Electrolysis of Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Are Regenerative Fuel Cells? 1 of 8
What Are Regenerative Fuel Cells? 1 of 8 altenergy.org What Are Regenerative Fuel Cells? Alan Davison 11-14 minutes Scientists, researchers, and engineers are on a quest for the holy grail of energy technologies, and a key component of any energy system is figuring out new and innovative ways to store energy. One of the most popular visions for a renewable energy future is the hydrogen economy, but the question as to where one gets the hydrogen required to sustain it is as old as the idea itself. The regenerative fuel cell might be the answer that hydrogen economists are looking for. What are regenerative fuel cells? Ever wonder what would happen if you could run a fuel cell in reverse? You get a reverse fuel cell (RFC) or regenerative fuel cell. If a fuel cell is a device that takes a chemical fuel and consumes it to produce electricity and a waste product, an RFC can be thought of as a device that takes that waste product and electricity to return the original chemical fuel. Indeed any fuel cell chemistry can be run in reverse, as is the nature of oxidation reduction reactions, but a fuel cell that isn't designed to do so may not be very efficient at running in reverse. In fact many fuel cells are designed to prevent the reverse reaction about:reader?url=https://www.altenergy.org/renewables/regenerative-fuel-cells.html What Are Regenerative Fuel Cells? 2 of 8 from occurring at all, for why would you want to consume the energy you just produced? Instead you might design a separate cell for the express purpose of taking energy generated from another source and storing it as a fuel for conversion back into energy when you need it via fuel cell. -
Steel Production Through Electrolysis: Impacts for Electricity Consumption 0, 0, 75
Font Family: Benton Sans 131, 176, 70 Steel production through electrolysis: impacts for electricity consumption 0, 0, 75 204, 102, 51 Adam Rauwerdink 144, 144, 144 VP, Business Development October 18, 2019 Font Family: A 3,000 year old formula Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 >2 144, 144, 144 Gt CO2 per year (8% of global emissions) Iron Age 1000 BC Digital Age 2019 2 Boston Metal | 2019 Font Family: Steel in 2018 Benton Sans 131, 176, 70 Aluminium is #2 at 1,800 64 million tonnes 0, 0, 75 million tonnes 204, 102, 51 70% 30% 144, 144, 144 Integrated Steel Mill Mini Mill (Iron ore new steel units) (Scrap recycled steel units) Source: World Steel Association 3 Boston Metal | 2019 Font Family: Integrated steel mill: material flow Benton Sans 131, 176, 70 0, 0, 75 204, 102, 51 144, 144, 144 4 Boston Metal | 2019 Font Family: Molten oxide electrolysis (MOE) is emissions free Benton Sans Molten Oxide Electrolysis (MOE) 131, 176, 70 Iron Ore Electricity Iron Oxygen 0, 0, 75 - Fe2O3 e Fe O2 204, 102, 51 144, 144, 144 No carbon in the process = No CO2 emitted Electricity decarbonization eliminates/reduces indirect emissions! 5 Boston Metal | 2019 Font Family: Changing the formula from coal to electricity Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 Molten Oxide Electrolysis (MOE) 144, 144, 144 Iron Ore Electricity Iron Oxygen - Fe2O3 e Fe O2 6 Boston Metal | 2019 Font Family: MOE is more energy efficient Benton -
Electrolysis in Ironmaking
Fact sheet Electrolysis in ironmaking The transition to a low-carbon world requires a transformation in the way we manufacture iron and steel. There is no single solution to CO2-free steelmaking, and a broad portfolio of technological options is required, to be deployed alone, or in combination as local circumstances permit. This series of fact sheets describes and explores the status of a number of key technologies. What is electrolysis? Why consider electrolysis in ironmaking? Electrolysis is a technique that uses direct electric current to There are two potential ways to separate metallic iron from separate some chemical compounds into their constituent the oxygen to which it is bonded in iron ore. These are parts. through the use of chemical reductants such as hydrogen or carbon, or through the use of electro-chemical processes Electricity is applied to an anode and a cathode, which