SAFE WINGS Flight Safety Magazine of Air India, Air India Express and Alliance Air Issue 38, JULY 2015

Total Page:16

File Type:pdf, Size:1020Kb

SAFE WINGS Flight Safety Magazine of Air India, Air India Express and Alliance Air Issue 38, JULY 2015 SAFE WINGS Flight Safety Magazine of Air India, Air India Express and Alliance Air Issue 38, JULY 2015 This issue… BAGHDAD DHL A-300 ATTACKED BY MISSILE PROTECTION TO CIVIL PASSENGER AIRCRAFT AGAINST SHOULDER- FIRED MISSILE (SFM) THREAT * For Internal Circulation Only July Edition 38 SAFE WINGS 1 | P a g e Flight Safety Magazine of Air India, Air India Express and Alliance Air July Edition 38 SAFE WINGS BAGHDAD DHL A-300 ATTACKED BY MISSILE n the Morning of 22nd November 2003 European Air Transport/DHL A300B4 O arrives in Baghdad from Bahrain earlier. Locally the weather and visibility is good and, on the ground, work to turn the aircraft around begins quickly. The cargo is unloaded and aircraft reloaded with about 7 tons of general cargo for the trip back to Bahrain. At take-off the aircraft's weight is only 105 tons, the maximum allowable take-off weight is 165.9 tons. The crew taxi the A300 out to runway 15L for take-off. Because of the light weight and the need for a maximum-angle climb from lift-off to gain as much height as possible before reaching the airfield boundary, the selected configuration is "slats only" - no flap - and full power. Climb is to be straight ahead to waypoint LOVEK. The crew consisted of 38 year old Belgian Captain Eric Gennotte with 3300 hrs flying experience, 29 year old Belgian First Officer Steeve Michielsen with 1275 flight hours and 54 year old scot Flight Engineer Rofail with 13423 hours flight experience. As the aircraft powers up through 8,000ft an explosion rocks the aircraft, a cacophony of aural warnings erupts and lights flash for multiple systems. Rofail tells the pilots almost immediately that all pressure is lost from the Green and Yellow hydraulic systems, and 20 seconds later the Blue system pressure also begins to drop and soon hits zero. The primary flight control surfaces and spoilers go limp as their actuators drain, trailing in the slipstream. The horizontal stabiliser, which controls the aircraft's pitch, is frozen at the trim position for 215kt with climb thrust set - the angle it is at when drained of hydraulic power. Flaps and slats are unavailable. The crew know something has hit their aircraft. Michielsen believes a missile has hit the rudder because he sees the yaw damper switches trip out, but Rofail does not rule out a collision with an unseen aircraft. While the cause is unknown, the effects are dramatic. Michielsen makes an emergency call to Baghdad approach, then Rofail takes over communication with air traffic control because the pilots are preoccupied with fighting the aircraft's apparently out-of-control state. Flight Safety Magazine of Air India, Air India Express and 2 | P a g e Alliance Air July Edition 38 SAFE WINGS From his seat behind the pilots, Rofail, like all flight engineers, can see the big picture: systems panels; primary flight instruments; the real horizon as it rocks and pitches - often disappearing from sight - and he joins the pilots' struggle to understand what - if any - control they have left. He says: "The aircraft was like a piece of paper in the air. We went through a series of steep banks and dives - you could not leave your seat". The aircraft's rollercoaster manoeuvring throws the crew against their harnesses. All the crew are taking part in everything, doing whatever they see needs to be done. "The rulebook has gone out the window," explains Rofail. "Situations like this are unique every time. You cannot train for them. You cannot write a checklist for them." The crew have since listened to the cockpit voice recorder tape and say they are quite surprised at how calm they all sound. Rofail says: "All you can do is apply common sense and stay calm. We were the right combination of crew." What most concerns the crew is lack of control over airspeed. Initially, Michielsen and Gennotte try to use the control yokes and rudder pedals, but quickly accept they are ineffective. Although the crew know theoretically they could control the aircraft with the throttles alone, it takes them about 10min to learn how to keep the aircraft at an acceptable attitude. During the learning process airspeed lurches wildly between 180kt and 300kt. Because, like most big jets, the A300's engines are slung below the wings, an increase in thrust causes the nose to pitch up, conversely a thrust decrease causes a pitch-down moment. The problem for Gennotte and his crew is that, on applying power, the increase in nose-up attitude tends to dampen an increase in speed. Then because they