Dermatophytosis in Small Animals Antonella S

Total Page:16

File Type:pdf, Size:1020Kb

Dermatophytosis in Small Animals Antonella S www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Review Article SOJ Microbiology & Infectious Diseases Open Access Dermatophytosis in Small Animals Antonella S. Mattei1*, Márcia A. Beber2 and Isabel M. Madrid3 1University Federal of Rio Grande (FURG), Medical School, RS, Brazil 2Undergraduate Student in Dentistry, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil 3Facuty of Veterinary, Zoonosis Center Control, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil Received: March 06, 2014; Accepted: September 19, 2014; Published: November 04, 2014 *Corresponding author: Antonella Souza Mattei, University Federal of Rio Grande (FURG), Medical School, RS, Brazil, Tel: +55(53)-91447884; E-mail: an- [email protected] Originally soil inhabitants, dermatophytes have evolved to Abstract geophilic, zoophilic, and anthropophilic species based on their dermatophytosis in small animals. In the last years, the pet population maininfect habitatanimals or and host. humans Three dermatophytes and are accordingly genera classified Trichophyton into, has increasedThe purpose as well of the this interest article in havingwas animalsto briefly as pets.review Because about of Microsporum, and Epidermophyton-comprise more than 40 this, these small animals are more and more inserted in our daily life. different species [4,5]. The understanding of ringworm epidemiology, diagnosis, treatment and control in pets is very important for the reason that pets are often Animals can be infected by a great variety of dermatophytes, asymptomatic carriers of dermatophytes being important sources of mostly zoophilic but also geophilic species, and exceptionally infection and/or carriers of infection. So, it is very important to know about this disease to reduce the spread of zoophilic fungal infections anthropophilic dermatophytes (Table 1) [6]. in humans, considering the close contact between pets and their Clinical importance is usually mild except in heavily infected owners, especially between children and their pets. young animals such as calves with an impact on general health Keywords: Cat; Dog; Exotic pet mammals; Microsporum spp.; condition and growth. On the contrary, serious economic Trichophyton spp.; Zoonosis; Dermatophytosis; Mycosis consequences result from the long duration of the disease [1,6]. The understanding of ringworm epidemiology, diagnosis, Abbreviations treatment and control in pets is very important for reducing the spread of fungal infections in animals and humans. The purpose FeLV: Feline Leukemia Virus; Virus; KOH: Potassium Hydroxide; Min: Minutes FIV: Feline Immunodeficiency small animals. Introduction of this article was to briefly review about dermatophytosis in In recent years, both the number of domestic pets fed Table 1: Zoophilic and Geophilic dermatophytes species in animals. inside their owners’ homes and the interest in having animals Dermatophytes species Main source Others as pets at one’s home have increased markedly. Considering Microsporum canis Cat, dog, horse All mammals the close contact between pets and their owners, especially Microsporum gallinae poultry Dog, cat between children and cats and dogs, these animals that are Microsporum gypseum Soil All mammals often asymptomatic carriers of dermatophytes can be important sources of infection and/or carriers of infection [1]. Microsporumn nanum Soil Pig Microsporum persicolor Microtid rodents Dog, cat However, nowadays not only cats and dogs are popular pets, the exotic companion mammals (e.g. rabbits, rodents, ferrets, Trichophyton equinum Horse Cat, dog (rare) hedge hogs) are also common and they can be a potential source Trichophyton erinacei Hedgehog Dog of zoonotic infections transmissible to their owners [2]. Trichophyton Rodents All mammals mentagrophytes Trichophyton simii Primate Fowl, dog, cat Dermatophytosis is characterized by a superficial skin Cattle, other fungal disease in clinical veterinary medicine in small animals. Trichophyton verrucosum All mammals Theseinfection fungi confined produce to keratinisedkeratinases epithelium,and others isenzymes the most capable common to ruminants digest the keratin protein complex, allowing the dermatophyte Note: Other geophilic species are frequently isolated from hair coat of M. to burrow deeper into the stratum corneum in the host and cookei, M. praecox (frequent in the equine environment and sometimes pathogenicmammals, but,for