<<

HYDROPHOBIC OF FLUOROPOLYMER/

BARIUM TITANATE NANOCOMPOSITES FOR LOW-

VOLTAGE AND CHARGE STORING ELECTROWETTING

DEVICES

Athesissubmittedtothe

DivisionofResearchandAdvancedStudies

oftheUniversityofCincinnati

inpartialfulfillmentofrequirementforthedegreeof

MASTER OF SCIENCE

IntheDepartmentofElectricalandComputerEngineering

oftheCollegeofEngineering

January2007

By

Murali Krishna Kilaru

B.Tech(ElectronicsandCommunicationsEngineering),

V.R.SiddharthaEngineeringCollege,Vijayawada,A.P,India

CommitteeChair:Dr.JasonHeikenfeld ABSTRACT

Electrowettingismakingagreatimpactinfieldsofoptics,labonchipdevicesand electronic paper (epaper). For electrowetting to realize its fullest potential in low operatingapplications,solutionstosomeofthecommonmaterialchallengesneed tobeaddressed.Thesechallengesincludeelectrolysis,breakdown,andsurface damageathighelectricfields.

Thisthesispavesthewayforanewapproachtoachievelowvoltageelectrowetting

andimprovedpowerefficiencyforelectrowettingdevices.Thisapproachdoesnothave

the drawbacks such as dielectric breakdown or electrolysis. The theoretical factors

leading to lowvoltage electrowetting are known. One approach is to increase the (k)ofthedielectriconwhichelectrowettingoccurs.However,conventional

hydrophobic dielectrics such as fluoropolymers do not usually have a high dielectric

constant.

This thesis provides a novel approach to increase the dielectric constant of the

fluoropolymer by making a nanocomposite dielectric of fluoropolymer and highk

inorganicpowder.Thiscompositeretainsthehydrophobicityofthefluoropolymerand

the dielectric constant of highk powder. The compatibility of the nanocomposite

dielectrictoelectrowettingistestedbyvariouscharacterizations.Resultsindicatethatthis

approach does increase dielectric constant of fluoropolymerandtherebyachieveslow

voltage electrowetting. Apart from these expected results, strong charge storage is

observed for the composite dielectric, which could lead to new applications for

electrowetting. The ability of the nanocomposite dielectric to be tailor made using variouscompositematerialscouldopenupelectrowetting to a variety of new research paths.

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION……………………………………………………………………..1

1.1 Electrowetting…………………………………………………………………….1

1.2 Inthisthesis…..…………………………………………………………………..2

CHAPTER 2

THEORITICALBACKGROUND…………………………………………………….4

2.1 Contactangleatzeropotential……………………………………………………4

2.1.1 Contactangleonaplanarsurface…………………………………………..4

2.1.2 Contactangleonaroughsurface…………………………………………...6

2.2 Electrowetting…………………………………………………………………….7

2.2.1 Electrowettingonaplanarsurface………….....……………………………7

2.2.2 Contactanglesaturation…………………………………………………….9

2.3 Lowvoltageelectrowetting...…………………………………………………...11

2.3.1 Singleliquidelectrowetting……………………………………………….11

2.3.2 Twoliquidelectrowetting…………………………………………………12

2.3.3 Increasingdielectricconstant k……………………………………………13

CHAPTER 3

SAMPLEPREPARATION&TESTSETUP………………………………………..14

3.1 Nanocompositedielectricpreparation………………………………………….14

3.2 Testsamplepreparation………………………………………………………...15

3.3 Testsetup……………………………………………………………………….18

3.3.1 …...………………………………………………………….19 3.3.2 Contactanglevs.voltagemeasurement……………………...………..…20

3.3.3 Chargevoltage(QV)analysis..……………….………………..……….20

CHAPTER 4

RESULTSANDANALYSIS………………………………………………………….23

4.1 Nanocompositefilmwettingcharacteristicsandproperties…………………….23

4.1.1 Opticalproperties………………………………………………………...26

4.1.2 Electricalproperties…………………………...…………………………26

4.2 Electrowettingresponse………………………………………………...……….29

4.3 Bistabilityduetochargeinjection..……………………………………………..31

4.4 QVanalysis……………………………………………………………………..34

4.5 Understandingchargestorage…………………………………………………...37

CHAPTER 5

APPLICATIONS………………………………………………………………………39

5.1 Electrowettingdisplay…………………………………………………………..39

5.1.1 Electrowettingdisplaywithcompositedielectric………………………..40

5.1.2 Advantagesofelectrowettingdisplaywithcompositedielectric……..…43

REFERENCES ………………………………………………………………………….45

LIST OF FIGURES

Fig2.1,(a)Salinedropletonafluoropolymersurfacewithcontactangle θowithno voltage bias. (b) The interfacial surface tensions γSA , γAF ,γSF at the triple phase contactpoint……………………………………..…………………………………….4 Fig2.2,Contactangle θc ofthedropletonarandomhydrophobicsurface….…6 Fig 2.3, (a) Water droplet present on a hydrophobic without applied potential.(b)UndervoltagebiasV,thewaterdropletiselectrostaticallyattractedto theinsulatingdielectricunderneath…………………………………………………...7 Fig2.4,Diagramofelectrostaticattractionofdroplettothesurfaceofdielectric..…..8 Fig2.5,(a)Water/dielectricinterfacebeforecontactanglesaturation. (b)Accumulatedandinjectedchargesaftercontactanglesaturation……..……...….10 Fig2.6,Diagramofelectrowettingonadielectricstack…………………....…...…..12 Fig3.1,SEMofBaTiO 3nanoparticles(CourtesyTPLInc.)...…...…....…………….14 Fig3.2,Nanocompositedielectriclayerdiagram…..………………...……………...16 Fig3.3,AFMscanof50(vol.%ofBaTiO 3)withoutthetopcoat………………...... 16

Fig3.4,AFMscanof50(vol.%ofBaTiO3)afterthetopcoat……...……...……....17

Fig3.5,Compositedielectricstructureafterthefluoropolymercoat…………..……17

Fig3.6,Capacitancecharacterizationsetup………………………...………………..19

Fig3.7,QVsetupusingsensingcapacitancemethod…………………...………….21 Fig3.8,forQVmeasurement………...……………...……………….22

Fig4.1,Capacitancesofdifferentlayersonthecompositedielectricstack……...….27 Fig4.2,Contactanglesvs.voltageplots………………………………………..…...30 Fig4.3,Diagramofcontactangleandchargestorage……………………...….…….32 Fig4.4,IdealQVGraphwithvariouschargeslabeled…………..……………....…34 Fig4.5,QVplotsofcompositedielectrics…………………………………...….....35 Fig4.6,BandstructureattheinterfaceofBaTiO 3 andfluoropolymerwithinterface traps…………………………………..………………………………………………38 Fig5.1,Diagramofanelectrowettingdisplaya)voltageoff.b)Voltageon…….….39 Fig 5.2, Device structure of an electrowetting transmissive pixel with composite dielectric……………………………………………………………………………...40 Fig5.3,Photosofanelectrowettingdisplaywithnanocompositedielectric.…….….41 Fig5.4,Photosofthevoltageresponseofelectrowettingdisplay………...….……..42 Fig5.5,a)Devicestructurewithcompositedielectric.b)Lowervoltagewettingover fluoropolymer.c)Chargestorageinadisplay…...……….……………………….....43 Fig5.6,Electrowettingdisplayswithconventionalandcompositereflectorlayers...44

LIST OF TABLES

1. Table1,Hydrophobicmaterialsanddielectricconstants……………………..…13 2. Table2,ComparisonofContactangleatzerobiasbeforeandafterfinaldip coatinginfluoropolymer1….……………………………………………………25 3. Table3,Contactanglewithfluoropolymer2……………………………………25 4. Table4,Diffusereflectivity%ofvarioussamples………………………………26 5. Table5,Comparisonofcapacitancesandestimatedthicknessesoftopcoatofthe nanocompositedielectrics….……………………………….…...………………27 6. Table6,Dielectricconstantsofstandardandcompositedielectrics...…………..29 7. Table7,Nanocompositedielectricsamplesandofoperation……….....42

CHAPTER 1

INTRODUCTION

1.1 Electrowetting

Electrowetting was first defined several decades ago as “the change in solid contactangleduetoanappliedpotentialdifferencebetweenthesolidandthe electrolyte”[1].Electrowettingofanelectricallyconductiveliquidoccurswhenabiasis applied between a polar liquid and an underlying dielectric coated .

Electrowettingisfindingincreasingnumberofapplicationsinmoderndayfields.These includemicrofluidicsforlabonchipdevices[2],optics[3],epaper[4],anddisplays

[5].Mostoftheseapplicationsdemandlowvoltageoperation. Lowvoltage conserves powerandmakeselectrowettingmorefeasibleforcommercialapplications.

