Surveying Purine Biosynthesis Across the Domains of Life Unveils

Total Page:16

File Type:pdf, Size:1020Kb

Surveying Purine Biosynthesis Across the Domains of Life Unveils 1 2 3 4 Article type : Special Feature Review 5 6 7 8 9 Surveying purine biosynthesis across the domains of life 10 unveils promising drug targets in pathogens 11 12 13 14 Sheena M. H. Chua and James A. Fraser* 15 16 17 18 Australian Infectious Diseases Research Centre 19 School of Chemistry & Molecular Biosciences 20 The University of Queensland, Brisbane, Queensland, Australia 21 22 23 24 25 26 27 28 29 30 Manuscript Author 31 *Correspondence e-mail: [email protected] This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/IMCB.12389 This article is protected by copyright. All rights reserved 32 Running head 33 34 Purine biosynthesis across the domains of life 35 36 37 Keywords 38 39 Drug target, gene fusions, immunotherapy, infectious diseases, purine metabolism, 40 purinosome 41 42 Abstract 43 Purines play an integral role in cellular processes such as energy metabolism, cell signalling, 44 and encoding the genetic makeup of all living organisms, ensuring that the purine metabolic 45 pathway is maintained across all domains of life. To gain a deeper understanding of purine 46 biosynthesis via the de novo biosynthetic pathway, the genes encoding purine metabolic 47 enzymes from 35 archaea, 69 bacteria and 99 eukaryotic species were investigated. While the 48 classic elements of the canonical purine metabolic pathway were utilised in all domains, a 49 subset of familiar biochemical roles were found to be performed by unrelated proteins in 50 some members of the Archaea and Bacteria. In the Bacteria, a major differentiating feature of 51 de novo purine biosynthesis is the increasing prevalence of gene fusions, where two or more 52 purine biosynthesis enzymes that perform consecutive biochemical functions in the pathway 53 are encoded by a single gene. All species in the Eukaryota exhibited the most common 54 fusions seen in the Bacteria, in addition to new gene fusions to potentially increase metabolic 55 flux. This complexity is taken further in humans, where a reversible biomolecular assembly 56 of enzymes known as the purinosome has been identified, allowing short-term regulation in 57 response to metabolic cues whilst expanding on the benefits that can come from gene fusion. 58 By surveying purine metabolism across all domains of life we have identified important 59 features of the purine biosynthetic pathway that can potentially be exploited as prospective 60 drug targets. Author Manuscript Author 61 62 Purines and the origin of life This article is protected by copyright. All rights reserved 63 The most widely accepted model for the origin of life is that it arose via creation of organic 64 molecules produced by simple prebiotic chemical reactions. The Miller-Urey experiment 65 showed that amino acids essential for creating proteins could be formed from simple 66 molecules like water, methane, ammonia and hydrogen.1 Further investigations established 67 that the purine nucleotides adenine and guanine, key components of both RNA and DNA, 68 could also form under conditions likely present on primitive Earth.2 Over 3.5 billion years 69 later, all living things from the simplest unicellular life to more complex multicellular 70 organisms require purines for survival. Purines play an integral role in diverse processes 71 including energy metabolism, cell signalling, and encoding the genetic makeup of all 72 organisms – providing strong selective pressure that ensures the purine de novo biosynthetic 73 pathway is maintained across all domains of life. 74 75 Purines contain a six-membered pyrimidine ring fused to a five-membered imidazole ring. 76 The first of these heterocyclic compounds were discovered in urinary calculi; uric acid (from 77 the French urique for “urine”) in 1776 and xanthine (from the Greek xanthos for “yellow”) in 78 1838.3, 4 Guanine was identified in 1846 and named for the bird guano in which it was found, 79 and four years later hypoxanthine (“xanthine with less oxygen”) was isolated from cow 80 spleen.5, 6 It was not until 1884 that the term “purine” was coined from the Latin purum 81 (“pure”) and urinae (“urine”) by Fischer, who