man),usually, T. withoutajelloi, T.pathogenic terrestre. Somesignificance rare cases in animals: of animal ringworm due to anthropophilic dermatophytes (E. floccosum, T. rubrum therefore to elicit an inflammatory reaction. The,4]. degree of and T. tonsurans in dog; T. violaceum in pig) have been reported. inflammation, dependent of host-fungus interaction, determines the degree and significance of the clinical signs [3 Symbiosis Group *Corresponding author email: [email protected] Dermatophytosis in Small Animals Copyright: © 2014 Mattei et al. Etiology three genera, Epidermophyton, Microsporum, and Trichophyton [4,7].The The etiologic descriptions agents of thethe dermatophytoses genera are essentially are classified followed in by the colony macroscopic aspects (diameter, texture, surface color and reverse color) and themicroscopic aspects (conidial morphology and formation of conidia). They both are updated following the discovery of new species. The genera and their descriptions are as follows: 1A) 1B) Epidermophyton spp: The type species is Epidermophyton Figure 1: Microsporum canis culture, macroscopic colony (A) and mi- floccosum croscopic observation in lactophenol (B) (Veterinary Mycology Labora- turning into powder surface, central poor radial grooves and tory, MICVET, Federal University of Pelotas, Rio Grande do Sul, Brazil). white color(Figure turning 1A intoand B).yellow-green The colony oraspects mustard-yellow are filamentous and brown-yellow reverse in Sabouraud dextrose agar at 25°C. The macroconidia are broadly clavate with typically smooth, thin to moderately thick walls and one to nine septa, 20 to 60 by 4 to clusters. Microconidia are absent. This genus has only two known species13 mm into size.date, They and only are usuallyE. floccosum abundant is pathogenic and borne [7-11]. singly or in Microsporum spp: The type species is Microsporum canis (Figure 2A and B). The colony aspects are plane, velvety or cottony surface, white or yellowish color and brown or golden- 2A) 2B) yellow reverse in Sabouraud dextrose agar at 25°C. Macroconidia are characterized by the presence of rough walls which may be Figure 2: Microsporum gypseum culture, macroscopic colony (A) and asperulate, echinulate, or verrucose. They are fusiform, obovate microscopic observation in lactophenol (B) (Veterinary Mycology Labo- (egg shaped) or cylindrofusiform. They may also have thin, ratory, MICVET, Federal University of Pelotas, Rio Grande do Sul, Bra- zil). moderately thick to thick walls and 1 to 15 septa and range in size from 6 to 160 by 6 to 25 mm. Microconidia are sessile or stalked and clavate and usually arranged singly along the hyphae or in racemes [7-11]. Trichophyton spp: The type species is Trichophyton mentagrophytes var. Mentagrophytes . The colony aspects are plane, white to cream color, powdery to granular surface and reverse yellowish(Figure brown to3A reddish-brown and B) in Sabouraud dextrose agar at 25°C. Macroconidia, when present, have smooth, usually thin walls and one to 12 septa, are borne singly or in clusters, and may be elongate and pencil shaped, 3A) 3B) clavate, fusiform, or cylindrical. They range in size from 8 to Figure 3: Trichophyton mentagrophytes var. mentagrophytes culture, 86 by 4 to 14 mm. Microconidia, usually more abundant than macroscopic colony (A) and microscopic observation in lactophenol (B) macroconidia, may be globose, pyriform or clavate, or sessile or (Veterinary Mycology Laboratory, MICVET, Federal University of Pelo- stalked, and are borne singly along the sides of the hyphae or in tas, Rio Grande do Sul, Brazil). grape-like clusters [7-11]. In 1999, the Trichophyton tonsurans, T. mentagrophytes There are genotypic and phenotypic variations between isolates of the same species of dermatophyte. The clinical taxa, T. tonsurans, T. interdigitale (anamorph of Arthoderma application of these variations has to be discovered yet. These vanbreuseghemiiand related species), T. mentagrophytes,and varieties wereT. simii reclassified (anamorph into of A.5 simii) and T. erinacei (anamorph of A. benhamiae). In 2007, this was epidemiological data [14]. variations do not reflect differences in symptomatology or chaged by treating T. mentagrophytes as the anamorph of A. simii The fungal pathogenicity factors, such as enzyme production, in place of T. simii and adding another anamorph of A. benhamiae, were associated with different clinical dermatophytosis pictures. Trichophyton spp. Furthermore, in 2010 T. mentagrophytes was Apparently, studies examining the enzyme production through replaced by T. simii and treated again as an individual species, i.e. molecular characterization and expression during infection are T. mentagrophytes var. quinckeanum [12]. an importante means to understand the details of pathogenicity Nowadays, the three genera, Epidermophyton, Microsporum, and may also answer questions related to the different degrees of and Trichophyton, virulence observed in different hosts [14-17]. On the basis of dermatophyte primary habitat associations, can be identified based on molecular taxonomic
