Notes on Grasses (Poaceae) in Hawai‘I: 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cytotaxonomy of the Genus Echinochloa in Louisiana. James Howard Brooks Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Cytotaxonomy of the Genus Echinochloa in Louisiana. James Howard Brooks Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Brooks, James Howard, "Cytotaxonomy of the Genus Echinochloa in Louisiana." (1969). LSU Historical Dissertations and Theses. 1640. https://digitalcommons.lsu.edu/gradschool_disstheses/1640 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-9040 BROOKS, James Howard, 1932- CYTOTAXONOMY OF THE GENUS ECHINOCHLOA i IN LOUISIANA. j The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Agronomy University Microfilms, Inc., Ann Arbor, Michigan CYTOTAXONOMY OF THE GENUS ECHINOCHLOA IN LOUISIANA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Botany and Plant Pathology by James Howard Brooks B.S., Stephen F. Austin State College, 1957 M .S., Stephen F. Austin State College, 1964 ACKNOWLEDGEMENTS The author wishes to express his sincere appreciation to Dr. Clair A. Brown for serving as chairman of his committee, for aid in selecting the problem, guidance throughout the study, and helpful suggestions for improving the manuscript and companionship during some of the collecting trips. -
Illustrated Flora of East Texas --- Taxa in Volume 1 (May 2004)
Illustrated Flora of East Texas --- Taxa in Volume 1 (May 2004) Family Genus Species Var. or Subsp. Native or Intro Ferns & Fern Allies Psilotaceae Psilotum nudum N Isoetaceae Isoetes butleri N Isoetaceae Isoetes melanopoda N Lycopodiaceae Lycopodiella alopecuroides N Lycopodiacae Lycopodiella appressa N Lycopodiaceae Lycopodiella prostrata N Lycopodiaceae Palhinhaea cernua N Lycopodiaceae Pseudolycopodiella caroliniana N Selaginellaceae Selaginella apoda var. apoda N Selaginellaceae Selaginella arenicola subsp. riddellii N Equisetaceae Equisetum hyemale subsp. affine N Equisetaceae Equisetum laevigatum N Anemiaceae Anemia mexicana N Aspleniaceae Asplenium platyneuron N Aspleniaceae Asplenium resiliens N Azollaceae Azolla caroliniana N Azollaceae Azolla mexicana N Blechnaceae Woodwardia areolata N Blechnaceae Woodwardia virginica N Dennstaedtiaceae Pteridium aquilinum var. pseudocaudatum N Dryopteridaceae Athyrium filix-femina subsp. asplenioides N Dryopteridaceae Cyrtomium falcatum I Dryopteridaceae Cystopteris protrusa N Dryopteridaceae Dryopteris celsa N Dryopteridaceae Dryopteris ludoviciana N Dryopteridaceae Nephrolepis exaltata I Dryopteridaceae Onoclea sensibilis N Dryopteridaceae Polystichum acrostichoides N Dryopteridaceae Tectaria heracleifolia N Dryopteridaceae Woodsia obtusa subsp. obtusa N Dryopteridaceae Woodsia obtusa subsp. occidentalis N Lygodiaceae Lygodium japonicum I Marsileaceae Marsilea macropoda N Marsileaceae Marsilea vestita N Marsileaceae Pilularia americana N Ophioglossaceae Botrychium biternatum N Ophioglossaceae -
The Fossil Pollen Record of the Pandanaceae
The Fossil Pollen Record of the Pandanaceae DAVID M. JARZEN Paleobiology Division National Museum of Natural Sciences National Museums of Canada Ottawa, Canada Abstract The fossil record of pollen comparable to the family Pandanaceae and sometimes directly comparable with the extant genus Pandanus extends back to the latest Upper Cretaceous. The family which once had a wide geographic distribution on all continents except Australia, has, since the mid-Tertiary, become restricted to the Old World tropics and subtropics. Introduction The monocotyledon genus Pandanus Rumph. ex L. comprises about 600 species of trees, shrubs and less frequently subshrubs. Several, such as P. epiphyticus Martelli and P. altico/a Holt. and St. John from Malaya and Borneo are truly epiphytic though facultatively so, also occurring on boulders of limestone or sand stone (Stone, 1978). The tree habit is the most common, and such pandans form a conspicuous part of the vegetation of many tropical shorelines. The pandans (or screw-pines) are distributed throughout the palaeotropics, with species occurring on nearly all tropical and marginally subtropical islands of the Pacific, the northern tropical regions of Australia, tropical Southeast Asia, Indonesia, the Philippines, southern India and islands of the Indian Ocean, the Malagasy Republic and East and West Africa (Stone, 1976). The genus does not occur naturally in the neotropics. Map 1 illustrates the overall distribution of the genus, as well as the known fossil pollen reports of Pandanaceae. The pandans are dioecious, with the staminate plants, particularly of the forest species, being less frequently collected than the pistillate plants, due to the brief, ephemeral staminate anthesis. -