In electrowetting, it is usually desirable to have a large contact angle of the liquid

whennovoltagebiasisapplied.Therefore,ahydrophobiclayerisusedasthe

topsurfaceonthedielectric.Inelectrowetting,thecontactangleofliquidchangesasitis

electrostaticallyattractedtothedielectricunderneath.Thiselectrostaticforceisdirectly proportionaltothecapacitanceofdielectricsused.Conventionalhydrophobic

suchasTeflon[6]donothaveahighdielectricconstant.Therefore,acommonapproach

toachievegreaterelectrostaticforceofattractionatlowervoltageoperationhasbeento

make the hydrophobic layer as thin (<100nm) as possible compared to dielectric

thicknessunderneath.

Thistechniquehasmanychallenges.Theseincludeelectrolysisoftheliquiddueto

dielectricbreakdownandirreversibledamagescausedtothehydrophobicsurfacedueto

1 electrochemicalreactionofthesurfaceathighelectricfields[7]. Ifwe areto consider other approaches that aim at lowervoltage electrowetting they need to have these challenges addressed. A simple solution would be to have thicker hydrophobic layers with higher dielectric constant. Achieving such a new material would benefit all electrowetting devices in terms of lower voltage, improved reliability, and fabrication thatislesssensitivetonanoscaledielectricdefects.

1.2 In this thesis

A novel technique to lower voltage in electrowetting is investigated. It has been

observedthatthereisalackofalternatematerialchoicestothelowdielectricconstant

fluoropolymers used in electrowetting [8]. This thesis presents an inorganic/organic

nanocompositeapproachtoachievelowvoltageelectrowetting.

In this method, a high dielectric constant (high ‘k’) nanopowder is dispersed in

fluoropolymer to prepare a nanocomposite dielectric. This would retain the

hydrophobicityoffluoropolymerandthehighdielectricconstantofthenanopowder.The

results obtained show an increase in dielectric constant, confirmed by lowervoltage

electrowetting.Thiswasalsoaccompaniedwithmanyotherinterestingresultslikelarger

initialcontactangleandbistablewetting.Bistablewettingimpliesthatafterthevoltageis

removed, the droplet is able to retain its electrowetting state until a later voltage is

appliedtoremovethedropletfromtheelectrowettedstate.Nopreviousreportsexistfor

electrowetting dielectrics showing strong bistable behavior. Bistable wetting, a

consequence of charge trapping could be instrumental in making the electrowetting

2 devices very power efficient. The bistable wetting could prove critically important for emergingelectrowettingapplicationssuchasepaper.

This novel nanocomposite dielectric was developed and tested for reduced electrowettingvoltage.Bistablewettingbehaviorwasfurtherinvestigatedusingcharge voltageanalysis.Thesestudiesprovideexperimentalproofoftheproposedperformance ofthenanocompositedielectric.Thisthesisfurthersetsthestageforfutureappliedwork inepaperandfuturefundamentalworkinunderstanding/engineeringthenanocomposite chargetrappingmechanism.

3

CHAPTER 2

THEORETCAL BACKGROUND

2.1 Contact angle at zero potential

2.1.1 Contactangleonaplanarsurface

Aliquiddropletplacedonasurfacehasaspecificshapewhichisafractionofsphere, often referred to as a spherical cap. This shape is defined by the interfacial surface tensions.Anydeviationfromthesphericalshapeisduetotheeffectsofgravityonthe droplet.Theangleatwhichtheliquid/vaporinterfacemeetsthesolidsurfaceiscalledthe contact angleofthatliquidonthatsurface. From thispointforwardinthethesis,the liquid referred to herein and that is used for electrowetting is deionized water. The contact angle of a water droplet on a surface is defined by Young’s equation. The

Young’s equation gives the thermodynamic equilibrium of the 3 interfacial surface tensionvectorsγAF (fluoropolymer/air),γSA (saline/air),γSF (saline/fluoropolymer)atthe

triplephasecontactpointofwaterdropletasseeninfig.2.1.

TheYoung’sequationisachievedsummingtheinplanecomponentsofthesevectors

andisgivenbyequation1.

γSF=γAF γSAcosθ o(1)

Fig 2.1, (a) Saline droplet on a fluoropolymer surface with contact angle θo with no voltagebias.(b)TheinterfacialsurfacetensionsγSA,γAF ,γSFatthetriplephasecontact point.

4

For contact angles greater than 90°, the surfaces are defined as “hydrophobic”. Most petroleumderived materials (plastics) are hydrophobic. A higher degree of hydrophobicitycanbeachievedwithpolymerswhereissubstitutedfor

(orfluoropolymers).TheCFbondisunexpectedlycovalentandthebond is electronically screened by the large number of fluorine atoms packed along the polymer chain. This gives the fluoropolymer a low surface energy as the surface is homogeneousandnonpolar[9].TheCFbondisalsononreactive,whichiscriticalfor preventing oxidation or reduction of the fluoropolymer during electrowetting.

Fluoropolymerstypicallyhavewatercontactanglesintherangeof~110120°.Surfaces with contact angles larger than 150° are termed as “super hydrophobic”. Super hydrophobic surfaces are almost always achieved through surface texturing and incomplete droplet wetting, commonly referred to as the CassieBaxter state [10].

“Hydrophilic”surfacessuchasinorganicglasseshavecontactanglelessthan90°,while

“superhydrophilic”surfaceshavecontactanglessmallerthan10°.Hydrophobicsurfaces implythattheintermolecularforcesinsidethewaterdropletaremuchstrongerthanthe forcesbetweenthemoleculesofwaterandthesurface.Theconverseforthehydrophilic surfacesistrue.

In electrowetting, it is desirable to have a large initial contact angle in order to maximizethechangeincontactanglethatcanbeachievedasvoltageisapplied.Hence,a fluoropolymer with a low surface energy (γAF < 16 mN/m) is used as the top surface throughout this thesis. Throughout this thesis, the deionized (DI) water droplet has a highsurfacetensionofγ SA ~73mN/m.

5

2.1.2 Contactangleonaroughsurface

Thecontactangleofawaterdropletonarandomroughsurfaceishighlydependenton the surface roughness. The macroscopic contact angle of water droplet on a random hydrophobicsurface(θc)isdifferentfromthecontactangleofawaterdropletonaplanar surface(θo).Acloserlookattherandomsurfacerevealsmanyairgapsasshowninfig.

2.2.

Themacroscopiccontactangleisobtainedbyaveragingtheinterfacialsurfacetensions

γSA (water/air)and γSF (water/fluoropolymer)betweenthewaterandthe roughsurface.

ThiseffectistheoreticallyrepresentedbythewellknownCassieBaxterequation:

cos θc=f(cos θo+1)10

remainder of the liquid/air contacts between the areas of liquid/solid contact [11]. In

simplest terms, air has essentially zero surface energy. Therefore as the roughness

increases, the droplet is supported by more pockets of air and less solid material. As

roughnesscontinuestoincreasethesystemapproachesthatofadropletinair(aperfect

sphere)andhencethesuperhydrophobiceffectarises.

Fig2.2,Contactangle θc ofthewaterdropletonarandomhydrophobicsurface.

6

2.2 Electrowetting

2.2.1Electrowettingonaplanarsurface

Electrowetting occurs when water is electrostatically attracted to the surface underneath.ThisisgovernedbytheYoung’sLippmannequation(3)

ε ε cosθ = cosθ + o r V 2 V O 2 z γ SA (3) Theelectrowettingangle θV dependsontheinitialcontactangle θoandanelectrostatic term.ThiselectrostatictermisproportionaltothevoltageVapplied,relativedielectric constant of the fluoropolymer εr or k; inversely proportional to the thickness of the

fluoropolymerzandwater/airinterfacialsurfacetensionγSA .Fig.2.3(b)showsawater dropletbeingelectrostaticallyattractedtotheinsulator(dielectric)underneathit.When novoltageisappliedacrossthedroplet,thedropletispresentinitshydrophobicstateas infig.2.3(a).

Itshouldbenotedthatthroughoutthisthesis,forsimplicityelectrowettingisexplained asanelectromechanicalorelectrostaticeffect.

Fig2.3,(a)Waterdropletpresentonahydrophobicinsulatorwithoutappliedpotential. (b)UndervoltagebiasV,thewaterdropletiselectrostaticallyattractedtotheinsulating dielectricunderneath.

7

Thethermodynamicexplanationofelectrowettingdealswithreductionofinterfacial surface tension with increased surface charge (the Lippman effect). However, the conclusionsinthisthesisarenotdependentondetailsbeyondtheelectrowettingequation andLippmanbehaviorneednotbeanalyzedindetail.