Recommended publications
  • Abstract Dermatophytes and Other Skin Mycoses Found in Featherless
    Dermatophytes and other skin mycoses found in featherless broiler toe webs – Mbata Dermatophytes and other skin mycoses found in featherless broiler toe webs T.I. Mbata . (1) Department of Microbiology, Federal Polytechnic, Nekede, Owerri, Nigeria . Author of Correspondence: T.I.Mbata, Department of Microbiology, Federal Polytechnic, Nekede, Owerri, Nigeria, E-mail: [email protected]. +2348032618922 Abstract Background: Feartherless broilers which are produced by a complex breeding programme from feathered parents carrying the Sc-gene, dissipates excessive body heat under hot and humid conditions. It has high body weight, and grows very rapidly when compared with standard commercial broilers. Their toe webs are bigger than standard commercial broilers, and could harbor fungi which can cause infections where there is the opportunity. Objectives: To isolate and identify the presence of fungi in toe webs of featherless broilers. Methods: A total of 50 featherless broilers' toe webs samples were examined microscopically for the presence of fungi. The samples were examined microscopically and culturally using standard microbiological techniques. Results: The fungi recovered were as follows. Microsporum gypseum 9 (22%), Trichophyton mentagrophytes var. mentagrophytes 5 (12%), Microsporum gallinae 3 (7%), Aspergilus flavus 10 (24%), Fusarium sp 6 (15%), Alternaria alternata 3 (7%) Scopulariopsis brevicaulis 2 (5%) and Candida albicans 3 (7%), Conclusion: The featherless broilers' toe webs habour fungi which cause mycotic skin disease and cannot be regarded as ordinary normal flora of toe webs Key words: Dermatophytes, Non- dermatophytes, featherless broiler, toe webs. INTRODUCTION Animals serve as reservoirs of the zoophilic dermatophytes, and their infections have Dermatophytes are among the most frequent considerable zoonotic importance.
    [Show full text]
  • The New Species Concept in Dermatophytes—A Polyphasic Approach
    Mycopathologia DOI 10.1007/s11046-008-9099-y The New Species Concept in Dermatophytes—a Polyphasic Approach Yvonne Gra¨ser Æ James Scott Æ Richard Summerbell Received: 15 October 2007 / Accepted: 30 January 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The dermatophytes are among the most among these are the cosmopolitan bane of nails and frequently observed organisms in biomedicine, yet feet, Trichophyton rubrum, and the endemic African there has never been stability in the taxonomy, agent of childhood tinea capitis, Trichophyton identification and naming of the approximately 25 soudanense, which are effectively inseparable in all pathogenic species involved. Since the identification analyses. The molecular data require some reinter- of these species is often epidemiologically and pretation of results seen in conventional phenotypic ethically important, the difficulties in dermatophyte tests, but in most cases, phylogenetic insight is identification are a fruitful topic for modern molec- readily integrated with current laboratory testing ular biological investigation, done in tandem with procedures. renewed investigation of phenotypic characters. Molecular phylogenetic analyses such as multilocus Keywords Dermatophytes Á Taxonomy Á sequence typing have had to be tailored to accom- Molecular identification Á modate differing the mechanisms of speciation that Morphological identification Á Species concept have produced the dermatophytes that are commonly seen today. Even so, some biotypes that were unambiguously considered species in the past, based Introduction: Why Dermatophyte Biosystematics on profound differences in morphology and pattern of and Identification are Important (Medical infection, appear consistently not to be distinct and Scientific Aspects) species in modern molecular analyses. Most notable The dermatophytes belong to the small category of disease organisms that almost every human alive will Y.