was awarded a Nobel Prize for his 82 achievements in the field of purine synthesis.7 Experiments on ox pancreas in 1886 led to the 83 identification of adenine (from the Greek aden for “gland”) that in turn led to Kossel being 84 awarded a Nobel Prize for the discovery that nucleic acids were composed of the purines 85 adenine and guanine alongside the pyrimidines thymine, cytosine and uracil.8 86 87 The biochemical processes underpinning the synthesis of purines would not be identified 88 until over half a century later. The determination of the intermediates involved in de novo 89 purine biosynthesis began in the 1930s with the discovery that hypoxanthine could be 90 detected in the livers of pigeons but not chickens, ducks, rats or guinea pigs.9 Key 91 intermediates in the pathway were subsequently elucidated by feeding isotopically labelled 92 substrates to pigeons and analysing uric acid crystallised from their droppings.10 These in Author Manuscript Author 93 vivo experiments were followed by in vitro studies purifying and assaying individual 94 enzymes from pigeon liver, cow liver, and Saccharomyces cerevisiae, together laying the 95 foundation for our current understanding of the biochemical processes required for the de 96 novo biosynthesis of purines in the Eukaryota.11-13 This article is protected by copyright. All rights reserved 97 98 The biochemistry of purine biosynthesis in the Eukaryota 99 De novo purine and pyrimidine biosynthesis both require the ATP-dependent 100 phosphorylation of ribose-5-phosphate (R5P) by ribose-phosphate diphosphokinase (EC 101 2.7.6.1) to produce phosphoribosyl-pyrophosphate (PRPP).14 102 103 The first dedicated step of de novo purine biosynthesis is the hydrolysis of L-glutamine and 104 transfer of the liberated amine group to PRPP by PRPP amidotransferase (PRPPA, EC 105 2.4.2.14), creating phosphoribosyl-amine (PRA; Figure 1).15 Next, phosphoribosyl- 106 glycinamide (GAR) synthetase (GARS, EC 6.3.4.13) catalyses the ATP-dependent ligation of 107 L-glycine to PRA (via a phosphorylated intermediate) to yield GAR.16 GAR transformylase 108 (N10-fTHF-GART, EC 2.1.2.2) then ligates the formyl group from 10-formyltetrahydrofolate 109 (N10-fTHF) to GAR, producing phosphoribosyl-formylglycinamide (FGAR).17 The 110 subsequent activation of the FGAR amide oxygen by the ATP-grasp domain of 111 phosphoribosyl-formylglycinamidine (FGAM) synthetase (FGAMS, EC 6.3.5.3) produces an 112 iminophosphate intermediate that is amidated by ammonia, channelled via a structural 113 domain, from the glutaminase domain to create FGAM.18 Finally, phosphoribosyl- 114 aminoimidazole (AIR) synthetase (AIRS, EC 6.3.3.1) catalyses the ATP-dependent activation 115 of the FGAM formyl oxygen that reacts with a nearby nitrogen to close the five-membered 116 imidazole ring of the purine base and form AIR.19 117 118 Formation of the pyrimidine ring then begins with phosphoribosyl-carboxyaminoimidazole 119 (CAIR) synthetase (CAIRM-II type CAIRS, EC 4.1.1.21) carboxylating AIR using CO2 to 120 form CAIR.20 Phosphoribosyl-aminoimidazolesuccinocarboxamide (SAICAR) synthetase 121 (SAICARS, EC 6.3.2.6) then mediates the ATP-dependent ligation of L-aspartate to CAIR 122 forming SAICAR; the following -elimination of fumarate from SAICAR by 123 adenylosuccinate (ADS) lyase (ADSL, EC 4.3.2.2) produces phosphoribosyl- 124 aminoimidazolecarboxamide (AICAR).21 AICAR transformylase (N10-fTHF-AICART, EC 125 2.1.2.3) then ligates the formyl group from N10-fTHF to AICAR to form phosphoribosyl- 22 126 formamidocarboxamide Manuscript Author (FAICAR). Closure of the pyrimidine ring (completing formation 127 of the purine base) occurs via elimination of water from FAICAR by inosine monophosphate 128 (IMP) cyclohydrolase (IMPC, EC 3.5.4.10) and cyclisation to produce IMP.23 129 This article is protected by copyright. All rights reserved 130 Purine de novo biosynthesis bifurcates after IMP. In the adenosine monophosphate (AMP) 131 biosynthesis branch, ADS synthetase (ADSS, EC 6.3.4.4) transfers the γ-phosphate from GTP 132 to IMP, forming the intermediate 6-phosphoryl IMP; the 6-phosphoryl group is then 133 displaced by the α-amino group of L-aspartate to form ADS.24, 25 The conversion of ADS to 134 AMP follows the same -elimination mechanism