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Ethnobotanical Usages of Grasses in Central Punjab-Pakistan
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 452 ISSN 2229-5518 Ethnobotanical Usages of Grasses in Central Punjab-Pakistan Arifa Zereen, Tasveer Zahra Bokhari & Zaheer-Ud-Din Khan ABSTRACT- Poaceae (Gramineae) constitutes the second largest family of monocotyledons, having great diversity and performs an important role in the lives of both man and animals. The present study was carried out in eight districts (viz., Pakpattan, Vehari, Lahore, Nankana Sahib, Faisalabad, Sahiwal, Narowal and Sialkot) of Central Punjab. The area possesses quite rich traditional background which was exploited to get information about ethnobotanical usage of grasses. The ethnobotanical data on the various traditional uses of the grasses was collected using a semi- structured questionnaire. A total of 51 species of grasses belonging to 46 genera were recorded from the area. Almost all grasses were used as fodder, 15% were used for medicinal purposes in the area like for fever, stomach problems, respiratory tract infections, high blood pressure etc., 06% for roof thatching and animal living places, 63% for other purposes like making huts, chicks, brooms, baskets, ladders stabilization of sand dunes. Index Terms: Ethnobotany, Grasses, Poaceae, Fodder, Medicinal Use, Central Punjab —————————— —————————— INTRODUCTION Poaceae or the grass family is a natural homogenous group purposes. Chaudhari et al., [9] studied ethnobotanical of plants, containing about 50 tribes, 660 genera and 10,000 utilization of grasses in Thal Desert, Pakistan. During this species [1], [2]. In Pakistan Poaceae is represented by 158 study about 29 species of grasses belonging to 10 tribes genera and 492 species [3].They are among the most were collected that were being utilized for 10 different cosmopolitan of all flowering plants. -
24. Tribe PANICEAE 黍族 Shu Zu Chen Shouliang (陈守良); Sylvia M
POACEAE 499 hairs, midvein scabrous, apex obtuse, clearly demarcated from mm wide, glabrous, margins spiny-scabrous or loosely ciliate awn; awn 1–1.5 cm; lemma 0.5–1 mm. Anthers ca. 0.3 mm. near base; ligule ca. 0.5 mm. Inflorescence up to 20 cm; spike- Caryopsis terete, narrowly ellipsoid, 1–1.8 mm. lets usually densely arranged, ascending or horizontally spread- ing; rachis scabrous. Spikelets 1.5–2.5 mm (excluding awns); Stream banks, roadsides, other weedy places, on sandy soil. Guangdong, Hainan, Shandong, Taiwan, Yunnan [Bhutan, Cambodia, basal callus 0.1–0.2 mm, obtuse; glumes narrowly lanceolate, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri back scaberulous-hirtellous in rather indistinct close rows (most Lanka, Thailand, Vietnam; Africa (probably introduced), Australia obvious toward lemma base), midvein pectinate-ciliolate, apex (Queensland)]. abruptly acute, clearly demarcated from awn; awn 0.5–1.5 cm. Anthers ca. 0.3 mm. Caryopsis terete, narrowly ellipsoid, ca. 3. Perotis hordeiformis Nees in Hooker & Arnott, Bot. Beech- 1.5 mm. Fl. and fr. summer and autumn. 2n = 40. ey Voy. 248. 1838. Sandy places, along seashores. Guangdong, Hebei, Jiangsu, 麦穗茅根 mai sui mao gen Yunnan [India, Indonesia, Malaysia, Nepal, Myanmar, Pakistan, Sri Lanka, Thailand]. Perotis chinensis Gandoger. This species is very close to Perotis indica and is sometimes in- Annual or short-lived perennial. Culms loosely tufted, cluded within it. No single character by itself is reliable for separating erect or decumbent at base, 25–40 cm tall. Leaf sheaths gla- the two, but the combination of characters given in the key will usually brous; leaf blades lanceolate to narrowly ovate, 2–4 cm, 4–7 suffice. -
Arundinelleae; Panicoideae; Poaceae)
Bothalia 19, 1:45-52(1989) Kranz distinctive cells in the culm of ArundineUa (Arundinelleae; Panicoideae; Poaceae) EVANGELINA SANCHEZ*, MIRTA O. ARRIAGA* and ROGER P. ELLIS** Keywords: anatomy, Arundinella, C4, culm, distinctive cells, double bundle sheath, NADP-me ABSTRACT The transectional anatomy of photosynthetic flowering culms of Arundinella berteroniana (Schult.) Hitchc. & Chase and A. hispida (Willd.) Kuntze from South America and A. nepalensis Trin. from Africa is described and illustrated. The vascular bundles are arranged in three distinct rings, the outermost being external to a continuous sclerenchymatous band. Each of these peripheral bundles is surrounded by two bundle sheaths, a complete mestome sheath and an incomplete, outer, parenchymatous Kranz sheath, the cells of which contain large, specialized chloroplasts. Kranz bundle sheath extensions are also present. The chlorenchyma tissue is also located in this narrow peripheral zone and is interrupted by the vascular bundles and their associated sclerenchyma. Dispersed throughout the chlorenchyma are small groups of Kranz