    [Show full text]
  • Dr. Poonam Shakya  Fungi That Require and Use Keratin for Growth  Confined to the Superficial Integument of the Skin, Nails, Claws & Hair of Animals and Man
    Dr. Poonam Shakya Fungi that require and use keratin for growth Confined to the superficial integument of the skin, nails, claws & hair of animals and man Classical lesions- circular ( ringworm) Traditionally the dermatophytes are placed in the Deuteromycota or Fungi Imperfecti in 3 genera: Microsporum, Trichophyton Epidermophyton The Microsporum species tend to produce spindle shaped macroconidia Microsporum canis: spindle-shaped macroconidia. (LPCB, ×400) Microsporum gypseum: boat shaped macroconidia. (LPCB) Trichophyton mentagrophytes: cigar shaped numerous microconidia and a macroconidium. Microsporum nanum: round & two celled macroconidia. (LPCB) The geophilic (soil-loving) dermatophytes inhabit the soil and can exist there as free-living saprophytes. Example- Microsporum gypseum and M. nanum The zoophilic dermatophytes are obligate pathogens, primarily parasitizing animals but also capable of infecting humans. Humans are the main host for the anthropophilic dermatophytes and these very rarely cause ringworm in animals Some dermatophytes have become adapted for survival in the skin of specific host animals, for example: Microsporum canis: cats Microsporum persicolor: voles Trichophyton mentagrophytes var. mentagrophytes: rodents Trichophyton verrucosum: cattle. Trichophyton erinacei: muzzle alopecia in a terrier known to worry hedgehogs. Infective arthrospores germinate within 6 hours of adhering to keratinized structures. Minor trauma of the skin and dampness may facilitate infection. The ability of the dermatophytes
    [Show full text]
  • Dermatophyte and Non Dermatophyte Fungi in Riyadh City, Saudi Arabia
    Saudi Journal of Biological Sciences (2015) xxx, xxx–xxx King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Dermatophyte and non dermatophyte fungi in Riyadh City, Saudi Arabia Jamal M. Khaled a,b,*, Hammed A Golah c, Abdulla S. Khalel a, Naiyf S. Alharbi a, Ramzi A. Mothana d a Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia b Department of Biotechnology and Food Technology, Thamar University, Yemen c Agriculture and Veterinary Medicine, Department of Veterinary Medicine, Thamar University, Yemen d Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia Received 2 September 2014; revised 24 November 2014; accepted 15 December 2014 KEYWORDS Abstract Background: Dermatophytes are a scientific label for a group of three genera (Micros- Dermatophytes; porum, Epidermophyton and Trichophyton) of fungus that causes skin disease in animals and Microsporum; humans. Conventional methods for identification of these fungi are rapid and simple but are not Epidermophyton; accurate comparing to molecular methods. Trichophyton; Objective: This study aimed to isolate human pathogenic dermatophytes which cause dermato- Tinea phytosis in Riyadh City, Saudi Arabia and to identify these fungi by using conventional and molec- ular methods. Methods: The study was conducted in Medical Complex, Riyadh and King Saud University. Samples of infected skin, hairs and nails were collected from 112 patients. Diagnosis of skin infec- tions, direct microscopic test, isolation and identification of dermatophytes by conventional and molecular methods were carried out. Results: The results indicated that the tinea capitis infection had the highest prevalence among the patients (22.3%) while Tinea barbae had the lowest.
