Austrelaps Labialis Pygmy Copperhead

Total Page:16

File Type:pdf, Size:1020Kb

Austrelaps Labialis Pygmy Copperhead REPTILE Austrelaps labialis Pygmy Copperhead AUS SA AMLR Endemism Residency - - V State Resident Photo: © Tony Robinson Conservation Significance Endemic to SA. The AMLR distribution is disjunct, isolated from other extant occurrences within SA. Within the AMLR the species’ relative area of occupancy is classified as ‘Extremely Restricted’.3 Although rated Vulnerable in The Action Plan for Australian Reptiles the Pygmy Copperhead has no threatened status under either State or Federal government legislation (Cogger et al. 1993).1 Further information: Biodiversity Conservation Unit, Adelaide Region Phone: (61 8) 8336 0901 Fax: (61 8) 8336 0999 http://www.environment.sa.gov.au/ Department for Environment and Heritage FIS 90346 May 2008 Prepared as part of the Regional Recovery Plan for Threatened Species and Ecological Communities of Adelaide and the Mount Lofty Ranges, South Australia 2009 - 2014 References Ovoviviparous. Pregnant females can be found from Note: In some cases original reference sources are not mid-spring to late summer (November-March) and included in this list, however they can be obtained from the wild caught snakes have given birth in mid-summer reference from which the information has been sourced (the (February) (Jenner 1995; Read and Bedford 1991; reference cited in superscript). 5 Shine 1987a). Mean litter sizes is 7.4 (Shine 1987a). 1 Armstrong, D. M., Croft, S. N. and Foulkes, J. N. (2003). A Biological Survey of the Southern Mount Lofty Ranges, South Aboriginal Significance Australia, 2000-2001. Department for Environment and Post-1983 records indicate the AMLR distribution Heritage, South Australia. occurs in Ngarrindjeri, Kaurna and Peramangk Nations.3 2 Cogger, H. G., Cameron, E. E., Sadlier, R. A. and Eggler, P. (1993). The Action Plan for Australian Reptiles. Australian Threats Nature Conservation Agency, Canberra. Threats probably include a combination of factors, 3 Department for Environment and Heritage (2007). Adelaide including: and Mount Lofty Ranges Regional Recovery Pilot Project clearance of habitat and removal of Database. Unpublished data extracted and edited from undergrowth, for urban development, BDBSA, SA Herbarium (July 2007) and other sources. agriculture and grazing, due to reliance on the cover provided by dense vegetation (including 4 Foster, R. and Littlely, T. (2000). The Pygmy copperhead weeds) snake, Austrelaps labialis (Elapidae) in the Mount Lofty predation by cats and Eastern Brown Snakes Ranges: Distribution, Conservation and Ecological Notes. South Australian Herpetology Group, Adelaide. which have been advantaged by land clearance and agriculture 5 Greer, A. E. (2006). Encyclopedia of Australian Reptiles. herbicides and pesticides reducing populations Australian Museum Online, Version date: 7 August 2006. of prey species, such as frogs, which can be Available from sensitive to chemicals (M. Hutchinson pers. http://www.amonline.net.au/herpetology/research/#encyclo comm.).2,4 pedia. Additional current direct threats have been identified and rated for this species. Refer to the main plan accompanying these profiles. Regional Distribution Map based on filtered post-1983 records.3 Note, this map does not necessarily represent the actual species’ distribution within the AMLR. Further information: Biodiversity Conservation Unit, Adelaide Region Phone: (61 8) 8336 0901 Fax: (61 8) 8336 0999 http://www.environment.sa.gov.au/ Department for Environment and Heritage FIS 90346 May 2008 Prepared as part of the Regional Recovery Plan for Threatened Species and Ecological Communities of Adelaide and the Mount Lofty Ranges, South Australia 2009 - 2014 .
Recommended publications
  • BIOLOGICAL SURVEY of KANGAROO ISLAND SOUTH AUSTRALIA in NOVEMBER 1989 and 1990
    A BIOLOGICAL SURVEY OF KANGAROO ISLAND SOUTH AUSTRALIA IN NOVEMBER 1989 and 1990 Editors A. C. Robinson D. M. Armstrong Biological Survey and Research Section Heritage and Biodiversity Division Department for Environment, Heritage and Aboriginal Affairs, South Australia 1999 i Kangaroo Island Biological Survey The Biological Survey of Kangaroo Island, South Australia was carried out with the assistance of funds made available by, the Commonwealth of Australia under the 1989-90 National Estate Grants Programs and the State Government of South Australia. The views and opinions expressed in this report are those of the authors and do not necessarily represent the views or policies of the Australian Heritage Commission or the State Government of South Australia. The report may be cited as: Robinson, A. C. & Armstrong, D. M. (eds) (1999) A Biological Survey of Kangaroo Island, South Australia, 1989 & 1990. (Heritage and Biodiversity Section, Department for Environment, Heritage and Aboriginal Affairs, South Australia). Copies of the report may be accessed in the library: Environment Australia Department for Environment, Heritage and Aboriginal Affairs GPO Box 636 or 1st Floor, Roma Mitchell House CANBERRA ACT 2601 136 North Terrace, ADELAIDE SA 5000 EDITORS A.C. Robinson, D.M. Armstrong, Biological Survey and Research, Heritage &Biodiversity Section, Department for Environment Heritage and Aboriginal Affairs PO Box 1047 ADELAIDE 5001 AUTHORS D M Armstrong, P.J.Lang, A C Robinson, Biological Survey and Research, Heritage &Biodiversity Section, Department for Environment, Heritage and Aboriginal Affairs PO Box 1047 ADELAIDE 5001 N Draper, Australian Cultural Heritage Management Pty Ltd, 53 Hackney Rd. HACKNEY, SA 5069 G Carpenter, Biodiversity Monitoring and Evaluation, Heritage &Biodiversity Section, Department for Environment Heritage and Aboriginal Affairs.
    [Show full text]
  • Frogs & Reptiles NE Vic 2018 Online
    Reptiles and Frogs of North East Victoria An Identication and Conservation Guide Victorian Conservation Status (DELWP Advisory List) cr critically endangered en endangered Reptiles & Frogs vu vulnerable nt near threatened dd data deficient L Listed under the Flora and Fauna Guarantee Act (FFG, 1988) Size: of North East Victoria Lizards, Dragons & Skinks: Snout-vent length (cm) Snakes, Goannas: Total length (cm) An Identification and Conservation Guide Lowland Copperhead Highland Copperhead Carpet Python Gray's Blind Snake Nobbi Dragon Bearded Dragon Ragged Snake-eyed Skink Large Striped Skink Frogs: Snout-vent length male - M (mm) Snout-vent length female - F (mm) Austrelaps superbus 170 (NC) Austrelaps ramsayi 115 (PR) Morelia spilota metcalfei – en L 240 (DM) Ramphotyphlops nigrescens 38 (PR) Diporiphora nobbi 8.4 (PR) Pogona barbata – vu 25 (DM) Cryptoblepharus pannosus Snout-Vent 3.5 (DM) Ctenotus robustus Snout-Vent 12 (DM) Guide to symbols Venomous Lifeform F Fossorial (burrows underground) T Terrestrial Reptiles & Frogs SA Semi Arboreal R Rock-dwelling Habitat Type Alpine Bog Montane Forests Alpine Grassland/Woodland Lowland Grassland/Woodland White-lipped Snake Tiger Snake Woodland Blind Snake Olive Legless Lizard Mountain Dragon Marbled Gecko Copper-tailed Skink Alpine She-oak Skink Drysdalia coronoides 40 (PR) Notechis scutatus 200 (NC) Ramphotyphlops proximus – nt 50 (DM) Delma inornata 13 (DM) Rankinia diemensis Snout-Vent 7.5 (NC) Christinus marmoratus Snout-Vent 7 (PR) Ctenotus taeniolatus Snout-Vent 8 (DM) Cyclodomorphus praealtus
    [Show full text]
  • Prohibited and Regulated Animals List
    DISCLAIMER This list is in no way intended to be an inclusive or complete list – it is intended to be merely a partial reference tool for Animal Control. If you have an animal not included on this list and have questions about its status, please call the animal shelter at 357-0805. Prohibited Animals Felids of Panthera Family and their hybrids Lions Tigers Jaguars Etc. Species of Lynx and their hybrids Eurasian lynx Spanish lynx Canadian lynx Etc. Non-domesticated canids and their hybrids (not domestic dogs) Wolves Coyotes Foxes Jackals Dingoes Etc. All non-human primates which are apes or great apes Gorilla Chimpanzee Gibbons Orangutans Bonobos Etc. All non-human primates which are old world monkeys (Family Cercopithecinae and Family Colobinae) Languars Mandrills Macaques Baboons Proboscis Mangabeys Guenons Patas Monkeys Etc. Prohibited Animals Continued: Other included animals Polar Bears Grizzly Bears Elephants Rhinoceroses Hippopotamuses Komodo Dragons Water Monitors Crocodile Monitors Members of the Crocodile Family African Rock Pythons Burmese Pythons Reticulated Pythons Anacondas All Venomous Reptiles – see attached list Venomous Reptiles Family Viperidae Family Elapidae mountain bush viper death adders Barbour’s short headed viper shieldnose cobras bush vipers collared adders jumping pit vipers water cobras Fea’s vipers Indian kraits adders and puff adders dwarf crowned snakes palm pit vipers Oriental coral snakes forest pit vipers venomous whip snakes lanceheads mambas Malayan pit vipers ornamental snakes Night adders Australian