cannot apply any direct pitch control or change the pitch trim, when any power-induced increase in speed exceeds the trimmed indicated airspeed (IAS) of 215kt, there is a gradual further pitch-up followed by a loss of speed as the nose-up attitude steepens. Thrust reduction may provide an instant nose-down pitching moment, but then the descending flightpath tends to make the speed increase, and as airspeed rises above the 215kt trim speed, the nose gradually pitches further up. The result is a counter-intuitive secondary effect to every power change. Selection of asymmetric thrust provides roll control, but altering heading or picking up a wing by this method is painfully slow compared with the almost instant primary effect a power change has in pitch. 3 | P a g e Flight Safety Magazine of Air India, Air India Express and Alliance Air July Edition 38 SAFE WINGS VIOLENT PITCHING By the time they have carried out the first gradual, violently pitching and rolling left turn toward the airfield, they are at about 4,000ft and they have the airfield in sight. The captain calls for the gear to be lowered using the emergency gravity system, even though airspeed is slightly higher than the 270kt limit for deployment. While Rofail leaves his seat to do this, Michielsen has to push his own seat as far forward as it can go, making him temporarily almost useless in assisting Gennotte. To the crew's relief, the gear locks down at the first attempt. Its deployment makes the aircraft noticeably more stable, potentially providing enough control over airspeed and attitude to make a viable attempt at landing. It provides the pilots with an increase in overall drag and a slight pitch-down moment against which to use the pitch-up effect of an increase in power. (Airbus has since told the crew that if they had attempted a gear-up approach, they almost certainly would not have succeeded.) The crew know they have to land quickly because the wing is still trailing a 50m flame. They cannot see this - Gennotte cannot see the left wingtip from his seat - but ATC and a helicopter circling nearby confirm that their left wing remains on fire; they know that if a part of the wingtip separates they will lose all control of the aircraft. At present - although the crew does not know it - the leading edge of the wing is complete along almost its entire length, but the fire is gradually destroying the outer wing, creeping forward from the trailing edge. At some stage before they land the rear wing spar separates and the remaining structure is held together only by the forward spar. It is only a matter of time before that also fails. Meanwhile,the asymmetry in thrust needed to compensate for the difference in lift and drag between the damaged and undamaged wings is increasing. Michielsen suggests to the captain that they position for a long, straight final approach to Flight Safety Magazine of Air India, Air India Express and 4 | P a g e Alliance Air July Edition 38 SAFE WINGS runway 33R - starting about 37km (20nm) out - and assists the captain with navigation by monitoring the VOR/DME readouts. They lose visual contact with the airport as they turn away to position the aircraft on long final approach, but ATC has no radar to provide the crew with vectors. Rofail is meanwhile wrestling with another task vital to keeping the aircraft airborne. Although the missile has not damaged the engines, if a fuel flow interruption causes failure of either they will be dead within a minute. When it hit, the missile destroyed the outer left wing tank 1A - so comprehensively that the fuel just fell out of it. There was no explosive ignition of fuel because the tank was full, so there was no fuel-air vapour inside - if there had been, the wing would have been blown off the aircraft. But Rofail's problem is more complex. When the missile hit, the engines were both feeding directly from their respective inboard wing tanks (tanks 1 and 2) and he is keeping it that way. But as well as destroying tank 1A, the missile also pierced tank 1, so it is losing fuel. Rofail does not want to open the crossfeed valve to transfer fuel from right wing to left for fear of bleeding away all the fuel; and neither does he want - unless there is no alternative - to break the golden rule that separate engines should be fed from separate sources. So he does not open the crossfeed, but monitors the fuel quantity and feed to both engines and selects ignition on both permanently on. Gennotte, with Michielsen's guidance, flies the aircraft outbound and crosses the extended centreline for 33R from right to left, setting up for a teardrop turn to the right onto final approach. When the aircraft begins to turn toward the airport, it is about 20 Nm out and at about 3,000ft.