    [Show full text]
  • Descriptions of Medical Fungi
    DESCRIPTIONS OF MEDICAL FUNGI THIRD EDITION (revised November 2016) SARAH KIDD1,3, CATRIONA HALLIDAY2, HELEN ALEXIOU1 and DAVID ELLIS1,3 1NaTIONal MycOlOgy REfERENcE cENTRE Sa PaTHOlOgy, aDElaIDE, SOUTH aUSTRalIa 2clINIcal MycOlOgy REfERENcE labORatory cENTRE fOR INfEcTIOUS DISEaSES aND MIcRObIOlOgy labORatory SERvIcES, PaTHOlOgy WEST, IcPMR, WESTMEaD HOSPITal, WESTMEaD, NEW SOUTH WalES 3 DEPaRTMENT Of MOlEcUlaR & cEllUlaR bIOlOgy ScHOOl Of bIOlOgIcal ScIENcES UNIvERSITy Of aDElaIDE, aDElaIDE aUSTRalIa 2016 We thank Pfizera ustralia for an unrestricted educational grant to the australian and New Zealand Mycology Interest group to cover the cost of the printing. Published by the authors contact: Dr. Sarah E. Kidd Head, National Mycology Reference centre Microbiology & Infectious Diseases Sa Pathology frome Rd, adelaide, Sa 5000 Email: [email protected] Phone: (08) 8222 3571 fax: (08) 8222 3543 www.mycology.adelaide.edu.au © copyright 2016 The National Library of Australia Cataloguing-in-Publication entry: creator: Kidd, Sarah, author. Title: Descriptions of medical fungi / Sarah Kidd, catriona Halliday, Helen alexiou, David Ellis. Edition: Third edition. ISbN: 9780646951294 (paperback). Notes: Includes bibliographical references and index. Subjects: fungi--Indexes. Mycology--Indexes. Other creators/contributors: Halliday, catriona l., author. Alexiou, Helen, author. Ellis, David (David H.), author. Dewey Number: 579.5 Printed in adelaide by Newstyle Printing 41 Manchester Street Mile End, South australia 5031 front cover: Cryptococcus neoformans, and montages including Syncephalastrum, Scedosporium, Aspergillus, Rhizopus, Microsporum, Purpureocillium, Paecilomyces and Trichophyton. back cover: the colours of Trichophyton spp. Descriptions of Medical Fungi iii PREFACE The first edition of this book entitled Descriptions of Medical QaP fungi was published in 1992 by David Ellis, Steve Davis, Helen alexiou, Tania Pfeiffer and Zabeta Manatakis.
    [Show full text]
  • Monograph on Dermatophytes
    Monograph On Dermatophytes A guide for isolation and identification of dermatophytes, diseases and treatment By Mohamed Refai, Heidy Abo El-Yazid and Mahmoud El-Hariri Department of Microbiology, Faculty of Veterinary Medicine, Cairo University 2013 1 Dedication This monograph is dedicated to my master, friend, teacher and spiritual father Prof. Dr. Dr. Hans Rieth, whom I met for the first time in July 1962, in Travemunde on the occasion of the second meeting of the German-speaking Mycological society, 6 months after my arrival to Germany, and whom I met for the last time in September, 1993 in Greifswald on the occasion of 27th meeting of the society, 5 months before his death. During the 30 years I visited him almost every year, where I always updated my knowledge in mycology Mohamed Refai Late Prof. Dr. Dr. Hans Rieth, 11.12.1914-10.2.1994 1962, in Travemunde Greifswald, 30.9. 1993 2 Contents 1. Introduction and historical 2. classification of dermatophytes 3. Morphology of dermatophytes 4. Gallery of the commonly isolated dermatophytes 5. Diseases caused by dermatophytes 5.1. Diseases caused by dermatophytes in man 5.2. Diseases caused by dermatophytes in animals 6. Diagnosis of diseases caused by dermatophytes 6.5. Phenotypic identification of dermatophytes 6.6. Molecular identification of dermatophytes 7. Treatment of diseases caused by dermatophytes 7.1. Treatment of diseases caused by dermatophytes in man 7.2. Treatment of diseases caused by dermatophytes in animals 8. Prevention and control of diseases caused by dermatophytes 8.1. Hygienic measures 8.2. Vaccination 9. Materials used for identification of dermatophytes 10.
    [Show full text]
  • Favus in a Backyard Chicken (Gallus Gallus Domesticus)
    FAVUS IN A BACKYARD CHICKEN (GALLUS GALLUS DOMESTICUS) Hamish R Baron1, Bob Doneley2 1 School of Veterinary Science University of Sydney Camden, NSW 2570, Australia 2Senior Lecturer in Avian and Exotic Pet Medicine School of Veterinary Science University of Queensland, Gatton 4343 Introduction Favus, or avian ringworm, is a dermatophytosis that is rarely reported in poultry today. (Saif and Fadly 2008) However, given the strong influx in backyard poultry being presented to avian and exotic veterinarians in recent years, it is an important diagnosis which should not be overlooked. The classical clinical presentation includes white crusting lesions on unfeathered skin which can extend to the feathered portion of the skin and form scutula around the base of feather follicles, leading to feather loss. The most commonly isolated organism is Microsporum gallinae, however M. gypseum and Trichophyton simii have also been isolated as causative agents. (Fonseca and Mendoza 1984, Droual, Bickford et al. 1991, Bradley, Bickford et al. 1993) The present report describes a particularly striking and intensely pruritic case of generalised feather loss with hyperkeratosis in a backyard laying hen. Case report A 16 month old black Orpington (Gallus gallus domesticus) hen presented to the University of Queensland Veterinary Medical Centre, Gatton for intense pruritis and feather loss progressively worsening over one month. The hen was obtained as a layer pullet in July 2013 and was kept in a coop with nine other chickens which were clinically healthy. The chickens were fed a commercial layer diet and were given free range of the owner’s yard during the day. Two months prior to presentation the chicken was treated at a local veterinary clinic after the owners noticed discharge from the nares and bubbles from the conjunctival sac.
    [Show full text]
  • Características Morfológicas De 45 Cepas De Microsporum Canis Revista Mexicana De Micología, Vol
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Moreno-Coutiño, Gabriela; Palomares, María de la Paz; Fernández-Martínez, Ramón; Arenas, Roberto Características morfológicas de 45 cepas de Microsporum canis Revista Mexicana de Micología, vol. 29, junio, 2009, pp. 31-35 Sociedad Mexicana de Micología Xalapa, México Disponible en: http://www.redalyc.org/articulo.oa?id=88316057005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Características morfológicas de 45 cepas de Microsporum canis Gabriela Moreno-Coutiño1, María de la Paz Palomares2 Ramón Fernández-Martínez 1, Roberto Arenas1 1 Sección de Micología, Hospital General Dr. Manuel Gea González, SSA. 2Clínica de Especialidades No. 4 de la Secretaría de Salud de la Ciudad de México 9 0 0 Morphologic characteristics of 45 Microsporum canis strains 2 , 5 3 - Abstract. Dermatophytes are pathogen fungi of skin and its appendages. One of them, 1 3 Microsporum spp. has micro and macroscopic characteristics mainly based on the shape and : 9 2 size of macroconidia and echinulations that allow the identification of the species. The macro A Í and micromorphological characteristics of 45 M. canis strains were analized with the G O intention of classifying them into subspecies. All samples had a previous positive direct exam L O C with KOH and were cultured in both Sabouraud dextrose agar with antibiotic and rice media.
    [Show full text]
  • Características Morfológicas De 45 Cepas De Microsporum Canis O R IG IN
    Características morfológicas de 45 cepas de Microsporum canis Gabriela Moreno-Coutiño1, María de la Paz Palomares2 Ramón Fernández-Martínez 1, Roberto Arenas1 1 Sección de Micología, Hospital General Dr. Manuel Gea González, SSA. 2Clínica de Especialidades No. 4 de la Secretaría de Salud de la Ciudad de México 9 0 0 Morphologic characteristics of 45 Microsporum canis strains 2 , 5 3 - Abstract. Dermatophytes are pathogen fungi of skin and its appendages. One of them, 1 3 Microsporum spp. has micro and macroscopic characteristics mainly based on the shape and : 9 2 size of macroconidia and echinulations that allow the identification of the species. The macro A Í and micromorphological characteristics of 45 M. canis strains were analized with the G O intention of classifying them into subspecies. All samples had a previous positive direct exam L O C with KOH and were cultured in both Sabouraud dextrose agar with antibiotic and rice media. I M Thirty five percent grew by the second week. A white velvety colony with a yellowish color on E D the reversal side was the usual phenotype. Fifteen percent of cultures on rice media were A negative. The typical M. canis morphology was seen in 81.1% and macroconidia had an N A C average of 9.08 septa. Sixteen cases had a mixed morphology. Microsporum canis strains are I X easily identified in most cases, however, in atypical specimens, M. audouinii should be ruled E M out. A T S Key words: dermatophytes, Microsporum audouinii. I V E R Resumen. Los dermatofitos son hongos que parasitan la piel y sus anexos.