are that use electrical energy to reduce iron ore. immersed in the chemical to be electrolysed. In electrolysis, iron ore is dissolved in a solvent of silicon Electrolysis of water (H2O) produces hydrogen and oxygen, dioxide and calcium oxide at 1,600°C, and an electric current whereas electrolysis of aluminium oxide (Al2O3) produces passed through it. Negatively-charged oxygen ions migrate metallic aluminium and oxygen. to the positively charged anode, and the oxygen bubbles off. Positively-charged iron ions migrate to the negatively- charged cathode where they are reduced to elemental iron. If the electricity used is carbon-free, then iron is produced without emissions of CO2. Electrolysis of iron ore has been demonstrated at the laboratory scale, producing metallic iron and oxygen as a co-product. -
Electrochemistry of Fuel Cell - Kouichi Takizawa
ENERGY CARRIERS AND CONVERSION SYSTEMS – Vol. II - Electrochemistry of Fuel Cell - Kouichi Takizawa ELECTROCHEMISTRY OF FUEL CELL Kouichi Takizawa Tokyo Electric Power Company, Tokyo, Japan Keywords : electrochemistry, fuel cell, electrochemical reaction, chemical energy, anode, cathode, electrolyte, Nernst equation, hydrogen-oxygen fuel cell, electromotive force Contents 1. Introduction 2. Principle of Electricity Generation by Fuel Cells 3. Electricity Generation Characteristics of Fuel Cells 4. Fuel Cell Efficiency Glossary Bibliography Biographical Sketch Summary Fuel cells are devices that utilize electrochemical reactions to generate electric power. They are believed to give a significant impact on the future energy system. In particular, when hydrogen can be generated from renewable energy resources, it is certain that the fuel cell should play a significant role. Even today, some types of fuel cells have been already used in practical applications such as combined heat and power generation applications and space vehicle applications. Though research and development activities are still required, the fuel cell technology is one of the most important technologies that allow us to draw the environment friendly society in the twenty-first century. This section describes the general introduction of fuel cell technology with a brief overview of the principle of fuel cells and their historical background. 1. Introduction A fuel cellUNESCO is a system of electric power – generation,EOLSS which utilizes electrochemical reactions. It can produce electric power by inducing both a reaction to oxidize hydrogen obtained by reforming natural gas or other fuels, and a reaction to reduce oxygen in the air, each occurringSAMPLE at separate electrodes conne CHAPTERScted to an external circuit. -
Teaching H. C. Ørsted's Scientific Work in Danish High School Physics
UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Ida Marie Monberg Hindsholm Teaching H. C. Ørsted's Scientific Work in Danish High School Physics Masterʹs thesis Department of Science Education 19 July 2018 Master's thesis Teaching H. C. Ørsted’s Scientific Work in Danish High School Physics Submitted 19 July 2018 Author Ida Marie Monberg Hindsholm, B.Sc. E-mail [email protected] Departments Niels Bohr Institute, University of Copenhagen Department of Science Education, University of Copenhagen Main supervisor Ricardo Avelar Sotomaior Karam, Associate Professor, Department of Science Education, University of Copenhagen Co-supervisor Steen Harle Hansen, Associate Professor, Niels Bohr Institute, University of Copenhagen 1 Contents 1 Introduction . 1 2 The Material: H. C. Ørsted's Work . 3 2.1 The Life of Hans Christian Ørsted . 3 2.2 Ørsted’s Metaphysical Framework: The Dynamical Sys- tem............................. 6 2.3 Ritter and the failure in Paris . 9 2.4 Ørsted’s work with acoustic and electric figures . 12 2.5 The discovery of electromagnetism . 16 2.6 What I Use for the Teaching Sequence . 19 3 Didactic Theory . 20 3.1 Constructivist teaching . 20 3.2 Inquiry Teaching . 22 3.3 HIPST . 24 4 The Purpose and Design of the Teaching Sequence . 27 4.1 Factual details and lesson plan . 28 5 Analysis of Transcripts and Writings . 40 5.1 Method of Analysis . 40 5.2 Practical Problems . 41 5.3 Reading Original Ørsted's Texts . 42 5.4 Inquiry and Experiments . 43 5.5 "Role play" - Thinking like Ørsted . 48 5.6 The Reflection Corner . 51 5.7 Evaluation: The Learning Objectives . -