Recommended publications
  • Three Simulation Models of Naval Air Defense
    Three Simulation Models of Naval Air Defense LTJG Baris Ozkan, Neil C. Rowe, LT Sharif H. Calfee, and John E. Hiles Institute for Modeling, Virtual Environments, and Simulation (MOVES) and Computer Science Department U.S. Naval Postgraduate School 833 Dyer Road, Monterey, CA 93943 [email protected], [email protected], [email protected], [email protected] ABSTRACT Naval air defense is a critical facility for ship survivability and has been subject of a number of studies. We investigate here three different approaches to modeling it with computer software. One approach focuses on the problems of information processing and communication for the air-defense team, and is good for analyzing its efficiency. Another approach focuses on the inference of the nature of observed tracks, and is based on the novel psychological theory of conceptual blending. A third approach uses an expert-systems approach that can learn from experience and be more substantially automated than the other two approaches. Each approach has its own advantages: The first provides insights for organizing and managing air-defense personnel, the second provides insights into cognitive biases in analysis that should be examined during training, and the third suggests a way to mostly automate the air-defense process to save money. This work suggests the value of multiple simulations of the same process when that process is important to understand. BACKGROUND Naval air warfare is rapid and serious, and is a major focus of the operations of ships (Mairorano, Carr, and Bender, 1996). Air-defense teams of "watchstanders" must train extensively in search, detection, and classification of all aircraft and surface vessels within the operational area of a ship's "battle group" (coordinated group of ships).
    [Show full text]
  • The Uss Vincennes Incident
    92 HDR 2020, Nr. 2, 92–101. 1st Lt Viola Vincze THE USS VINCENNES INCIDENT A case study involving Autonomous Weapon Systems DOI: 10.35926/HDR.2020.2.6 ABSTRACT: The objective of the paper is to introduce the facts of the USS Vincennes incident in 1988 and examine how the deployment and use of an Autonomous Weapon System has influenced military decision-making in the specific case. As a result of misidentifi- cation of the contact and confusion on board, Vincennes (a Ticonderoga-class guided missile cruiser outfitted with the Aegis Combat System) fired two radar-guided missiles and shot down a civilian airliner from Iranian territorial waters (in Iranian airspace) only minutes after the airliner’s take-off. Not one from the 290 passengers and crew on board survived. Several contradictory articles have been written on the incident from legal, political and scientific vantage points and this article attempts to strip these accounts of the emotional tone and look into the facts in order to establish how personnel and machine interacted during the events that eventually led to the tragedy and how similar incidents involving AWS could be avoided. KEYWORDS: International Law, Law of Armed Conflicts, Autonomous Weapon Systems, case study, scenario fulfilment, responsibility INTRODUCTION Today we can witness a lively, although not always well-informed debate on the deploy- ment of lethal Autonomous Weapon Systems (AWS) during international armed conflicts (IACs). Their supporters and opponents are invoking various arguments regarding their use, but more often than not they tend to focus on the analysis of the Law of Attack1 as contained in the Law of Armed Conflict (LOAC), most notably in Protocol I additional to the 1949 Ge- neva Conventions2 (Additional Protocol I), while paying less attention to the assessment of NATO documents and national military manuals on targeting, although these can be regard­ ed as the direct translations of the Law of Attack into the language of daily target selection and engagement.