distinctive cells, identical in structure to the outer bundle sheath cells. No chlorenchyma cell is. therefore, more than two cells distant from a Kranz cell. The structure of the chlorenchyma and bundle sheaths indicates that the C4 photosynthetic pathway is operative in these culms. This study clearly demonstrates the presence of the peculiar distinctive cells in the culms as well as in the leaves of Arundinella. Also of interest is the presence of an inner bundle sheath in the vascular bundles of the culm whereas the bundles of the leaves possess only a single sheath. It has already been shown that Arundinella is a NADP-me C4 type and the anatomical predictor of a single Kranz sheath for NADP-me species, therefore, either does not hold in the culms of this genus or the culms are not NADP-me. -
Title Exploring the Link Between Culture and Biodiversity in Sri Lanka
Exploring the link between culture and biodiversity in Sri Title Lanka Author(s) Madduma Bandara, C. M. SANSAI : An Environmental Journal for the Global Citation Community (2009), 4: 1-23 Issue Date 2009-12 URL http://hdl.handle.net/2433/110021 Right Type Journal Article Textversion publisher Kyoto University Exploring the link between culture and biodiversity in Sri Lanka C. M. M699JB6 B6C96G6 Abstract: This paper highlights the importance of adopting culture-based strategies in addressing certain issues of environmental conservation and management in Sri Lanka, a country where links between nature and culture have historically been strong. It focuses on the link between culture and biodiversity in fields such as flora, fauna, ecosystems and local culture, which includes agriculture, lifestyles and place names. It also examines the policy significance of this focus, demonstrated most recently by the Sri Lankan government’s support for and promotion of recent initiatives to designate specific flowers as provincial floral emblems, issue biodiversity-themed postage stamps and retain the custom of using biodiversity-related place names. It is suggested that people’s traditional modes of interacting with and comprehending their natural environment may be fostered or harnessed through progressive government policy, not only in Sri Lanka but in other countries where traditional nature-based cultural practices continue to thrive. Keywords: Sri Lanka, culture and biodiversity, traditional knowledge, flora, fauna, ecosystems, agricultural biodiversity, place names, policy 1. Introduction 1.1 Why explore the relationship between culture and biodiversity? Nature conservation efforts in most countries have achieved only limited success, despite heavy investment. This suggests that some of the more commonly adopted and exclusively scientific, political, economic, or legislative strategies for nature conservation and environmental protection are not working effectively. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Tesis Amarilla, Leonardo David.Pdf (5.496Mb)
Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Estudio Poblacional y Filogenético en Munroa (Poaceae, Chloridoideae) Lic. Leonardo David Amarilla Tesis para optar al grado de Doctor en Ciencias Biológicas Directora: Dra. Ana M. Anton Co-Director: Dr. Jorge O. Chiapella Asesora de Tesis: Dra. Victoria Sosa Instituto Multidisciplinario de Biología Vegetal CONICET-UNC Córdoba, Argentina 2014 Comisión Asesora de Tesis Dra. Ana M. Anton, IMBIV, Córdoba. Dra. Noemí Gardenal, IDEA, Córdoba. Dra. Liliana Giussani, IBODA, Buenos Aires. Defensa Oral y Pública Lugar y Fecha: Calificación: Tribunal evaluador de Tesis Firma………………………………… Aclaración…………………………………... Firma………………………………… Aclaración…………………………………... Firma………………………………… Aclaración…………………………………... “Tengamos ideales elevados y pensemos en alcanzar grandes cosas, porque como la vida rebaja siempre y no se logra sino una parte de lo que se ansía, soñando muy alto alcanzaremos mucho más” Bernardo Alberto Houssay A mis padres y hermanas Quiero expresar mi más profundo agradecimiento a mis directores de tesis, la Dra. Ana M. Anton y el Dr. Jorge O. Chiapella, por todo lo que me enseñaron en cuanto a sistemática y taxonomía de gramíneas, por sus consejos, acompañamiento y dedicación. De la misma manera, quiero agradecer a la Dra. Victoria Sosa (INECOL A.C., Veracruz, Xalapa, México) por su acompañamiento y por todo lo que me enseñó en cuando a filogeografía y genética de poblaciones. Además quiero agradecer… A mis compañeros de trabajo: Nicolás Nagahama, Raquel Scrivanti, Federico Robbiati, Lucia Castello, Jimena Nores, Marcelo Gritti. A los curadores y equipo técnico del Museo Botánico de Córdoba. A la Dra. Reneé Fortunato. A la Dra. Marcela M. Manifesto. A la Dra. -
Viruses Virus Diseases Poaceae(Gramineae)
Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae .