ecological for this study. Cover abundance ratings (see text for details) are provided for full floristic quadrats (Q1 to Q7), each of 400 m2. Species observed nearby those quadrats within the same vegetation type are shown as ‘N’. Species observed in other parts of the site during random meander (RM) are indicated by ‘x’,. Additional species not found during survey but reported by Mark Fitzgerald (2005) are indicated (x), but their locations are not known and may not have been observed on site. Vegetation type and quadrat Family Scientific Name Common Name 2/3 1 2 1 2 2 RM MF Q1 Q2 Q3 Q4 Q5 Q6 Q7 Acanthaceae Thunbergia alata* Black-eyed Susan N Amaranthaceae Deeringia amaranthoides - 2 Anacardiaceae Euroschinus falcatus var. falcatus Ribbonwood x Apocynaceae Parsonsia straminea Common Silkpod 2 2 1 Araliaceae Polyscias elegans Black Pencil Cedar 2 2 2 4b Araliaceae Schefflera actinophylla* Umbrella Tree 2 4b 2 N Arecaceae Archontophoenix cunninghamiana Bangalow Palm 1 3 Arecaceae Livistona australis Cabbage Tree Palm 2 1 Arecaceae Syagrus romanzoffiana* Cocos Palm N Asparagaceae Asparagus aethiopicus* Asparagus Fern 4b 4b 3 1 1 N Asparagaceae Asparagus densiflorus* Asparagus Fern 4b 4b Aspleniaceae Asplenium australasicum Birds Nest Fern N 1 N Asteliaceae Cordyline stricta Narrow-leaf Palm Lily 1 Asteraceae Conyza sp.* - 1 Asteraceae Delairea odorata* Cape Ivy N Bignoniaceae Pandorea pandorana Wonga Vine N 2 1 Casuarinaceae
    [Show full text]
  • Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences
    d i v e r s i t y , p h y l o g e n y , a n d e v o l u t i o n i n t h e monocotyledons e d i t e d b y s e b e r g , p e t e r s e n , b a r f o d & d a v i s a a r h u s u n i v e r s i t y p r e s s , d e n m a r k , 2 0 1 0 Phylogenetics of Stipeae (Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences Konstantin Romaschenko,1 Paul M. Peterson,2 Robert J. Soreng,2 Núria Garcia-Jacas,3 and Alfonso Susanna3 1M. G. Kholodny Institute of Botany, Tereshchenkovska 2, 01601 Kiev, Ukraine 2Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia 20013-7012 USA. 3Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia, s.n., E08038 Barcelona, Spain Author for correspondence ([email protected]) Abstract—The Stipeae tribe is a group of 400−600 grass species of worldwide distribution that are currently placed in 21 genera. The ‘needlegrasses’ are char- acterized by having single-flowered spikelets and stout, terminally-awned lem- mas. We conducted a molecular phylogenetic study of the Stipeae (including all genera except Anemanthele) using a total of 94 species (nine species were used as outgroups) based on five plastid DNA regions (trnK-5’matK, matK, trnHGUG-psbA, trnL5’-trnF, and ndhF) and a single nuclear DNA region (ITS).
    [Show full text]
  • Flora and Fauna
    ENVIRONMENTAL ASSESSMENT Volume 2 Technical Papers MUNMORAH GAS TURBINE FACILITY MUNMORAH POWER STATION.indd 3 21/12/05 2:27:29 PM Contents Technical Papers (Volume 2) Technical Paper No.1 Flora and Fauna Assessment Technical Paper No.2 Heritage Assessment Technical Paper No.3 Noise Assessment Technical Paper No.4 Air Quality Impact Assessment Technical Paper No 5 Photochemical Pollution Assessment Technical Paper No 6 Preliminary Hazard Analysis FLORA AND FAUNA ASSESSMENT TECHNICAL PAPER DIVIDERS.indd 30 121/12/05 3:44:33 PM Technical Paper 1 Flora and Fauna Assessment of Munmorah Gas Turbine Facility December 2005 Delta Electricity Parsons Brinckerhoff Australia Pty Limited ACN 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Limited ACN 006 475 056 trading as Parsons Brinckerhoff ABN 84 797 323 433 Level 27 Ernst & Young Centre 680 George Street Sydney NSW 2000 GPO Box 5394 Australia Telephone +61 2 9272 5100 Facsimile +61 2 9272 5101 Email [email protected] ABN 84 797 323 433 NCSI Certified Quality System ISO 9001 2116541A Parsons Brinckerhoff supports the Environment by PR_2467.doc printing on 100per cent A4 recycled paper ©Parsons Brinckerhoff Australia Pty Limited and Parsons Brinckerhoff International (Australia) Pty Limited trading as Parsons Brinckerhoff (“PB”). [2005] Copyright in the drawings, information and data recorded in this document (“the information”) is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PB.
    [Show full text]
  • Vegetation Inventory Report Mt Cottrell Nature Conservation Reserve
    Vegetation Inventory Report: Western Grassland Reserve - Mount Cottrell NCR Melbourne Strategic Assessment © The State of Victoria Department of Environment, Land, Water and Planning 2015 This work is licensed under a Creative Commons Attribution 3.0 Australia licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en ISBN 978-1-74146-791-8 (pdf) Accessibility If you would like to receive this publication in an alternative format, please telephone the DELWP Customer Service Centre on 136186, email [email protected], or via the National Relay Service on 133 677 www.relayservice.com.au. This document is also available on the internet at www.delwp.vic.gov.au Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Contents Terms and abbreviations 2 Introduction 3 Purpose and scope 3 The survey area 4 Previous survey information 4 Survey methods 5 Survey effort
    [Show full text]