    [Show full text]
  • Winter 2020 Full Issue
    Naval War College Review Volume 73 Number 1 Winter 2020 Article 1 2020 Winter 2020 Full Issue The U.S. Naval War College Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Naval War College, The U.S. (2020) "Winter 2020 Full Issue," Naval War College Review: Vol. 73 : No. 1 , Article 1. Available at: https://digital-commons.usnwc.edu/nwc-review/vol73/iss1/1 This Full Issue is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Naval War College: Winter 2020 Full Issue Winter 2020 Volume 73, Number 1 Published by U.S. Naval War College Digital Commons, 2020 1 Naval War College Review, Vol. 73 [2020], No. 1, Art. 1 Cover Two modified Standard Missile 2 (SM-2) Block IV interceptors are launched from the guided-missile cruiser USS Lake Erie (CG 70) during a Missile Defense Agency (MDA) test to intercept a short-range ballistic-missile target, conducted on the Pacific Missile Range Facility, west of Hawaii, in 2008. The SM-2 forms part of the Aegis ballistic-missile defense (BMD) program. In “A Double-Edged Sword: Ballistic-Missile Defense and U.S. Alli- ances,” Robert C. Watts IV explores the impact of BMD on America’s relationship with NATO, Japan, and South Korea, finding that the forward-deployed BMD capability that the Navy’s Aegis destroyers provide has served as an important cement to these beneficial alliance relationships.
    [Show full text]
  • Uss "Vincennes"
    S. Hao, 100-1085 INVESTIGATION IfTO THE DOWNING OF AN IRANIAN AIRLINER BY THE U.S.S. "VINCENNES" HEARING BEFORE THE COMMITTEE ON ARMED SERVICES UNITED STATES SENATE ONE HUNDREDTH CONGRESS SECOND SESSION SEPTEMBER 8, 1988 Printed for the use of the Committee on Armed Services U.S. GOVERNMENT PRINTING OFFICE 90-853 WASHINGTON : 1989 For sale by the Superintendent of Documents, Congressional Sales Office U.S. Government Printing Office, Washington, DC 20402 03o -" COMMITTEE ON ARMED SERVICES SAM NUNN, Georgia, Chairman JOHN C. STENNIS, Mississippi JOHN W. WARNER, Virginia J. JAMES EXON, Nebraska STROM THURMOND, South Carolina CARL LEVIN, Michigan GORDON J. HUMPHREY, New Hampshire P)WARD M. KENNEDY, Massachusetts WILLIAM S. COHEN, Maine JEFF BINGAMAN, New Mexico DAN QUAYLE, Indiana ALAN J. DIXON, Illinois PETE WILSON, California JOHN GLENN, Ohio PHIL GRAMM, Texas ALBERT GORE, JR., Tennessee STEVEN D. SYMMS, Idaho TIMOTHY E. WIRTH, Colorado JOHN McCAIN, Arizona RICHARD C. SHELBY, Alabama ARNOLD L. PuNARO, Staff Director CAu M. SMrm, Staff Director for the Minority CHRISTINS COWART DAUTH, Chief Clerk (II) CONTENTS CHRONOLOGICAL LIST OF WITNESSES Page Fogarty, Rear Adm. William M., USN, Director of Policy and Plans, U.S. Central Command, and Head of the Investigation Team accompanied by Capt. George N. Gee, USN, Director, Surface Combat Systems Division, ice of the Chief of Naval Operations and Capt. Richard D. DeBobes, Legal Adviser and Legislative Assistant to the Chairman of the Joint Chiefs of S taff . .......................................................................................................................... 4 Kelly, Rear Adm. Robert J., USN, Vice Director for Operations, Joint Staff ..... 17 (III) INVESTIGATION INTO THE DOWNING OF AN IRANIAN AIRLINER BY THE U.S.S.
    [Show full text]
  • Overwhelmed by Technology: How Did User Interface Failures on Board the USS Vincennes Lead to 290 Dead?