    [Show full text]
  • Structure±Function Properties of Venom Components from Australian Elapids
    PERGAMON Toxicon 37 (1999) 11±32 Review Structure±function properties of venom components from Australian elapids Bryan Grieg Fry * Peptide Laboratory, Centre for Drug Design and Development, University of Queensland, St. Lucia, Qld, 4072, Australia Received 9 December 1997; accepted 4 March 1998 Abstract A comprehensive review of venom components isolated thus far from Australian elapids. Illustrated is that a tremendous structural homology exists among the components but this homology is not representative of the functional diversity. Further, the review illuminates the overlooked species and areas of research. # 1998 Elsevier Science Ltd. All rights reserved. 1. Introduction Australian elapids are well known to be the most toxic in the world, with all of the top ten and nineteen of the top 25 elapids with known LD50s residing exclusively on this continent (Broad et al., 1979). Thus far, three main types of venom components have been characterised from Australian elapids: prothrombin activating enzymes; lipases with a myriad of potent activities; and powerful peptidic neurotoxins. Many species have the prothrombin activating enzymes in their venoms, the vast majority contain phospholipase A2s and all Australian elapid venoms are suspected to contain peptidic neurotoxins. In addition to the profound neurological eects such as disorientation, ¯accid paralysis and respiratory failure, characteristic of bites by many species of Australian elapids is hemorrhaging and incoagulable blood. As a result, these elapids can be divided into two main classes: species with procoagulant venom (Table 1) and species with non-procoagulant venoms (Table 2) (Tan and * Author to whom correspondence should be addressed. 0041-0101/98/$ - see front matter # 1998 Elsevier Science Ltd.
    [Show full text]
  • Snake Venom Detection Kit (SVDK)
    SVDK Template In non-urgent situations, serum or plasma may also be used. Other samples such as lymphatic fluid, tissue fluid or extracts may 8. Reading Colour Reactions be used. • Place the test strip on the template provided over page and observe each well continuously over the next 10 minutes whilst the colour develops. Any test sample used in the SVDK must be mixed with Yellow Sample Diluent (YSD-yellow lid), prior to introduction into the The first well to show visible colour, not including the positive control well, is assay. Samples mixed with YSD should be clearly labelled with the patient’s identity and the type of sample used. The volume of diagnostic of the snake’s venom immunotype – see interpretation below. YSD in each sample vial is sufficient to allow retesting of the sample or referral to a reference laboratory for further investigation. Well 1 Tiger Snake Immunotype Snake Venom Detection Kit (SVDK) Note: Strict adherence to the 10 minute observation period after addition of Tiger Snake Antivenom Indicated Detection and Identification of Snake Venom SAMPLE PREPARATION the Chromogen and Peroxide Solutions is essential. Slow development of 1. Prepare the Test Sample. colour in one or more wells after 10 minutes should not be interpreted ENZYME IMMUNOASSAY METHOD • Any test sample used in the SVDK must be mixed with Yellow Sample Diluent (YSD-yellow lid), prior to introduction as positive detection of snake venom. Well 2 Brown Snake Immunotype into the assay. INTERPRETATION OF RESULTS Brown Snake Antivenom Indicated Note: There is enough YSD in one vial to perform two snake venom detection tests.
    [Show full text]
  • Unusual Accelerated Rate of Deletions and Insertions in Toxin Genes in The
    BMC Evolutionary Biology BioMed Central Research article Open Access Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from kangaroo island Robin Doley†1, Nguyen Ngoc Bao Tram†1, Md Abu Reza1 and R Manjunatha Kini*1,2 Address: 1Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore and 2Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Block S3, # 03-17, 117543, Singapore Email: Robin Doley - [email protected]; Nguyen Ngoc Bao Tram - [email protected]; Md Abu Reza - [email protected]; R Manjunatha Kini* - [email protected] * Corresponding author †Equal contributors Published: 28 February 2008 Received: 17 October 2007 Accepted: 28 February 2008 BMC Evolutionary Biology 2008, 8:70 doi:10.1186/1471-2148-8-70 This article is available from: http://www.biomedcentral.com/1471-2148/8/70 © 2008 Doley et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Toxin profiling helps in cataloguing the toxin present in the venom as well as in searching for novel toxins. The former helps in understanding potential pharmacological profile of the venom and evolution of toxins, while the latter contributes to understanding of novel mechanisms of toxicity and provide new research tools or prototypes of therapeutic agents.