Solar-Driven, Highly Sustained Splitting of Seawater Into Hydrogen and Oxygen Fuels
Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels Yun Kuanga,b,c,1, Michael J. Kenneya,1, Yongtao Menga,d,1, Wei-Hsuan Hunga,e, Yijin Liuf, Jianan Erick Huanga, Rohit Prasannag, Pengsong Lib,c, Yaping Lib,c, Lei Wangh,i, Meng-Chang Lind, Michael D. McGeheeg,j, Xiaoming Sunb,c,d,2, and Hongjie Daia,2 aDepartment of Chemistry, Stanford University, Stanford, CA 94305; bState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; cBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; dCollege of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; eDepartment of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; fStanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; gDepartment of Materials Science and Engineering, Stanford University, Stanford, CA 94305; hCenter for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin 300384, China; iTianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials, Tianjin University of Technology, Tianjin 300384, China; and jDepartment of Chemical Engineering, University of Colorado Boulder, Boulder, CO 80309 Contributed by Hongjie Dai, February 5, 2019 (sent for review January 14, 2019; reviewed by Xinliang Feng and Ali Javey) Electrolysis of water to generate hydrogen fuel is an attractive potential ∼490 mV higher than that of OER, which demands renewable energy storage technology. However, grid-scale fresh- highly active OER electrocatalysts capable of high-current (∼1 2 water electrolysis would put a heavy strain on vital water re- A/cm ) operations for high-rate H2/O2 production at over- sources. -
Fuel Cell Performance and Degradation
REVERSIBLE FUEL CELL PERFORMANCE AND DEGRADATION by Matthew Aaron Cornachione A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering MONTANA STATE UNIVERSITY Bozeman, Montana April, 2011 c Copyright by Matthew Aaron Cornachione 2011 All Rights Reserved ii APPROVAL of a thesis submitted by Matthew Aaron Cornachione This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibli- ographic style, and consistency, and is ready for submission to the The Graduate School. Dr. Steven R. Shaw Approved for the Department of Electrical and Computer Engineering Dr. Robert C. Maher Approved for the The Graduate School Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfullment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with \fair use" as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Matthew Aaron Cornachione April, 2011 iv ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Steven Shaw, for granting me the oppor- tunity to work at Montana State University as a graduate research assistant and for providing assistance to many aspects of this work from circuit design to machining parts. -
Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b. -
State-Of-The-Art Hydrogen Production Cost Estimate Using Water Electrolysis
NREL/BK-6A1-46676 September 2009 Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Independent Review Published for the U.S. Department of Energy Hydrogen Program National Renewable Energy Laboratory 1617 Cole Boulevard • Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. -
Electrolysis Through Magnetic Field for Future Renewable Energy
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S, July 2019 Electrolysis Through Magnetic Field for Future Renewable Energy Asaad Zuhair Abdulameer, Zolkafle Buntat, Rai Naveed Arshad, Zainuddin Nawaw Production of Hydroxide through the electrolysis of water, Abstract: Hydrocarbon fuels are the best source of energy; resolve numerous possible problems of using hydroxide as a however, they have some drawbacks. Because of extensive usage fuel supplement [9, 10]. In this attempt, magnetic field and replacement difficulties, it is not financially possible to electrolysis is a technique of electrolysis that is a more entirely disregard them in the coming days. Hydrogen with Oxygen (hydroxide-HHO) gas as a fuel supplement is one convenient light source to compare with solar energy for possible way to reduce consumption and emissions of