    Overwhelmed by Technology: How did user interface failures on board the USS Vincennes lead to 290 dead? Luke Swartz Background On July 3, 1988, the 290 passengers and crew of Iran Air Flight 655 were seemingly distant from the bitter and prolonged Iran-Iraq war. Many of the passengers were ultimately bound for Mecca, making their sacred pilgrimage as prescribed in the Koran. However, at 10:24 AM, seven minutes after the Airbus took off from Bandar Abbas Airport for Dubai in the United Arab Emirates, the United States Navy guided missile cruiser Vincennes fired two missiles at the plane, destroying the hapless target and its civilian occupants with horrific precision. What Went Wrong? Immediately after the tragedy, the US quickly blamed Iran for letting the plane fly over the combat situation below; then-Vice President Bush explained to the UN Security Council that the Vincennes “acted in self-defense,” thinking that Flight 655, after failing to respond to seven warnings, was “an Iranian military aircraft…approaching with hostile intentions.” Iran’s foreign minister charged the US with intentionally downing the plane, adding, “This was a premeditated act of aggression against the integrity of Tehran…a massacre.” While few objective observers think that the Vincennes’ action was intentional, and fewer still believe that its shooting down the civilian airliner was correct, numerous experts have debated what went wrong that fateful day. Many theories deal with aspects of the situation and the key players both on the Vincennes and in the cockpit of Flight 655. Failure to Respond? We may never know why Flight 655 failed to respond to the Vincennes’ repeated warnings, as its “black box” flight recorder could not be recovered.
    [Show full text]
  • MAPPING the DEVELOPMENT of AUTONOMY in WEAPON SYSTEMS Vincent Boulanin and Maaike Verbruggen
    MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen November 2017 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Ambassador Wolfgang Ischinger (Germany) Dr Radha Kumar (India) The Director DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: +46 8 655 97 00 Email: [email protected] Internet: www.sipri.org © SIPRI 2017 Contents Acknowledgements v About the authors v Executive summary vii Abbreviations x 1. Introduction 1 I. Background and objective 1 II. Approach and methodology 1 III. Outline 2 Figure 1.1. A comprehensive approach to mapping the development of autonomy 2 in weapon systems 2. What are the technological foundations of autonomy? 5 I. Introduction 5 II. Searching for a definition: what is autonomy? 5 III. Unravelling the machinery 7 IV. Creating autonomy 12 V. Conclusions 18 Box 2.1. Existing definitions of autonomous weapon systems 8 Box 2.2. Machine-learning methods 16 Box 2.3. Deep learning 17 Figure 2.1. Anatomy of autonomy: reactive and deliberative systems 10 Figure 2.2.
    [Show full text]
  • Lessons from Air Defence Systems on Meaningful Human Control for the Debate on AWS
    MEANING-LESS HUMAN CONTROL Lessons from air defence systems on meaningful human control for the debate on AWS Ingvild Bode and Tom Watts Published February 2021 Written by Dr Ingvild Bode, Centre for War Studies, University of Southern Denmark and Dr Tom Watts, Department of Politics and International Relations, Hertfordshire University Catalogue of air defence systems available on: https://doi.org/10.5281/zenodo.4485695 Published by the Centre for War Studies, University of Southern Denmark in collaboration with Drone Wars UK, Peace House, 19 Paradise Street, Oxford OX1 1LD, www.dronewars.net Acknowledgements Research for this report was supported by a grant from the Joseph Rowntree Charitable Trust and by funding from the European Union’s Horizon 2020 research and innovation programme (under grant agreement No. 852123). We want to express our thanks to the following readers for providing invaluable feedback for previous drafts of this report: Maya Brehm, Justin Bronk, Peter Burt, Chris Cole, Aditi Gupta, Hendrik Huelss, Camilla Molyneux, Richard Moyes, Max Mutschler, and Maaike Verbruggen. We would also like to thank Julia Barandun for her excellent early research assistance. About the authors Dr Ingvild Bode is Associate Professor at the Centre for War Studies, University of Southern Denmark and a Senior Research Fellow at the Conflict Analysis Research Centre, University of Kent. She is also the Principal Investigator of an ERC-funded project examining autonomous weapons systems and use of force norms. Her research focuses on processes of normative change, especially in relation to the use of force, weaponised Artificial Intelligence, United Nations peacekeeping, and United Nations Security Council dynamics.