by ADS lyase that it performs earlier in the 135 pathway.26, 27 AMP can be converted to ADP by adenylate kinase (ADK), then ATP by 136 nucleoside diphosphate kinase (NDK).28, 29 In the GMP biosynthesis branch, IMP 137 dehydrogenase (IMPDH, EC 1.1.1.205) catalyses the NAD+-dependent hydrolysis of IMP to 138 form XMP.30, 31 Next, the ATP pyrophophatase domain of GMP synthetase (GMPs, EC 139 6.3.5.2) adenylates XMP to form an XMP intermediate, while the glutamine amidotransferase 140 domain produces ammonia to add an amine group to the intermediate and yield GMP.27 GMP 141 can be converted to GDP by guanylate kinase (GUK), then GTP by nucleoside diphosphate 142 kinase (NDK).29, 32 143 144 In addition to the de novo pathway, exogenous purines can also be scavenged from the 145 environment via a salvage pathway through the action of phosphoribosyltransferases that 146 convert adenine, hypoxanthine, xanthine and guanine to AMP, IMP, XMP and GMP, 147 respectively.31, 33 148 149 The history of purine metabolism as a drug target 150 Given the requirement for significant quantities of nucleic acids in highly proliferative cells 151 such as cancers, immune cells and infecting pathogens, it was proposed that targeting of 152 specific biological processes in the purine metabolism pathway may lead to effective 153 therapeutic treatments.34, 35 This premise led to the conception of rational drug design, 154 earning Hitchings and Elion a Nobel Prize.36 155 156 Pharmaceuticals that act through the purine biosynthetic pathway were subsequently 157 developed.
Recommended publications
  • The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba Stagnalis N. Sp
    diversity Article The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba stagnalis n. sp. (Vahlkampfiidae; Heterolobosea) Anastasia S. Borodina 1,2, Alexander P. Mylnikov 1,†, Jan Janouškovec 3 , Patrick J. Keeling 4 and Denis V. Tikhonenkov 1,5,* 1 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; [email protected] 2 Department of Zoology and Parasitology, Voronezh State University, Universitetskaya Ploshad 1, 394036 Voronezh, Russia 3 Centre Algatech, Laboratory of Photosynthesis, Institute of Microbiology, Czech Academy of Sciences, Opatovický Mlýn, 37981 Tˇreboˇn,Czech Republic; [email protected] 4 Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada; [email protected] 5 AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia * Correspondence: [email protected]; Tel.: +7-485-472-4533 † Alexander P. Mylnikov is deceased. http://zoobank.org/References/e543a49a-16c1-4b7c-afdb-0bc56b632ef0 Abstract: Heterolobose amoebae are important members of marine, freshwater, and soil microbial Citation: Borodina, A.S.; Mylnikov, communities, but their diversity remains under-explored. We studied the diversity of Vahlkampfiidae A.P.; Janouškovec, J.; Keeling, P.J.; to improve our understanding of heterolobosean relationships and their representation in aquatic Tikhonenkov, D.V. The Morphology, benthos. Using light and electron microscopy, and molecular phylogenies based on the SSU rRNA Ultrastructure and Molecular and ITS loci, we describe the fine morphology and evolutionary relationships of a new heterolobosean Phylogeny of a New Freshwater Parafumarolamoeba stagnalis n. sp. from a small pond in European Russia. Cells of P. stagnalis possess Heterolobose Amoeba a clearly distinguishable anterior hyaline pseudopodium, eruptive movement, several thin and Parafumarolamoeba stagnalis n.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Genome-Scale Fitness Profile of Caulobacter Crescentus Grown in Natural Freshwater
    Supplemental Material Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater Kristy L. Hentchel, Leila M. Reyes Ruiz, Aretha Fiebig, Patrick D. Curtis, Maureen L. Coleman, Sean Crosson Tn5 and Tn-Himar: comparing gene essentiality and the effects of gene disruption on fitness across studies A previous analysis of a highly saturated Caulobacter Tn5 transposon library revealed a set of genes that are required for growth in complex PYE medium [1]; approximately 14% of genes in the genome were deemed essential. The total genome insertion coverage was lower in the Himar library described here than in the Tn5 dataset of Christen et al (2011), as Tn-Himar inserts specifically