commercial electrolysis [11]. Although this process gives a hydrocarbon fuels. However, the accessibility and rate of small proportion of hydrogen production by using the current compressed hydrogen (H2) have made it challenging. Electrolysis method, we believed that this process would contribute a lot of water, resolve numerous possible complications of using to society if the existing methods are upgraded with suitable hydroxide for fuel to progress hydrocarbon burning. This materials and substances. research introduces a new design of electrolyzer with proper selection of electrode material and types integrated with magnetic field system, which can reduce the energy consumption. The effect of the optimum magnetic field strength was measured for this process with tap and distilled water. Two supplementary compounds, Sodium Hydroxide (NaOH) and Soda (NaHCO3), with concentration 3333ppm 1.5 litres of the electrolyte was used in this process. -
The Effect of Magnetic Field on the Dynamics of Gas Bubbles in Water Electrolysis
The Effect of Magnetic Field on the Dynamics of Gas Bubbles in Water Electrolysis Yan-Hom Li ( [email protected] ) Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taiwan Yen-Ju Chen Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taiwan Research Article Keywords: gas bubbles, platinum electrodes, magnetic eld result, downward Lorentz forces Posted Date: March 8th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-283081/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on April 30th, 2021. See the published version at https://doi.org/10.1038/s41598-021-87947-9. The effect of magnetic field on the dynamics of gas bubbles in water electrolysis Yan-Hom Li1,2,*, Yen-Ju Chen 1,⸸ 1Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, 335, Taiwan, 2System Engineering and Technology Program, National Yang Ming Chiao Tung University, Hsin-Chu, 300, Taiwan *corresponding. hom_li @hotmail.com ⸸these authors contributed equally to this work Abstract In this work, the movement of the gas bubbles evolved from the platinum electrodes in the influence of various magnetic field configurations are experimentally investigated. The oxygen and hydrogen bubbles respectively evolve from the surface of anode and cathode have distinctive behaviors in the presence of magnetic fields due to their paramagnetic and diamagnetic characteristics. The magnetic field perpendicular to the surface of the horizontal electrode induces the revolution of the bubbles. -
Solar-Powered Electrolysis of Water and the Hydrogen Economy SK#15
Solar Kit Lesson #15 Solar-Powered Electrolysis of Water and the Hydrogen Economy TEACHER INFORMATION LEARNING OUTCOME After producing hydrogen and oxygen gases through the electrolysis of water and studying the process, students realize that hydrogen can act as an energy carrier and that as an energy carrier it has many properties that are useful to humankind. LESSON OVERVIEW Students complete a short reading on hydrogen as an energy carrier, and use solar electric panels to produce hydrogen and oxygen gases from the electrolysis of water. They then test for the presence of flammable gases and propose and balance the chemical reaction for the process of the electrolysis of water. GRADE-LEVEL APPROPRIATENESS This Level III Physical Setting lesson is intended for use in chemistry and technology education classrooms in grades 10–12. MATERIALS Per work group • beaker (250 ml) • two aluminum electrodes (electrical tape and 8 cm long, small-diameter aluminum rods) • metric ruler • two small test tubes (13 x 100 mm to 18 x 150 mm) or (10 mL to 20 mL). • five 1 V, 400 mA mini–solar panels* mounted on a board • two pieces of wire (30–40 cm) • stirring rod • candle • wooden splint • matches • ring stand • two clamps • graduated cylinder (10–20 mL) • teaspoon • two teaspoons of sodium carbonate (washing soda) or sodium bicarbonate (baking soda) • safety goggles • clear plastic tape (optional) • grease pencil • water and paper towels * Available in the provided Solar Education Kit; other materials are to be supplied by the teacher nyserda.ny.gov/School-Power-Naturally SAFETY As with all lab work, try this lab yourself before having the students perform it.