    [Show full text]
  • The Evolution of the US Navy Into an Effective
    The Evolution of the U.S. Navy into an Effective Night-Fighting Force During the Solomon Islands Campaign, 1942 - 1943 A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Jeff T. Reardon August 2008 © 2008 Jeff T. Reardon All Rights Reserved ii This dissertation titled The Evolution of the U.S. Navy into an Effective Night-Fighting Force During the Solomon Islands Campaign, 1942 - 1943 by JEFF T. REARDON has been approved for the Department of History and the College of Arts and Sciences by Marvin E. Fletcher Professor of History Benjamin M. Ogles Dean, College of Arts and Sciences iii ABSTRACT REARDON, JEFF T., Ph.D., August 2008, History The Evolution of the U.S. Navy into an Effective Night-Fighting Force During the Solomon Islands Campaign, 1942-1943 (373 pp.) Director of Dissertation: Marvin E. Fletcher On the night of August 8-9, 1942, American naval forces supporting the amphibious landings at Guadalcanal and Tulagi Islands suffered a humiliating defeat in a nighttime clash against the Imperial Japanese Navy. This was, and remains today, the U.S. Navy’s worst defeat at sea. However, unlike America’s ground and air forces, which began inflicting disproportionate losses against their Japanese counterparts at the outset of the Solomon Islands campaign in August 1942, the navy was slow to achieve similar success. The reason the U.S. Navy took so long to achieve proficiency in ship-to-ship combat was due to the fact that it had not adequately prepared itself to fight at night.
    [Show full text]
  • Naval Accidents 1945-1988, Neptune Papers No. 3
    -- Neptune Papers -- Neptune Paper No. 3: Naval Accidents 1945 - 1988 by William M. Arkin and Joshua Handler Greenpeace/Institute for Policy Studies Washington, D.C. June 1989 Neptune Paper No. 3: Naval Accidents 1945-1988 Table of Contents Introduction ................................................................................................................................... 1 Overview ........................................................................................................................................ 2 Nuclear Weapons Accidents......................................................................................................... 3 Nuclear Reactor Accidents ........................................................................................................... 7 Submarine Accidents .................................................................................................................... 9 Dangers of Routine Naval Operations....................................................................................... 12 Chronology of Naval Accidents: 1945 - 1988........................................................................... 16 Appendix A: Sources and Acknowledgements........................................................................ 73 Appendix B: U.S. Ship Type Abbreviations ............................................................................ 76 Table 1: Number of Ships by Type Involved in Accidents, 1945 - 1988................................ 78 Table 2: Naval Accidents by Type
    [Show full text]
  • Indian Mirage 2000 I/TI Delivered
    www.aeromag.in March - April 2015 Vol : IX Issue : 2 AeromaAsia g Indian Mirage 2000 I/TI delivered A Publication in association with the Society of Indian Aerospace Technologies & Industries NOW AVAILABLE comsol.co.in/release/5.0 FROM MODEL TO APP The Application Builder provides you with Verify and Optimize your Designs with tools to easily design a custom interface for your multiphysics models. Use ® COMSOL Server to distribute your apps to COMSOL Multiphysics colleagues and customers worldwide. NOW FEATURING THE APPLICATION BUILDER Visit comsol.co.in/release/5.0 PRODUCT SUITE COMSOL Multiphysics COMSOL Server ELECTRICAL FLUID MULTIPURPOSE INTERFACING AC/DC Module CFD Module Optimization Module LiveLink™ for MATLAB® RF Module Mixer Module Material Library LiveLink™ for Excel® Wave Optics Module Microfluidics Module Particle Tracing Module CAD Import Module Ray Optics Module Subsurface Flow Module Design Module MEMS Module Pipe Flow Module ECAD Import Module Plasma Module Molecular Flow Module LiveLink™ for SOLIDWORKS® Semiconductor Module LiveLink™ for Inventor® CHEMICAL LiveLink™ for AutoCAD® MECHANICAL Chemical Reaction Engineering LiveLink™ for Revit® Heat Transfer Module Module LiveLink™ for PTC® Creo® Parametric™ Structural Mechanics Module Batteries & Fuel Cells Module LiveLink™ for PTC® Pro/ENGINEER® Nonlinear Structural Materials Module Electrodeposition Module LiveLink™ for Solid Edge® Geomechanics Module Corrosion Module File Import for CATIA® V5 Fatigue Module Electrochemistry Module Multibody Dynamics Module Acoustics Module © Copyright 2014 COMSOL. COMSOL, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners.