into TA dinucleotide sites (with 67% GC content, TA sites are relatively limited in the Caulobacter genome). Genes for which we failed to detect Tn-Himar insertions (Table S13) were largely consistent with essential genes reported by Christen et al [1], with exceptions likely due to differential coverage of Tn5 versus Tn-Himar mutagenesis and differences in metrics used to define essentiality. A comparison of the essential genes defined by Christen et al and by our Tn5-seq and Tn-Himar fitness studies is presented in Table S4. We have uncovered evidence for gene disruptions that both enhanced or reduced strain fitness in lake water and M2X relative to PYE. Such results are consistent for a number of genes across both the Tn5 and Tn-Himar datasets. Disruption of genes encoding three metabolic enzymes, a class C β-lactamase family protein (CCNA_00255), transaldolase (CCNA_03729), and methylcrotonyl-CoA carboxylase (CCNA_02250), enhanced Caulobacter fitness in Lake Michigan water relative to PYE using both Tn5 and Tn-Himar approaches (Table S7).
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna Present # of Tryptic
    list list sample) short list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein detected (total list) detected (long list) membrane sample Proteins detected - detected (short list) # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides Functional category detected (membrane Protein detected - total Protein detected - long b0003 thrB 6781 P 9 P 3 3 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 P 11 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 P 16 P 13 0 transaldolase B Metabolism of small molecules b0009 mog 1296 P 7 0 0 0 0 required for the efficient incorporation of molybdate into molybdoproteins Metabolism of small molecules b0014 dnaK 13283 P 32 P 23 P 24 P 23 0 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins Cell processes b0031 dapB 2348 P 16 P 3 3 P 3 0 dihydrodipicolinate reductase Metabolism of small molecules b0032 carA 9312 P 14 P 8 P 8 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 2 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of outer b0053 surA 3825 P 19 P 4 P 5 P 4 P(m) 1 GenProt membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 0 0 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_001591825Cyc: Bacillus vietnamensis NBRC 101237 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari sn-glycerol phosphate phosphate pro phosphate phosphate phosphate thiamine molybdate D-xylose D-ribose glutathione 3-phosphate D-mannitol L-cystine L-djenkolate lanthionine α,β-trehalose phosphate phosphate [+ 3 more] α,α-trehalose predicted predicted ABC ABC FliY ThiT XylF RbsB RS10935 UgpC TreP PutP RS10200 PstB PstB RS10385 RS03335 RS20030 RS19075 transporter transporter of molybdate of phosphate α,β-trehalose 6-phosphate L-cystine D-xylose D-ribose sn-glycerol D-mannitol phosphate phosphate thiamine glutathione α α phosphate phosphate phosphate phosphate L-djenkolate 3-phosphate , -trehalose 6-phosphate pro 1-phosphate lanthionine molybdate phosphate [+ 3 more] Metabolic Regulator Amino Acid Degradation Amine and Polyamine Biosynthesis Macromolecule Modification tRNA-uridine 2-thiolation Degradation ATP biosynthesis a mature peptidoglycan a nascent β an N-terminal-
    [Show full text]
  • Protozoologica ACTA Doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA
    Acta Protozool. (2017) 56: 181–189 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA Allovahlkampfia minuta nov. sp., (Acrasidae, Heterolobosea, Excavata) a New Soil Amoeba at the Boundary of the Acrasid Cellular Slime Moulds Alvaro DE OBESO FERNADEZ DEL VALLE, Sutherland K. MACIVER Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Scotland, UK Abstract. We report the isolation of a new species of Allovahlkampfia, a small cyst-forming heterolobosean soil amoeba. Phylogenetic analysis of the 18S rDNA and the internal transcribed spacers indicates that Allovahlkampfia is more closely related to the acrasids than to other heterolobosean groups and indicates that the new strain (GF1) groups with Allovahlkampfia tibetiensisand A. nederlandiensis despite being significantly smaller than these and any other described Allovahlkampfia species. GF1 forms aggregated cyst masses