In electrowetting, usually a negative bias is applied to the water droplet, as it is observedthatapplicationofpositivevoltagebiasincreasestheprobabilityforelectrolysis of water. Fig. 2.4 depicts the usual electrowetting structure in which, the dielectric is sandwiched between water droplet and the substrate, this device structure is equivalenttoacapacitorwiththecapacitancedependentonthethicknessanddielectric constantofthedielectric.Withvoltagebiasasinfig.2.3(b),chargeaccumulationtakes place near the waterdielectric interface as in fig. 2.4. The charge accumulated is proportionaltothevoltageappliedandthecapacitanceperunitareaofthedielectric.The chargesaccumulatedonthewatersideofthewaterfluoropolymerinterfaceresultsinan electrowettingforceFEW whichcanthenbesummedwiththeinplaneinterfacialsurface tensionforces.

F EW is proportional to the charge per unit area accumulated at the water/dielectric interface.ThisforceF EW counterstheinterfacialwater/fluoropolymersurfacetension.

Fig2.4,Diagramofelectrostaticattractionofdroplettothesurfaceofdielectric.

8

Asaresult,themodifiedequivalentinterfacialwater/airsurfacetensioncanbewrittenas

(γSF )new =γSF FEW (4) eqn.1and(γSF )new<γSF ,itisobviousthatthecorrespondingnewcontactangle θVisless

than θo.Hence,thewaterdropletwetsthesurface.

2.2.2 Contactanglesaturation

WhenthevoltagebiasappliedtowaterdropletisincreasedtoanextentsuchthatF EW

=γSF ,thenetinterfacialwater/fluoropolymersurfacetension,i.e.γSF F EW becomeszero.

This is the thermodynamic electrowetting limit of the droplet. The contact angle at thermodynamic electrowetting limit can be obtained fromeqn.1andusingthatγSF =

0;[12].Thecontactangleatthermodynamicelectrowettinglimitisgivenby

1 θv=cos (γAF /γSA )(5)

Electrowetting does not extend beyond this limit for thermal equilibrium (gradual

applicationofDCvoltage).Typicalelectrowettedcontactanglesforthelimitedcaseare

~7090 °formostelectrowettingmaterialssystems.Thechargescontinuetoaccumulate beyond the electrowetting limit, but they do not contribute to further wetting. As

mentioned, this only applies to gradual application or ramping of DC voltage. Any

detraction from this bias scheme such as abrupt DC, or AC, takes the system out of

equilibriumandthereforetheelectrowettinglimitnolongerapplies.

For abrupt AC or abrupt DC the electrowetted contact angle can exceed the

electrowettinglimitbyseveral10’sofdegrees(~7030 °forvariousmaterialssystems).

Forthiscasebeyondtheelectrowettinglimit,thepointatwhichcontactanglereduction becomesonceagainlimitedisreferredtoaselectrowettingsaturation.Atthisvoltage,the mostoftenmechanismcausingsaturationischargeinjectionintothehydrophobic

9

Fig2.5,(a)Water/dielectricinterfacebeforecontactanglesaturation.(b)Accumulated andinjectedchargesaftercontactanglesaturation.

dielectricasinfig.2.5(b).Theseinjectedchargesmasktheeffectofincreasedpositive

chargesonthedielectricsideattheinterface.Therefore,thereisalittleornoincreasein

theF EW forceafterthesaturationlimit.Asaresult,thecontactangleofwaterdoesnot changeaftersaturationeventhoughhighervoltagesareapplied[13].

In fig. 2.5(b) z denotes the spread distance of charges from the interface. With applicationofevenhighervoltagesbeyondsaturationvoltage,thechargesinjectedinto the dielectric exceedingly mask the field of charges accumulated on water side of interface causing the droplet to rise back slowly. It is preferred to operate the electrowettingdevicewellawayfromsaturationaselectrowettingbehaviorismuchless predictablenearsaturation.

10

2.3 Low-voltage electrowetting

Itiseasilyunderstoodthatonewoulddesiretooperateelectrowettingdevicesatlow voltages. This would have a great impact on electrowetting device applications in e paper,labonchipdevicesanddisplays.Theconditions for lowvoltage electrowetting canbeobtainedfromeqn.3.Theseareasfollows:

• Decreasezi.e.thicknessofdielectric.

• Decrease γSA i.e.interfacialsurfacetensionbetweenwaterandthesurrounding

ambient.

• Increasekofthedielectricused.

2.3.1Singleliquidelectrowetting

Thedecreasedthicknessapproachhasbeenthecommonapproachtoachievelower voltage electrowetting. This is often implemented by decreasing the thickness of the hydrophobiclayerformedontopofathickhighkdielectriclayer.Thisdielectricstackis showninfig.2.6.Inthisstack,thethicknessofhighkdielectriciszkandthicknessof hydrophobicdielectriciszF. These dielectrics have capacitances C k (highK dielectric) andC F (fluoropolymer)inseries,whichresultinanequivalentcapacitancedominatedby thelowervaluedcapacitance.

Fig2.6,Diagramofelectrowettingonadielectricstack.

11

Sotoincreasethecapacitanceofthefluoropolymer,thethicknessofthefluoropolymeris decreasedinaccordancewitheqn.6.

AεoK C = Z (6)

There are certain disadvantages associated with this approach, which hinder the full potentialofincreasedcapacitance.Thepresenceofthehighkdielectricunderneaththe fluoropolymertopreventdielectricbreakdownisonlymarginallyeffective.Thecharge tends to inject through the fluoropolymer and accumulate at the fluoropolymer/highk dielectricinterface.Thiscauseschargescreeningandthereforeelectrowettingsaturation asexplainedintheprevioussection.

2.3.2 Twoliquidelectrowetting

To reduce γSA , it is necessary to add surfactant to the water or to change the environment around the water droplet (the air). The environment can be changed by replacingairwithoilslikedodecane.Interfacialsurfacetensionofwater/oilislessthan the interfacial water/air surface tension (~3050 mN/m compared to ~73 mN/m, respectively). According to eqn. 3, reducing interfacial surface tension reduces the operatingvoltage. Thisapproachcanbefurtherbeneficialiftheoilisdensitymatchedto the water droplet. This reduces the effect of vibration or gravity on the system. It is observedthatthewaterdropletsurroundedbyoiltakeslongerdurationtorisebacktoits initialstatewhenthevoltageisremovedthanwhenitissurroundedbyair.Thisisdueto the reduced water/oil surface tension, i.e. less restoring force to pull back the water dropletbackupafterthevoltageisremoved.Electrowettingspeedcanalsobereduced duetotheincreasedviscosityofthesurroundingenvironment.Reducedspeedtherefore

12 places a limit on this approach (i.e. surface tension cannot approach zero). Therefore alternatemeansofdecreasingoperatingvoltagearestillneeded.

2.3.3Increasingdielectricconstantk

Conventionalfluoropolymersorothersmoothhydrophobicmaterialsthathavealarge initial contact angle have a small dielectric constant ( k <4).Ontheotherhand,highk dielectricsarenothydrophobic.Highkdielectricshavestrongpolardomainsresultingin a high surface energy and wetting by polar liquids such as water. Therefore, highk dielectricsarenotavailableforuseinelectrowetting.Examplesofhydrophobicmaterials withtheirdielectricconstantsarelistedintbl.1.

Therefore,newhydrophobicmaterials,withincreaseddielectricconstantarerequired.

Thisthesisproposesthatpreparingananocompositeoutofhighknanopowdersanda fluoropolymercanresultinproperhydrophobicityandreducedelectrowettingvoltage.

Table1,Hydrophobicmaterialsanddielectricconstants.

Name Dielectric Constant Fluoropel,CytonixInc. 2 TeflonAF,DupontInc. 2 Paraffin 22.5 ParyleneC 3

13

CHAPTER 3

SAMPLE PREPARATION & TEST SETUP

3.1 Nanocomposite dielectric preparation

A nanocomposite dielectric was prepared by dispersing highk titanate

(BaTiO 3) nanopowder (HPB1000, TPL Inc.) in a fluoropolymer (Fluoropel 1601V,

CytonixInc.).BaTiO 3 nanopowderwithsphericalmorphologyandmeanparticlesizeof

56 nm is utilized to create a highpermittivity phase within the fluoropolymer (HPB

1000, TPL Inc.). Nanoscale BaTiO 3 was chosen because the desired dielectric film thicknessisintherangeofamicron.IftheBaTiO3particlesweremicronsize,thefilm wouldnotfunctionasafairlyhomogeneouscomposite. TheSEMofthe BaTiO 3nano particlesisshowninfig.3.1

AssumingrandomorientationforthephasepurecubicBaTiO 3,theaveragedielectric constant can be assumed to be εr >300. The basic idea was to disperse BaTiO 3 nanopowderin1wt.%fluoropolymerusinganultrasonicatorfor30minutes.Thisidea resultedinadispersionwhichwasstableforashorttime,with BaTiO 3sediment

Fig3.1,SEMofBaTiO 3nanoparticles(CourtesyTPLInc.).

14 increasingwithtime.Inordertoincreasethestabilityofthedispersion,thenanopowder is dispersed in the fluoropolymer using a silane. Among the different silanes used, fluorosilane (CF 3 (CF 2)4 Si (OCH 3)3, ITCFB3958,DowCorning)isobservedtobea gooddispersantfortherequiredcompositedielectric.Thissilaneisusedforpreparingall ofthecompositedielectricsamplesinthisthesis.ThesuspensionofBaTiO 3,fluorosilane

andfluorosolvent(PFC1600V,CytonixInc.)isultrasonicallytreatedfor30minutes.A

desiredvolumeoffluoropolymeristhenaddedtothesuspensionanddissolved.Different

samples of composite dielectric are prepared with varying compositions by vol. % of

BaTiO 3 with respect to the fluoropolymer. This is done to obtain a good comparison

amongthesampleswithvaryingBaTiO 3content.

3.2 Test sample preparation

Thetestsamplesarepreparedbyspincoatingthecompositedielectriconanoxidized

siliconwaferwiththicknessof100nm.Itshouldbenotedthattheoxidizedwaferis

usedonlytoinhibitelectrolysisofwateratporesorotherdefectsinthenanocomposite

film.Thespinparametersforspincoatingcomposite dielectric vary from 1500rpm to

2000rpmfor30secondsdependingonthedensityofthenanocompositedielectric.The

spinspeedwasadjustedtokeepthefilmthicknessesconstantasmuchaspossible,even

thoughtheBaTiO 3contentwasvariedsignificantly.Thesamplesarerestedfor2hoursto

allowthefilmstocureslowlyandachievethemaximumpossiblesurfaceflatness.This

slowcurealsoincreasesthedensityofthefilmforthecaseofveryhighBaTiO 3loading.

Samples arethenbakedintheovenat120°Cfor30minutes.Thesamplesobtainedhave acharacteristicroughnessarisingfromtheBaTiO 3particlespresentnear thesurfaceof

15

Fig3.2,Nanocompositedielectriclayerdiagram.

thedriedfilm.ThefilmmorphologywithBaTiO 3nanoparticlesisdepictedinfig.3.2

Roughnessofthefilmtoahighdegreeisnotadvantageoustoelectrowetting.Asitis observed that it would lead to very strong wetting hysteresis. The morphology of the samplesisconfirmedbyAFMscansof50vol.%BaTiO 3.TheAFMscanof50vol.%

BaTiO 3withoutthetopcoatisshowninfig.3.3

To reduce surface roughness, the samples are dipcoated in the 1% fluoropolymer.

Thedipcoatdrawspeediscalibratedtogeta500nmthickdriedfluoropolymerfilmon

topofasmoothsurface.Somesampleshadlittleornosurfaceroughnessi.e.withBaTiO 3 composition<25vol.%anda400nmthicktopcoat. Samples with moderate surface roughness had BaTiO 3 composition < 75 vol. % and a 300nm thick top coat, while

sampleswithaveryhighsurfaceroughnessexceeding75vol.%inBaTiO 3 composition

Fig3.3,AFMscanof50(vol.%ofBaTiO 3)withoutthetopcoat.

16

Fig3.4,AFMscanof50(vol.%ofBaTiO 3)afterthetopcoat. hadlessthan100nmthicktopcoatoffluoropolymer.Thesevaluesareconfirmedbythe

AFMscanstakenafterthetopcoatoffluoropolymerasinfig.3.4.

ItisbelievedthatincreasingBaTiO 3resultsinincreasedfilmporosity,andtherefore additionalfluoropolymercoatingfillsanyporesbetweenBaTiO 3particlesbeforeadding

to the thickness of the film stack. This layered structure was utilized in all electrical

testingandisshowninfig.3.5.

Inpractice,itwouldnotbenecessarytodoatopcoatforallthecompositedielectric

samples.Forexample,thetopcoatisnotnecessaryforsampleswithlowBaTiO 3content.

ThetopcoatisonlyneededforsampleswithhighBaTiO 3content.However,toachieve

Fig3.5,Compositedielectricstructureafterthefluoropolymertopcoat.

17 effective comparisons for the experiments performed herein, a top coat of pure fluoropolymerwasdoneontopofallcompositedielectricfilms.

Thethicknessofthefilmstack(compositefluoropolymer/fluoropolymer)ismeasured using a Dektak profilometer. The dip coating parameters and spin parameters of the samples with various BaTiO 3 compositions were adjusted to achieve a final film thicknessrangingfrom0.8mforthepurefluoropolymerto~1.2mforthefilmswith primarily BaTiO 3 content. This film thickness variation was accounted for in the

experimentaldataandrelatedtheoreticalcalculations.

3.3 Test setup

Threesetupsareusedtocharacterizethecompositedielectricfilms.

1. Capacitance.

2. Contactanglevs.voltagemeasurement.

3. Chargevoltage(QV)analysis.

Testvoltageswereprovidedbythecombination of an arbitrary function generator

(AFG310,SONYTektronix)andalinearvoltageamplifier(F20ADI,FLCElectronics).

Thefunctiongeneratorprovidesmanytypesofvoltagesourcefunctionswhichinclude

sinusoidal, square, pulse, DC etc. In characterizations to be discussed, DC and the

sinusoidal are the most used functions. The function generator can provide up to a

maximum of 8V output (peakpeak DC level). This maximum output of the function

generator is not sufficient to drive the electrowetting devices. So, a linear voltage

amplifier(F20ADI)withvoltageamplificationof20Xisusedinserieswiththefunction

18 generatortoaccountforamaximumof160Vthatisusedforcharacterization.Together thecombinationmettheneedsposedbythevariousexperiments.

3.3.1Capacitance

Onthetestsamples,asmalltestareaisachieved with a small square with typical

dimensions 2.5mm X 2.5mm. The boundary of the square is lined with polyimide

(Kapton,DupontInc.)ofthickness25um.TheKaptonthicknessismuchgreaterthanthe

thicknessofthefluoropolymer/compositedielectric.Therefore,themeasuredcapacitance

areaisfixedandisonlythatconfinedwithinthe 2.5x2.5mmregion. Ifthisapproach

werenotimplemented,thedropletcontactareaisnotknown.Asalinesolution(1%KCl

solution)dropletisconfinedwithintheboundariesofthesquaresuchthatitcoversthe

entireexposedcompositedielectricstackfilm.Thisisusedasoneendoftheprobefor

capacitancemeasurementandtheotherprobebeingthesiliconsubstrate.Thesurfaceof

the composite dielectric film and silicon dioxide is scribed to expose silicon. The

electricalcontacttothesiliconsubstrateismadebyusingpasteandawire.

The capacitances of films were taken before and afterthetopcoatoverthecomposite

dielectric.Thecapacitancecharacterizationsetupisshowninfig.3.6.

Fig3.6,Capacitancecharacterizationsetup.

19

3.3.2Contactanglevs.voltagemeasurement

The contact angle of the film is measured using the VCA optima contact angle measurementsystem.Contactanglemeasurements( θv)aretakenwithnegativeDCbias applied to the DeIonized (DI) water droplet, with the silicon substrate as ground.

Unlikethecapacitancemeasurements,notKaptontapeboundaryisutilized.Thevoltage isdecreasedinstepsof4Vpersecondfrom0to160V.ApictureistakenontheVCA optima workstation using dynamic capture with a frame taken every second correspondingtoeachvoltagestep.Thecontactanglesofthewaterdropletsinallthe40 framesismeasuredandisexportedtoSPCformatfileusingVCAoptimacontactangle software.ThefileisthenimportedontoMSExceland KaleidaGraph 4.0 data file. A graphisplottedwithcontactangleateveryvoltageusingMSExceldatafile.Thecontact anglevs.voltagedatasetistakenforeachtestsamplebeforeandafterthetopcoat.

3.3.3Chargevoltage(QV)analysis

TheQVanalysisisdoneusingasetupdevelopedbyWager[14]forcharacterization of inorganic thinfilmelectroluminescent devices. This thesis is the first report of this technique applied to electrowetting. The QV analysis setup consists of a series combinationofaresistor,deviceundertestandasensecapacitor.Thesensecapacitance isusually100timesgreaterthanthatofdeviceundertest,sothatmostoftheapplied voltage occurs across the device. This series combination is driven by a waveform generator.Forthecircuitused,asinusoidalvoltagewithpeaktopeakvoltagevarying from0to160Vatafrequencyof1Khzisappliedtothesampleasshowninfig.3.7.

20

Fig3.7,QVsetupusingsensingcapacitancemethod.

ADIwaterdropletissandwichedbetweenasiliconelectrodeandthesample,pinned within a specific region of known area lined by polyimide (Kapton). A 1X probe is connected across the sensing capacitance to the channel 2 of an oscilloscope. The oscilloscopecanmeasureuptoamaximumof40V.So,a100Xprobeisconnectedacross thevoltagesupplytothechannel1oftheoscilloscope.Theoscilloscopeisoperatedin

XYmode,withChannel1onXaxisandChannel2representedbyYAxis.Withthis setup, QV analysis curves are obtained on the oscilloscope. This data is fed into computer using GPIB connector and using Tektronix software ‘Wavestar for oscilloscopes’.Usingthesecurvesatbackdrop,tracinglinesaredrawnandformattedin

MacromediaFreehandMX.TheYaxisoftheobtainedgraphcorrespondstothevoltage acrossthesensingcapacitance,whileXaxisrepresentstheappliedvoltage.Thescaleon

Yaxisisconvertedfromvoltagetocoulombsusinganeqn.7andthecorrespondingdata pointsareobtained.Inthisprocessofconversion,capacitanceswithinthedeviceaffect the charge accumulation. These capacitances of various devices/layers that affect the storedchargeinthecompositefilmstackareshowninfig.3.8.

21

Fig3.8,CapacitancesforQVmeasurement.

CapacitanceacrossthecompositedielectricwithtopcoatisgivenbyC composite while

the capacitance of the silicon dioxide is C SiO2. The charge Q composite across C composite is

givenbyasimplecalculationinvolvingequivalentcapacitancesandappliedvoltages.

Thus,theconversionformulaisshownineqn.7.

(C +C ) SiO2 composite Qcomposite = CsV. C SiO2 (7)

Where,C sbeingsensecapacitance,Vbeingappliedvoltage.

Test samples with different vol. % compositions of BaTiO 3 in the nanocomposite dielectric have been fabricated. They are characterized and tested using the setups mentioned in this chapter. Comparisons are drawn with respect to the pure fluoropolymer.Theresultsarediscussedandanalyzedinthenextchapter.

22

CHAPTER 4

RESULTS AND ANALYSIS

Thischaptercontainsfoursectionsofresultsthatinclude:

• Nanocompositefilmwettingandelectricalproperties;

• Electrowettingresponsefornanocompositefilms;

• Bistablewettingbehavior;

• Chargevoltageanalysis;

Attheendofthischapter,preliminarydiscussionisincludedonthenatureof

chargetrappinginthenanocompositefilms.

4.1 Nanocomposite film wetting characteristics and properties

Hydrophobicdielectrics areusedinelectrowettingsuchthatthewaterdropletattains

alargeinitialcontactangle.Thisprovidesagreaterchangeofcontactanglewithapplied

voltage than the case of electrowetting on hydrophilic surfaces. Test samples with

varying BaTiO 3 vol. % compositions retain this much needed hydrophobicity of the

fluoropolymer. This is confirmed by contact angle measurements on the sample’s

surfaces, which reveal larger contact angles compared to contact angle of the pure

fluoropolymerwithouttheBaTiO 3.Thisincreasedcontactangleisachievedwithchange

in surface roughness of the fluoropolymer by presence of BaTiO 3 nanopowder. The

uniqueabilityofournanocompositedielectrictomanipulateinitial(zerobias)contact

anglebycontrollingrandomsurfaceroughnessisanadditionaladvantage/achievement

forthenanocompositeapproach.Thecontactangle change for rough surfaces can be

23

estimated by Cassie Baxter factor f given by eqn. 2. This change of contact angle by

randomsurfaceroughnessisdescribedin[11].Theincreasedcontactangleincaseof

nanocomposite dielectric can be estimated by f. For this work, f can be theoretically

relatedtothevolumefractionofBaTiO 3influoropolymergivenby

2/3 f~(1vol.fractionofBaTiO 3) (8)

f[11]representsthefractionoforiginalmaterial presentonthesurface. Fromthis

definition, a simple approximation can be made assuming a cube of nanocomposite

dielectrichavingxvolumefractionofBaTiO 3.Thevolumefractionoffluoropolymerin

that cube is 1x. A side of the cube would have a (1x) 2/3 surface distribution of fluoropolymer.Thetopofthefilmwouldthereforetracktherelationshipprovidedineqn.

8.

Accordingtothedatapresentedintbl.2,theslopeof fvs.vol.%BaTiO 3isinfair agreement between measured and approximate theoretical value (eqn. 8). The slight discrepancyinmeasuredvs.theoreticalvaluesinthisworkcouldbeduetothesettling time(slowcureatroomtemp)thatallowstheBaTiO3 nanopowdertopackmoretightly

inthecuredfilm.Thiswouldresultinincreasedamountoffluoropolymeronthesurface

comparedtoBaTiO 3.ThesampleswithBaTiO 3>50vol.%havesurfaceroughnessto the point where contact angle increases, as mentioned in section 3.1 the pure fluoropolymer top coat can smooth the surface roughness. This decrease in surface roughnessbytopcoatoffluoropolymerisdirectlyevidencedintbl.2 asareductionin

liquidcontactangle.

24

Table2,Comparisonofcontactangleatzerobiasbeforeandafterfinaldipcoatingin fluoropolymer1. Vol. % of BaTiO 3 in Contact angle θ c of Contact angle θ c of compositedielectric composite dielectric before composite dielectric after fluoropolymertopcoat fluoropolymertopcoat 0 104 104 20 106.2 104 50 108.5 105.2 66 109.5 106.7 75 120 111 97 133 121.7 In the above data set, it was suspected that significant silane contamination of the fluoropolymersurfacewasoccurring.Thesilanecontaminationoccurredduringtopcoat processing of numerous samples. This contamination was reducing the initial contact

angle below the theoretically expected value of ~115120 °. Therefore a fresh

fluoropolymersolutionwasimplemented,andusedfor a smaller sample set to reduce

contamination.Thisnewdataset,shownintbl.3exhibitedbehaviormoreinlinewith

theoreticallyexpectedresults.

Twoimportantconclusionsforthesetestsaresummarized:

• IncreasedBaTiO 3contentleadstoincreasedfilmroughnessandtherebya

largeinitialcontactangle.

• Thefluoropolymertopcoatperformsitsintendedfunctionofsmoothing

thedielectrictopsurface,aswitnessedbyareductionincontactangle.

Table3,Contactanglewithfluoropolymer2.

Vol. % of BaTiO 3 in Contactangleθ c of Contactangleθ c ofcomposite compositedielectric compositedielectricbefore dielectricafterwith fluoropolymertopcoat fluoropolymertopcoat 0 117.8 117.8 50 118.6 118.5 75 123.25 119

25

4.1.1 Opticalproperties

Table4,Diffusereflectivity%. Vol.%ofBaTiO 3 Diffusereflectivity% 0 1.6 50 6 75 6.9 75(withouttopcoat) 13

With the integration of BaTiO 3 nanoparticles, the nanocomposite dielectric films exhibiteddiffusereflectivity.Thediffusereflectivity%ofvarioussampleswithtopcoat is shown in tbl. 4. Since electrowetting devices are often used for optics, this is an important measurement to provide. In some cases, such as reflective electrowetting displaysincreaseddiffusedreflectivityisdesired[4].

4.1.2Electricalproperties

The electrowetting properties of a hydrophobic dielectric are best analyzed using contact angle (θ v) vs. voltage (V) characterization. This contact angle vs. voltage is theoreticallypredictedbytheLippmannYoung’seqn.3.Ofinteresttothisthesisisthat thisequationcanrevealfactorsthatleadtolowervoltageelectrowetting.Oneroutefor achieving lowervoltage electrowetting is to increase the dielectric capacitance. The capacitanceperunitareaofthesamplesisfoundusingthecapacitivesetupdiscussedin

3.3.1andacapacitancemeter.Thecapacitancesofdifferentlayersarefoundbeforeand after top coat of fluoropolymer. The capacitances of different layers of the composite dielectric(withtopcoat)areshowninfig.4.1.

26

Fig4.1,Capacitancesofdifferentlayersonthecompositedielectricstack.

Ccomp represents the capacitance of the composite dielectric layer taken using

capacitance setup before the top coat; C tot is the capacitance of the nanocomposite

dielectrictakenusingcapacitancesetupafterthetopcoat.C top iscalculatedfromC comp and C tot . Knowing C top , one can then calculate the approximate thickness of the fluoropolymer top coat for each sample. The capacitances values of test samples and estimated thicknesses of the top coat are shown in tbl. 5. Observations show that the capacitances of the composite dielectric samples increase with increase in BaTiO 3 content. Pure BaTiO 3hasadielectricconstantofover300,whilefluoropolymer has a dielectric constant of 2. As the content of BaTiO 3 in the nanocomposite dielectric

increases,thenanocompositedielectricwouldhavehigherdielectricconstant.Also,itcan benoticedthatthecapacitancesdecreasesafterthetopcoat.

Table5,Comparisonofcapacitancesandestimatedthicknessesofthenanocomposite dielectrics. Vol.%of Capacitancebefore Capacitanceafter Theoretical BaTiO 3 topcoat topcoat estimation of top (F/m 2) (F/m 2) coatthickness(nm) 0 38.42 14.7 400 20 38.42 14.9 400 50 153.3 33.3 224 66 217.39 39. 200 75 410.11 51.6 161 97 1510.5 82.3 109

27

Thereasoncouldbeexplainedbyassumingalowkdielectric(fluoropolymer,topcoat) inserieswithahighkdielectric(compositedielectric,spincoat),whichwouldresultina totalcapacitancethatislimitedbythelowkdielectric.Eventhoughthecapacitanceafter thetopcoatdecreases,thecapacitanceisstillgreaterthanthatofthefluoropolymerwith thesamethicknessasthecomposite/topcoatstack.For5075vol.%,a23Xincreasein totalcapacitanceisachievedwithrespecttopurefluoropolymer.Aswillbeshownlater, thisincreaseofcapacitancewillreducethevoltagerequiredforelectrowetting.

Asshownintbl.5,thecapacitancedatacanalsobeusedtorevealthethicknessof thetopcoatofpurefluoropolymer.Thetopcoatoffluoropolymerdepositedbydipcoat onaflatandnonporoussurfacewouldresultin400nmthicknessafterabake.But,the calculationforthetopcoatintbl.5revealsthatthesampleswithincreasedBaTiO 3have

reduced fluoropolymer top coat thickness (<400nm). C top is calculated from Ccomp and

Ctot .Dielectricconstantoffluoropolymer(k~2)isusedtocalculatethethicknesszofthe

topcoatusingtheeqn.6.ThisconfirmsthatthecompositedielectricswithhigherBaTiO 3 content have increased porosity for the underlying composite film. This increased porositycausesthefluoropolymertopcoattosinkintotheporesandreducethethickness

ofpurefluoropolymerresidingontopofthecomposite.

Theincreasingcapacitanceobservedintbl.5ariseswithincreaseinBaTiO 3content

arisingfromincreaseintheaverage(bulk)dielectricconstantofthestack.Tojustifythis

assumption,averageddielectricconstantsforthenanocompositefilmsplustopcoatare

alsocalculatedandareprovidedintbl.6.Sincethisisanaverageddielectricconstantfor

the composite + top coat layers, the dielectric constant of the standalone composite

shouldbehigher.Thevalueofthedielectricconstantforthenanocompositelayer

28

Table6,Dielectricconstantsofstandardcompositedielectrics

Volumepercentof Averageddielectricconstant BaTiO 3incomposite ofthecompositedielectric dielectric stackafterthetopcoat 0 2 20 2 50 4.5 66 6.1 75 10.5 97 18.6 withoutthetopcoatwasnotcalculatedasitisbelievedtobenotaccurateduetothe porous nature of highBaTiO 3contentfilms,i.e.increaseddepthandelectrical contact

areaoftheliquidtoanunknownlevel.

4.2 Electrowetting response

Electrowettingcontactanglevs.voltageisplottedinfig.4.2a,b.Itisimportanttonote

thatthespreadofthedataispartiallyattributedtolimitationsoftheimagingandcontact

angle calculation software, and the more pronounced data spread after saturation is

expectedsincetheelectrowettingmechanismisnotstableathighervoltages.Therefore

the solid lines drawn through each data set are most representative of the actual

electrowettingresponsepriortosaturation.Multiple response curves were obtained for

each sample and the results were consistent with those shown in fig. 4.2. As stated previously, nanocomposite dielectric samples with smoother top surfaces (tbl. 1) are

better for electrowetting as they have less contact angle hysteresis. Therefore, for

electrowettingcharacterization:(1)theBaTiO 3contentislimitedto75vol.%orless;(2)

allsampleshaveatopcoatofpurefluoropolymer.

29

Fig4.2,Contactanglevs.voltageplots,(a,b)measuredand(c)theoretical.

Thefollowingconclusionscanbemadefromfig.4.2:

• Unlikeotherhighkmaterials,thenanocompositedielectricsareabletoretain

thehydrophobicityofthepurefluoropolymer.Thisisevidencedbythelarge

contactangleatzerobias.

• Prior to saturation, the observed change in the electrowetting response

illustrates change in dielectric constant as proved in previous section. As

indicated in the plot, the films with BaTiO 3 are thicker than the pure

fluoropolymer, yet they still exhibit a slightly more rapid electrowetting

response over the voltage range of 030V. Therefore, according to the

30

electrowettingequationtheonlyvariablethatcouldreduceoperatingvoltage

inourexperimentisthedielectricconstantofthecompositedielectric.

Beyond 30V, electrowetting saturation sets in (fig. 4.2c). It is observed from all measurements that increasing BaTiO 3 content resulted in early onset of saturation.

Saturationlimitstheabilitytocontinuetodecreasecontactanglewithincreasingvoltage.

Saturation at low voltages with increasing BaTiO 3 content is likely due to the charge screeningeffectsdiscussedinchapter2.Thisconclusionwillbesupportedinthenext sectionsthatdirectlymeasurechargeinjectionintothefluoropolymer.

4.3 Bistability due to charge injection

Inadditiontoreducedoperatingvoltage,thisthesishasdemonstratedstrongcharge storage inside nanocomposite dielectric. This particular property can lead to bistable switching and enhance electrowetting applications in epaper and labon chip devices.

Forexample,bistableswitchingduetocharge trapping would allow an electrowetting displaytobeswitchedONonce,andholdit’swettingstatewithoutfurtherapplicationof bias.Theseandotherfutureapplicationsarediscussedinthenextchapter.First,wewill reviewcharacterizationofchargestorageinsidethenanocompositedielectric.Itshould benotedthatwehavenotoptimizedthenanocompositedielectricformaximumorfor minimumchargestorage.Futureworkmayinvolveoptimizationforapplicationswhere lowervoltagemaybedesiredwithoutchargestorage,orapplicationswhereverystrong chargestorageandbistabilityaredesired.

Fig. 4.3 diagrammatically details the charge trapping procedure. Photos of experimentalresultsareshownontherighthandsideoffig.4.3.Fig4.3(a)illustratesthe

31 equilibriumstateofwaterdropletonahydrophobicdielectricwithzeroappliedvoltage.

Theexpectedelectrowettingbehavioristhenshowninfig.4.3(b). Ifthevoltagepulse durationisadequatelylong(>100ms),thenthereischargeinjectionintothedielectric showninfig.4.3(c).Theseinjectedchargesscreenthechargethatwouldotherwisecause electrowetting.Thereforethedropletonthedielectricrisesbacktoalargecontactangle

(asdiscussedin2.2.2).Infig.4.3(d)thevoltageisresetto0.Thispresentsa0Vpotential tothedropletandthereforeresultsinanelectrostaticforcebetweentheinjectedcharges in the dielectric and the grounded droplet. The droplet then wets the surface as a consequenceofchargeinversionatthewater/dielectricinterface.Thechargestorageand dropletwettingremainsfor>60s,afterwhichthedropletslowlydewetsthe

Fig4.3,Diagramsofcontactangleandchargestorage.

32 nanocompositedielectricandreturnstoacontactangle>90°.Strongchargestorageis witnessedfornanocompositedielectricswith>75vol.%BaTiO 3.

Aparticularlypowerfulfeatureofthechargestoringdielectricisshowninfig.4.3(e).

When a short positive pulse of 100V (<100 ms) is applied to the water droplet, the

compositedielectricdischargesmajorityofthestoredcharge.Thus,abistableswitching

stateisdemonstrated.

Sincethedropletholdsit’sstatefor>60s,withoutapplicationofexternalvoltage,we

refertothiseffectshowninfig.4.3asbistability.Onecouldarguethatbistabilityshould

refer to the case where the droplet would hold either wetting state for infinite time.

However,forthetargetapplicationssuchasepaper,this60sholdtimeforthedroplet

fulfillstheprimaryobjectiveofbistability:reducedpowerconsumption.Forexample,a

conventional reflective display is electronically refreshed ~50 times per second.

Therefore,thebistabledropletswitchingreducespowerconsumptionby~3000X(50x60)

comparedtoconventionalelectrowettingdisplaytechnologies.Thisthereforefulfillsthe

lowpowerobjectiveofbistableswitching.

4.4 Q-V analysis

Tofurthervalidatethatthereischargestorageinsidethedielectric,varioussamples

were analyzed using the QV setup described in the previous section 3.3.3. An ideal

(chargevoltage)QVcurvefordeviceundertestwouldresemblefig.4.4.

33

Fig4.4,Idealqvgraphwithvariouschargeslabeled[14]. Thepresenceofsuperscripts‘+’and‘’denotethepolarityoftheappliedvoltage.Vin denotes applied voltage beyond contact angle saturation due to the onset of charge injection.Qcond istheconductionchargeinjectedintothedielectricbeyondcontactangle

saturationachieved atV in ;thisisincreasesthestoredcharge.Chargestorageincreases

e the Q pol which is the polarization charge stored in the dielectric at the

BaTiO 3/fluoropolymerinterfacejustpriortotheonsetofthesubsequentpulseofopposite polarity.Finally,Q relax istheadditionalrelaxationchargethatflowsintodielectricstack duringtheportionofthewaveformatwhichtheappliedvoltageisheldconstantatits maximumvalue.