    [Show full text]
  • Agora: the Downing of Iran Air Flight 655
    AGORA: THE DOWNING OF IRAN AIR FLIGHT 655 INTRODUCTION How quickly one forgets. On Sunday, July 3, 1988, an Iran Air A300 Airbus, with 290 persons on board, was shot out of the sky by two surface- to-air missiles launched from the U.S.S. Vincennes, a guided-missile cruiser on duty with the United States Persian Gulf/Middle East Force. The first reports from Washington were that the Vincennes had acted in self-defense against hostile Iranian aircraft.1 Some 12 hours later, the Pentagon admit­ ted that the Vincennes had made a mistake, that the aircraft it saw approach­ ing was a wide-bodied airliner on a regularly scheduled flight, not an F-14 Tomcat with hostile intent and capability. There were, of course, tense times in the Persian Gulf in early July 1988. Iraq had been conducting air strikes against Iranian oil facilities and ships, Iranian F-14s (sold by the United States to the Iran of the Shah a decade earlier) had retaliated, and small boats launched from Iran were challenging ships approaching the Strait of Hormuz. No doubt every American ship's captain in the Gulf remembered the episode a year earlier when an Iraqi missile had—it was said, by mistake—blown a hole in the frigate U.S.S. Stark, with the loss of 37 lives. Still, the shooting down of Iran Air Flight 655 was clearly a tragic error. Within a few days, President Reagan announced his country's regrets, and promised that the United States would make an ex gratia payment to the families of the victims.
    [Show full text]
  • Teses E Dissertações Eletrônicas (Tede) Na Biblioteca Digital Da Ufg
    UNIVERSIDADE FEDERAL DE GOIÁS FACULDADE DE LETRAS PROGRAMA DE PÓS-GRADUAÇÃO EM LETRAS E LINGUÍSTICA CIBELE DE GUADALUPE SOUSA ARAÚJO WHY DON’T YOU CARVE OTHER ANIMALS: ESTUDO CRÍTICO E TRADUÇÃO GOIÂNIA 2015 TERMO DE CIÊNCIA E DE AUTORIZAÇÃO PARA DISPONIBILIZAR AS TESES E DISSERTAÇÕES ELETRÔNICAS (TEDE) NA BIBLIOTECA DIGITAL DA UFG Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG), sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. 1. Identificação do material bibliográfico: [ ] Dissertação [ X ] Tese 2. Identificação da Tese ou Dissertação Autor (a): Cibele de Guadalupe Sousa Araújo E-mail: [email protected] Seu e-mail pode ser disponibilizado na página? [ X ]Sim [ ] Não Vínculo empregatício do autor Secretaria Municipal de Educação de Goiânia Agência de fomento: Conselho Nacional de Desenvolvimento Sigla: CNPq Científico e Tecnológico País: Brasil UF: GO CNPJ: 33.654.831/0001-36 Título: WHY DON’T YOU CARVE OTHER ANIMALS: ESTUDO CRÍTICO E TRADUÇÃO Palavras-chave: Tradução, Literatura do Zimbábue, Yvonne Vera, Why Don’t You Carve Other Animals. Título em outra língua: WHY DON’T YOU CARVE OTHER ANIMALS: CRITICAL STUDY AND TRANSLATION Palavras-chave em outra língua: Translation, Zimbabwean Literature, Yvonne Vera, Why Don’t You Carve Other Animals. Área de concentração: Estudos Literários Data defesa: (dd/mm/aaaa) 27/04/2015 Programa de Pós-Graduação: Programa de Pós-Graduação em Letras e Linguística Orientador (a): Professor Doutor Heleno Godói de Sousa E-mail: [email protected] Co-orientador (a):* E-mail: *Necessita do CPF quando não constar no SisPG 3.
    [Show full text]