    [Show full text]
  • A Clinician's Guide to Australian Venomous Bites and Stings
    Incorporating the updated CSL Antivenom Handbook Bites and Stings Australian Venomous Guide to A Clinician’s A Clinician’s Guide to DC-3234 Australian Venomous Bites and Stings Incorporating the updated CSL Antivenom Handbook Associate Professor Julian White Associate Professor Principal author Principal author Principal author Associate Professor Julian White The opinions expressed are not necessarily those of bioCSL Pty Ltd. Before administering or prescribing any prescription product mentioned in this publication please refer to the relevant Product Information. Product Information leafl ets for bioCSL’s antivenoms are available at www.biocsl.com.au/PI. This handbook is not for sale. Date of preparation: February 2013. National Library of Australia Cataloguing-in-Publication entry. Author: White, Julian. Title: A clinician’s guide to Australian venomous bites and stings: incorporating the updated CSL antivenom handbook / Professor Julian White. ISBN: 9780646579986 (pbk.) Subjects: Bites and stings – Australia. Antivenins. Bites and stings – Treatment – Australia. Other Authors/ Contributors: CSL Limited (Australia). Dewey Number: 615.942 Medical writing and project management services for this handbook provided by Dr Nalini Swaminathan, Nalini Ink Pty Ltd; +61 416 560 258; [email protected]. Design by Spaghetti Arts; +61 410 357 140; [email protected]. © Copyright 2013 bioCSL Pty Ltd, ABN 26 160 735 035; 63 Poplar Road, Parkville, Victoria 3052 Australia. bioCSL is a trademark of CSL Limited. bioCSL understands that clinicians may need to reproduce forms and fl owcharts in this handbook for the clinical management of cases of envenoming and permits such reproduction for these purposes. However, except for the purpose of clinical management of cases of envenoming from bites/stings from Australian venomous fauna, no part of this publication may be reproduced by any process in any language without the prior written consent of bioCSL Pty Ltd.
    [Show full text]
  • Present in the Snake Austrelaps Superbus Venom, Which Are Harmful to the Complementary Immunity System, Is Analogous to the Amino Acid Sequences Found in SARS-Cov2
    Protein “A. superbus venom factor 1”, present in the snake Austrelaps Superbus venom, which are harmful to the complementary immunity system, is analogous to the amino acid sequences found in SARS-CoV2. Cesar Fernandes Geraldes1 (Bachelor of Quality in Life - Mackenzie Presbyterian University and Civil Geotechnical Engineer - Uninove).1 1 Studying Post-Graduation in Data Science at Uninove, São Paulo, Brazil Correspondence: [email protected] Abstract The study crossed the amino acids present in SARS-CoV-2, with the protein “A. Superbus venom factor 1” from the Lowland copperhead snake “Austrelaps Superbus”. The alignment of the sequences of pairs took place through matrix algorithms in high performance processing, by UGene software in terms of GNU. The “A. Superbus venom factor 1”, present in the snake Austrelaps Superbus venom, which are harmful to the complementary immunity system, is analogous to the amino acid sequences found in SARS-CoV2. The result found was of several sequences of amino acids with harmful potential, the most relevant being represented by the letters "LYID", "TAYA" and "NTLT". 1 Introduction As described on Wikipedia in the English version the lowland copperhead or lowlands copperhead Austrelaps superbus is a venomous snake species in the family Elapidae, found in southeastern Australia and Tasmania. It is commonly referred to as the copperhead. The complement system is a fundamental part of innate immunity and contributes to the removal of immune complexes and the activation of inflammatory processes. These proteins represent a fast and efficient means of protecting the host against invading microorganisms. Associations between complement and disease are observed in situations of complement deficiency, abnormalities in complement regulation and inflammation.2 Data science, through the use of computational algorithms and databases, has been a great ally in the development of new knowledge.