TheQVgraphisanalyzedinacounterclockwisedirection(ABCDEFGH).Anon zerovalueofQisobservedatAbecauseofpolarizedchargeresidinginthedielectric, whichisleftbehindbypreviouspulseofoppositepolarity.TheABportionarisesfrom the rising edge of the sinusoidal voltage applied when the magnitude is less than the saturationvoltage.BCalsooccursduringtherisingportionoftheappliedvoltagebutthe voltage is greater than the saturation voltage. During this period charge injection is observed.CDportionofthewaveformcorrespondsto the portion of the waveform in

34 whichexternalvoltageisheldconstantatitsmaximumamplitude.SectionDEisobtained duringthefallingedgeofthewaveform.TheremainderoftheQVcurvefromEtoAis similartotheAEportionexceptfortheappliedvoltagebeingofoppositepolarity.

ExperimentalQVresultsareobtainedforthetestsampleswiththesetupmentioned insection3.3.3.Theseresultsareshowninfig.4.5.Fig.4.5 givesthe comparisonof charge storage in the pure fluoropolymer with different test samples of composite dielectricswiththetopcoat.

Thestraightbluedashedlineineachplotisthetheoreticalcapacitanceresponseata sinusoidalfrequencyof1KHz, without occurrence of charge storage .Thehysteresisin

the QV plots depicts the deviation from theoretical capacitance and provides direct

measure of the magnitude of the charge stored in the dielectric. The plots are closed

curvessincethevoltagecycleisrepetitive(alternating,sinusoidal).Fig.4.5(a)establishes

that there is no significant charge storage in fluoropolymer at zero bias. During the positivecycle,asmallhysteresisisobservedforthepurefluoropolymerathighervoltage

which is consistent with the lowerelectrical breakdown field (~0.1 MV/cm) of

fluoropolymersinresponsetopositivepolarityvoltageappliedtothedroplet[15].Thisis

not well understood and might be due to the dielectric break down of the

fluoropolymer/dielectricstack.Whenthevoltageisdecreased,thefluoropolymerbegins

Fig4.5,QVplotsofcompositedielectrics.

35 to accumulate charge again and hence a hysteresis is observed. Further not well understood at this time, it is observed for nearly all fluoropolymer films that the breakdownfieldishigherthan0.1MV/cmwithnegativevoltageappliedtothedroplet.

Thisisconsistentwiththeabsenceofhysteresisinthenegativebiasregime.

Fig.4.5(b)&4.5(c)areplotswith50and97byvol.%ofBaTiO 3.Asexpected,these plotsexhibitmanyofthefeaturesoftheidealplotofhystereticQVanalysisshownin

fig.4.4.Asthevoltageisincreasedfrom0V(astraversedfromAinfig.4.5),thereis

substantial charge observed at 0V arising from previous voltage cycle. As voltage is

increased, the charge in the nanocomposite dielectric increases in proportion to its

capacitance (parallel to the dashed blue line for an ideal capacitor). At the saturation

voltageandbeyond,chargeinjectionisobserved.This increases the amount of charge

stored inside the composite dielectric (Q, Yaxis) beyond the theoretical value for an

idealcapacitor.Asthevoltageisdecreasedthechargestoredisdecreasedproportionalto

thecapacitance.Residualchargeisobservedat0V,denotingchargestorageatzerobias.

Theamountofchargestoredineachofthebiasisapproximatelythesame,onlyopposite

inpolarity,exemplifiedbythesymmetryoftheplotaboutYaxis.Thisobservationcan beusedtoswitchthebistablebehaviorofthenanocompositedielectric.Thechargestored

in the positive bias can be totally discharged by application of the same voltage in

negativebias.These‘dischargevoltages’canbedeterminedbythevoltagesatwhichthe

chargereturnstozero(i.e.3040Vforboth4.5(a),4.5(b)).

Thefollowingconclusionscanbemadefromfig.4.5(b)and4.5(c)

• Thetestsamplewith97vol.%BaTiO 3hasagreaterchargeat0Vcomparedto

thatof50vol.%ofBaTiO 3.

36

• Thechargeincreaseduringtherisingedgeofthevoltageismoreproportionalto

capacitanceincaseof50vol.%ofBaTiO 3sample.Chargeinjectionin97vol.%

BaTiO 3dominateschargeincrease,whichisillustratedbythepresenceofgreater

deviationfromtheblueidealcapacitorline.

• Themaximumchargestoredat160Vislargestinthe97vol.%BaTiO 3sample,

whichisexpectedduetotheeffectofincreasedcapacitanceandincreasedcharge

injection.

4.5 Understanding charge storage

Therearemanypossibilitiesfortheoriginofchargestorageinthesedevices.Mostof

the existing charge traps are likely at the BaTiO 3/fluoropolymer interface since (1) the fluoropolymer itself is a poor charge trapper; (2) the BaTiO 3 should have breakdown field exceeding 1 MV/cm which precludes charge injection into the BaTiO 3. Similar trappingatsurfacestatesofBaTiO 3dielectricshasbeenreported[16].Itismentionedin

[16] about BaTiO 3 that “the surface contains many traps and therefore, most of the

carriersareprobablytrapped.Fromthis,wemayconcludethatasurfaceorhole

layer exists that has an enormous surface carrier density and that a fraction of these

or holes exists as free carriers.” In this nanocomposite dielectric the

fluoropolymerisfluorineterminatedandnonreactivewiththeBaTiO 3.Thereforethere are likely numerous unmatched bonds at the fluoropolymer/dielectric interface. These possible charge traps are depicted qualitatively in fig. 4.6, which depicts the band diagramofBaTiO 3/fluoropolymer.

37

The total number of charge trap states should increase with increasing number of

BaTiO 3/fluoropolymerinterfaces(i.e.increasingBaTiO 3content).Furtherunderstanding oftheexactnatureofthechargestorageisbeyondthescopeofthisthesis.Futurestudy involving exact nature of the traps might lead to optimized charge storage and performanceofthecompositedielectric.

Fig4.6,BandstructureattheinterfaceofBaTiO 3andfluoropolymerwithinterfacetraps.

38

CHAPTER 5

APPLICATIONS

5.1 Electrowetting display Anelectrowettingdisplayhasbeenproposedtobebrighterandmorepowerefficient

thanaconventionalLCDdisplay[4,17].Thebasicelectrowettingdisplaypixelstructure

anditsworkingareshowninfig.5.1.

Theelectrowettingpixelisboundedbyahydrophilicgrid.Anonpolardyeisusedto

colortheoil.Asinfig.5.1(a),theelectrowettingpixelison,whennovoltageisapplied.

Thecoloredoilspreadsonthesurfaceofthefluoropolymersurfacegivingtheentirepixel

aredcolor.Theoilspreadingisgovernedbyinterfacialsurfacetensionforces[4]and

occursformostalkanessuchasdodecane.Onapplicationofvoltagetothisdeviceasin

fig. 5.1(b), the water encased in the pixel electrowets the fluoropolymer surface and

displacesthecoloredoiltothesides.Thewaterbeingtransparentallowswhitelightto pass through and gets reflected from the reflector underneath the glass substrate. This

formsthebasicpixelstructureofanelectrowettingdisplay.

Fig5.1,Diagramofelectrowettingdisplaypixela)voltageoff.b)Voltageon.

39

5.1.1 Electrowettingtransmissivedisplaywithcompositedielectric

Fig5.2,Devicestructureofanelectrowettingtransmissivedisplaypixelwithcomposite dielectric. To test the feasibility of the nanocomposite dielectric for electrowetting displays.

Displayshowninfig.5.2wasfabricatedwith50vol.%BaTiO 3 compositedielectricused inplaceofthetraditionalfluoropolymer(fig.5.1).Alsothediffusereflectorpresentin fig.5.1wasremoved.Thisallowedlighttransmissive pixel operation. The transparent substratewasPET(Teonex®,Dupont)withITOpatternedonPETtoactasthebottom electrode in the pixel. Parlyene C is used to coat on top of ITO as it is an optically transparent dielectric ( k ~3) and it also prevents electrolysis at weak points in the

compositedielectric(replacingSiO 2inthetestsamples).

In the traditional approach, pure fluoropolymer is used on top of parylene as a hydrophobiclayerinthepixel.Typicalthicknessof the fluoropolymer is 200nm. The fluoropolymer layer is made thin compared to parylene. This lowers the voltage of operation according to section 2.3.1. The operating voltage of the traditional electrowettingpixelis12V.Toeliminatetheneedofparyleneandtolowerthevoltageof operation, a highk hydrophobic polymer is needed. This perfectly suits the implementationofthenanocompositedielectricinplaceoffluoropolymer.Apreliminary

40

Fig5.3,Electrowettingdisplaywithnanocompositedielectric.

display device has been fabricated using the nanocomposite dielectric. The device

structureisalreadyshowninfig.5.2.Theimageofthedisplaypixelswiththecomposite

dielectricandblueoilatnoexternalvoltagebiasisshowninfig.5.3.