similar to the early stages of Acrasis sorocarp development, in agreement with the view that it shares ancestry with the acrasids. Time-lapse video mi- croscopy reveals that trophozoites are attracted to individuals that have already begun to encyst or that have formed cysts. Although some members of the genus are known to be pathogenic the strain GF1 does not grow above 28oC nor at elevated osmotic conditions, indicating that it is unlikely to be a pathogen. INTRODUCTION and habit. The heterolobosean acrasid slime moulds are very similar to the amoebozoan slime moulds too in life cycle, but these remarkable similarities in ap- The class heterolobosea was first created on mor- pearance and function are most probably due to parallel phological grounds to unite the schizopyrenid amoe- bae/amoeboflagellates with the acrasid slime moulds evolution.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Protein secretion and encystation in Acanthamoeba Alvaro de Obeso Fernández del Valle Doctor of Philosophy The University of Edinburgh 2018 Abstract Free-living amoebae (FLA) are protists of ubiquitous distribution characterised by their changing morphology and their crawling movements. They have no common phylogenetic origin but can be found in most protist evolutionary branches. Acanthamoeba is a common FLA that can be found worldwide and is capable of infecting humans. The main disease is a life altering infection of the cornea named Acanthamoeba keratitis. Additionally, Acanthamoeba has a close relationship to bacteria. Acanthamoeba feeds on bacteria. At the same time, some bacteria have adapted to survive inside Acanthamoeba and use it as transport or protection to increase survival. When conditions are adverse, Acanthamoeba is capable of differentiating into a protective cyst.
    [Show full text]
  • ADSL, AMPD1, and ATIC Expression Levels in Muscle and Their Correlations with Muscle Inosine Monophosphate Content in Dapulian and Hybridized Pig Species
    Open Journal of Animal Sciences, 2017, 7, 393-404 http://www.scirp.org/journal/ojas ISSN Online: 2161-7627 ISSN Print: 2161-7597 ADSL, AMPD1, and ATIC Expression Levels in Muscle and Their Correlations with Muscle Inosine Monophosphate Content in Dapulian and Hybridized Pig Species Rongsheng Zhu1,2, Yanping Wang1,2, Huaizhong Wang1,2, Song Lin1,2, Shouli Sun1,2, Baohua Huang1,2, Hongmei Hu1,2* 1Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China 2Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China How to cite this paper: Zhu, R.S., Wang, Abstract Y.P., Wang, H.Z., Lin, S., Sun, S.L., Huang, B.H. and Hu, H.M. (2017) ADSL, AMPD1, We investigated the relationship between muscle inosine monophosphate and ATIC Expression Levels in Muscle and (IMP) content and mRNA levels of ADSL, AMPD1, and ATIC in Dapulian Their Correlations with Muscle Inosine (DPL), Landrace × Dapulian (LDPL), and Duroc × Landrace × Dapulian Monophosphate Content in Dapulian and Hybridized Pig Species. Open Journal of (DLDPL) hybridized pigs. Methods: The total RNA in longissimus dorsi was Animal Sciences, 7, 393-404. isolated from Dapulian (DPL), Landrace × Dapulian (LDPL) and Duroc × https://doi.org/10.4236/ojas.2017.74030 Landrace × Dapulian (DLDPL) hybridized pigs, weighed about 95.0 kg, n = 8/species. The internal genes with highest stability (YWHAZ and RPL4) were Received: July 16, 2017 Accepted: September 11, 2017 chosen from 11 common internal genes using Quantitative real-time PCR Published: September 14, 2017 (qPCR) and geNorm software. The mRNA levels of ADSL, AMPD1 and ATIC genes were corrected with YWHAZ and RPL4 genes.
    [Show full text]
  • INFECTIOUS DISEASES of HAITI Free
    INFECTIOUS DISEASES OF HAITI Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Infectious Diseases of Haiti - 2010 edition Copyright © 2010 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-090-4 ISBN-10: 1-61755-090-6 Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. © 2010 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 2 of 314 Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Introduction: The GIDEON e-book series Infectious Diseases of Haiti is one in a series of GIDEON ebooks which summarize the status of individual infectious diseases, in every country of the world.
    [Show full text]