    [Show full text]
  • Species Richness in Time and Space: a Phylogenetic and Geographic Perspective
    Species Richness in Time and Space: a Phylogenetic and Geographic Perspective by Pascal Olivier Title A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2018 Doctoral Committee: Assistant Professor and Assistant Curator Daniel Rabosky, Chair Associate Professor Johannes Foufopoulos Professor L. Lacey Knowles Assistant Professor Stephen A. Smith Pascal O Title [email protected] ORCID iD: 0000-0002-6316-0736 c Pascal O Title 2018 DEDICATION To Judge Julius Title, for always encouraging me to be inquisitive. ii ACKNOWLEDGEMENTS The research presented in this dissertation has been supported by a number of research grants from the University of Michigan and from academic societies. I thank the Society of Systematic Biologists, the Society for the Study of Evolution, and the Herpetologists League for supporting my work. I am also extremely grateful to the Rackham Graduate School, the University of Michigan Museum of Zoology C.F. Walker and Hinsdale scholarships, as well as to the Department of Ecology and Evolutionary Biology Block grants, for generously providing support throughout my PhD. Much of this research was also made possible by a Rackham Predoctoral Fellowship, and by a fellowship from the Michigan Institute for Computational Discovery and Engineering. First and foremost, I would like to thank my advisor, Dr. Dan Rabosky, for taking me on as one of his first graduate students. I have learned a tremendous amount under his guidance, and conducting research with him has been both exhilarating and inspiring. I am also grateful for his friendship and company, both in Ann Arbor and especially in the field, which have produced experiences that I will never forget.
    [Show full text]
  • Code of Practice Captive Reptile and Amphibian Husbandry
    Department of Environment and Heritage Protection Code of Practice Wildlife management Captive reptile and amphibian husbandry Captive reptile and amphibian husbandry Nature Conservation Act 1992 Page 1 of 45 • 121220 Department of Environment and Heritage Protection www.ehp.qld.gov.au ABN 46 640 294 485 Code of Pactice Captive reptile and amphibian husbandry Table of Content 1. About this code ........................................................................................................................5 2. Reptiles and amphibians of Queensland ................................................................................6 3. Definitions................................................................................................................................. 6 4. Aims of herpetology .................................................................................................................6 5. Purpose of code .......................................................................................................................7 6. Acquisition of reptiles and amphibians ..................................................................................7 7. Selling and giving away reptiles and amphibians ..................................................................8 8. Take from the wild ....................................................................................................................8 9. Repatriation of the progeny of wild-caught amphibians .......................................................9
    [Show full text]
  • Dynamic Evolution of Australian Elapid Snake Toxins
    Toxins 2013, 5, 2621-2655; doi:10.3390/toxins5122621 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins Timothy N. W. Jackson 1,2,†, Kartik Sunagar 3,4,†, Eivind A. B. Undheim 1,2, Ivan Koludarov 1, Angelo H. C. Chan 1, Kate Sanders 5, Syed A. Ali 1,2,6, Iwan Hendrikx 1, Nathan Dunstan 7 and Bryan G. Fry 1,2,* 1 Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia QLD 4072, Australia 2 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia 3 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal 4 CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal 5 School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia 6 HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan 7 Venom Supplies Pty Ltd, Stonewell Rd, Tanunda SA 5352, Australia † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-400-193-182. Received: 14 September 2013; in revised form: 13 December 2013 / Accepted: 16 December 2013 / Published: 18 December 2013 Abstract: Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced.
    [Show full text]
  • Denisonia Hydrophis Parapistocalamus Toxicocalamus Disteira Kerilia Pelamis Tropidechis Drysdalia Kolpophis Praescutata Vermicella Echiopsis Lapemis
    The following is a work in progress and is intended to be a printable quick reference for the venomous snakes of the world. There are a few areas in which common names are needed and various disputes occur due to the nature of such a list, and it will of course be continually changing and updated. And nearly all species have many common names, but tried it simple and hopefully one for each will suffice. I also did not include snakes such as Heterodon ( Hognoses), mostly because I have to draw the line somewhere. Disclaimer: I am not a taxonomist, that being said, I did my best to try and put together an accurate list using every available resource. However, it must be made very clear that a list of this nature will always have disputes within, and THIS particular list is meant to reflect common usage instead of pioneering the field. I put this together at the request of several individuals new to the venomous endeavor, and after seeing some very blatant mislabels in the classifieds…I do hope it will be of some use, it prints out beautifully and I keep my personal copy in a three ring binder for quick access…I honestly thought I knew more than I did…LOL… to my surprise, I learned a lot while compiling this list and I hope you will as well when you use it…I also would like to thank the following people for their suggestions and much needed help: Dr.Wolfgang Wuster , Mark Oshea, and Dr. Brian Greg Fry.
    [Show full text]