First look at the display reveals clumps of BaTiO 3 arising from nonuniform dispersionofBaTiO 3inthenanocompositedielectric.Theseclumpsareduetotheaging of the BaTiO 3 dispersion in fluoropolymer prepared earlier to characterize the test

samplesinchapter4.TheseclumpswerenotpresentinthedevicestestedinChapter4.

Thispreliminaryelectrowettingdisplayisanalyzedfor:

• Lowvoltageelectrowetting.

• Chargestorage(Bistability).

The initial results from the display are very encouraging. The nanocomposite dielectrics with compositions 50 and 75 (vol. % of BaTiO 3) are tested. Initial results

showed successful lower operating voltage. A comparison of the composite dielectric performancewithrespecttotheuseoffluoropolymerinelectrowettingdisplayisshown tbl.7.Thesepreliminaryresultswerenotasconclusiveasthosepresentedinchapter4.

41

Table7,Nanocompositedielectricsamplesandvoltagesofoperation.

Voltageof Vol.%ofBaTiO Thickness(nm) 3 operation(V) 0 200 12

50 1000 14

75 1200 10

However it should be noted that the composite dielectric stack thickness is much greaterthanthatofthepurefluoropolymer.Thereforethecomparableoperatingvoltage forallthreedevicesetsonceagainconfirmsthatthedielectricconstantofthecomposite ishigherthanthatofthepurefluoropolymer.Duetotheneedofasmoothsurfacewith the fluoropolymer top coat, the composite films could not be made thinner than the thicknessof~1.01.2m.Thisisagoodtopicforfutureresearchincompositedielectrics andwouldlikelycallforsmallerBaTiO 3particlesize.

Thevoltageresponseofelectrowettingdisplaywith50vol.%ofBaTiO 3isshownin fig.5.4.Animportantobservationhasbeenmadeduringtheswitchingofthedisplay.The displaywouldnotswitchbacktoitspreviousstatewhenthevoltageisremoved,i.e.with colored oil spread over the entire pixel area. This is attributed to the high surface roughnessarisingfromnonuniformdispersionofBaTiO 3influoropolymer.

Fig5.4,Voltageresponseofelectrowettingdisplay.

42

Fig 5.5, a) Device structure with composite dielectric. b) Lowervoltage wetting over fluoropolymer.c)Chargestorageandbistableswitchingbehavior. ‘Pinning’oftheoilatBaTiO 3clumpsiseasilyobservedinfig.5.4.Thisleadstostrong hysteresis.Suchstronghysteresiswasnotobservedforthesamplestestedinchapter4for tworeasons:(1)thefluoropolymer/BaTiO 3solutionswerefresherandfreefromBaTiO 3 clumping;(2)thesurfacetensionofwater(73mN/m)ismuchgreaterthantheoil/water interfacialsurfacetensionusedinthedisplaydevices(~20mN/mduetodyeactingasa surfactant).

5.1.2 Possibleadvantagesofanelectrowettingdisplaywithacompositedielectric

Ifthecompositedielectricapproachisfurtherdeveloped,replacingtheconventional fluoropolymer with the composite dielectric could have many advantages for electrowettingdisplays.

Theseinclude:

a. Lowervoltageoperation.

b. Bistableswitching(fig.5.5c).

c. Increaseddiffusereflectivityforreflectivedisplays.

Inanelectrowettingdisplaywithconventionalfluoropolymer, voltage needs to be appliedcontinuouslyaslongasthestate(off)needstobemaintained.Forlargepassive matrix driven LCD displays [18] the pixels are electronically refreshed ~50 times per second. This leads to power loss even if the image does not change. For emerging applicationssuchasepaper(i.e.ebookapplications)theimagedoesnotneedto

43

Fig5.6,Electrowettingdisplaywithconventionalandcompositedielectricreflector layers.

changemorethanonceeveryseveralsecondsorminutes.Therefore,bistableswitching

electrowetting dielectrics could reduce power consumption dramatically for such

applicationsandtherebyincreasingbatterylife. Otherapplicationsthat needimproved powerefficiencyincludetheouterdisplayonclamshellstylecellphones.

Lastly, the diffuse reflectivity of composite dielectric could also be of great importanceinimprovingthebrightnessofthepixel.Thiscanbeshownbyfig.5.6.Fig.

5.6(a)depictsthetraditionalapproachofusingahighefficiencyreflectorbehindITO.

A typical ITO film has a visible spectrum transmission efficiency of 90%. So the intensityofthereflectedlightis~73%oftheincidentlightintensityasthereflectionis

90%(ITO)x90%(backreflector)x90%(ITO).Usingthecompositedielectricinplace ofthefluoropolymer,thediffusereflectorisincorporatedintothecompositedielectric bythepresenceofBaTiO 3;thereflectedlightintensitywiththenewlayerstructurecould beasmuch90%oftheincidentlight.Giventhepresentresultsreportedinthisthesis,

smallerBaTiO 3particlesizeorthickercompositedielectricsareneededtoimprovethe diffusereflectivitytothepointwhereonecouldachievethedeviceinfig.5.6(b).

44

REFERENCES

[1]G.BeniandS.Hackwood"Electrowettingdisplays," Appl. Phys. Lett., vol.38,pp. 207209,1981.

[2]M.S.Dhindsa,N.R.Smith,J.Heikenfeld,P.D.Rack,J.D.Fowlkes,M.J.Doktycz, A.V.MelechkoandM.L.Simpson,"ReversibleElectrowettingofVerticallyAligned SuperhydrophobicCarbonNanofibers," Langmuir, vol.22,pp.90309034,2006.

[3]N.RSmith,D.C.Abeysinghe,J.W.HausandJ.Heikenfeld,"Agilewideanglebeam steeringwithelectrowettingmicroprisms," Optics Express, vol.14,pp.6557,2006.

[4]R.A.HayesandB.J.Feenstra"Videospeedelectronicpaperbasedon electrowetting," Nature, vol.425,pp.383,2003.

[5]J.HeikenfeldandA.JSteckl,"Intenseswitchablefluorescenceinlightwavecoupled electrowettingdevices," Appl. Phys. Lett., vol.86,pp.011105,2005.

[6]Perepelkin,"FluoropolymerFibres:PhysicochemicalNatureandStructural DependenceoftheirUniqueProperties,Fabrication,andUse.AReview," Fibre , vol.36,pp.43,2004.

[7]H.Moon,S.K.Chow,R.LGarrellandC.J.Kim,"Lowvoltageelectrowettingon dielectric," J. Appl. Phys., vol.92,pp.4080,2002.

[8]B.Janocha,H.Bauser,C.Oehr,H.BrunnerandW.Gopel,"Competitive ElectrowettingofPolymerSurfacesbyWaterandDecane," Langmuir, vol.16,pp.3349 3354,2000.

[9]R.Kasowski,W.Y.HsuandE.BCaruthers,"Electronicpropertiesofpolyacetylene, polyethylene,andpolytetrafluoroethylene," J. Chem. Phys., vol.72,pp.48964900, 1980.

[10]K.Krupenkin,J.A.Taylor,T.MScheneiderandShuYang,"FromRollingBallto CompleteWetting:TheDynamicTuningofLiquidsonNanostructuredSurfaces," Langmuir, vol.20,pp.3824,2004.

[11]Torkkeli,"DropletMicrofluidicsonaPlanarSurface," Technical Research Centre of Finland Publications, pp.3,2003.

[12]Q.Quinn,R.SedevandJ.Ralston,"ContactAngleSaturationinElectrowetting," J Phys Chem B, vol.109,pp.6268,2005.

[13]H.VerheijenandM.W.JPrins"ReversibleElectrowettingandTrappingofCharge: ModelandExperiments," Langmuir, vol.15,pp.66166620,1999.

45

[14]F.WagerJandP.DKeir,"ELECTRICALCHARACTERIZATIONOFTHIN FILMELECTROLUMINESCENTDEVICES," Annual Review of Materials Science, vol.27,pp.223,1997.

[15]K.Elanseralathan,M.JoyThomasandG.RNagabhushana,"BreakdownofSolid InsulatingMaterialsUnderHighFrequencyHighVoltageStress," - Properties and Applications of Dielectric Materials, 2000. Proceedings of the 6th International Conference on, pp.999,2000.

[16]Y.Watanabe,M.OkanoandA.Masuda,"SurfaceConductiononInsulatingBaTiO3 CrystalSuggestinganIntrinsicSurfaceElectronLayer," Phys. Rev. Lett., vol.86,pp. 332335,2001.

[17]J.HeikenfeldandA.JSteckl,"Hightransmissionelectrowettinglightvalves," Appl. Phys. Lett., vol.86,pp.1511211511213,2005.

[18]G.Lombardo,M.Manuela,B.RiccardoandR.CJohn"32channelarbitrary waveformgeneratorforbistablenematicdevices,"Rev. Sci. Instrum., vol.75,pp.2008 2012,2004.

46