    [Show full text]
  • 103 Wang.Pdf
    564 ISAH-2007 Tartu, Estonia BIODIVERSITY AND CONCENTRATION OF AIRBORNE FUNGI IN CHICKEN HOUSE Wang, Y.1 , Lu, G.1, Zhang, X.2, Ma, R.3 and Chai, T.2* 1 College of life Science, Dalian Nationalities University, Dalian 116600, China; 2 College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,China; 3 Hospital of Shandong Agricultural University, Tai’an 271018, China; *Corresponding author: Tongjie Chai, Professor. Dr., Director of the Institute for Microbiology; Email:[email protected] ABSTRACT The biodiversity and concentration of airborne fungi in chicken house were investigated. The air samples were collected by means of 6-stage Andersen sampler and common fungal counting media. 78 fungal species were identified from air samplings after mycological examination. they are mainly mitosporic fungi. Cladosporium, Penicillium, Aspergillus, Candida, Alternaria and Fusarium were the predominant fungal genera, including ten species of avian pathogenic fungi, such as A. flavus, A. fumigatus, A. niger and F. sporotrichioides et al. The average concentration of airborne fungi in the chicken house was 2.3×103 CFU/m3. The concentrations of A. flavus, A. fumigatus and A. niger were relatively higher in the air of chicken house. The distribution of airborne fungi in the chicken house shows normal logarithm, the spores of Cladosporium, Penicillium and Aspergillus were mainly distributed within C and D stages (3.0–6.0µm), while stage A and B (>6.0µm) as well as E and F stage (<3.0µm) relatively less. On the other hand, C. albicans, Histoplasma capsulatum, Cryptococcus neoformans and Coccidioides immitis, which occur uncommonly but pose potential threat to public health.
    [Show full text]
  • Introduction
    A continuous publication, open access, peer-reviewed journal ACCESS ONLINE REVIEW Tinea corporis: an updated review Alexander KC Leung MBBS, FRCPC, FRCP (UK and Irel), FRCPCH, FAAP1, Joseph M Lam MD, FRCPC2, Kin Fon Leong MBBS, MRCPCH3, Kam Lun Hon MD, FAAP, FCCM4,5 1Department of Pediatrics, The University of Calgary, Alberta Children’s Hospital, Calgary, Alberta, Canada; 2Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada; 3Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia; 4Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong; 5Department of Paediatrics and Adolescent Medicine, The Hong Kong Children’s Hospital, Hong Kong Abstract of the lesion. Fungal culture is the gold standard to diagnose Background: Tinea corporis is a common fungal infection that dermatophytosis especially if the diagnosis is in doubt and mimics many other annular lesions. Physicians must familiarize results of other tests are inconclusive or the infection is themselves with this condition and its treatment. widespread, severe, or resistant to treatment. The standard treatment of tinea corporis is with topical antifungals. Systemic Objective: This article aimed to provide a narrative updated antifungal treatment is indicated if the lesion is multiple, review on the evaluation, diagnosis, and treatment of tinea extensive, deep, recurrent, chronic, or unresponsive to topical corporis. antifungal treatment, or if the patient is immunodeficient. Methods: A PubMed search was performed with Clinical Conclusion: The diagnosis of tinea corporis is usually clinical Queries using the key term ‘tinea corporis.’ The search strategy and should pose no problem to the physician provided the included clinical trials, meta-analyses, randomized controlled lesion is typical.
    [Show full text]
  • Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes
    Mycopathologia DOI 10.1007/s11046-016-0073-9 Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes G. Sybren de Hoog . Karolina Dukik . Michel Monod . Ann Packeu . Dirk Stubbe . Marijke Hendrickx . Christiane Kupsch . J. Benjamin Stielow . Joanna Freeke . Markus Go¨ker . Ali Rezaei-Matehkolaei . Hossein Mirhendi . Yvonne Gra¨ser Received: 1 July 2016 / Accepted: 28 September 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Type and reference strains of members of anthropophilic dermatophytes in Trichophyton and the onygenalean family Arthrodermataceae have been Epidermophyton, along with some zoophilic species sequenced for rDNA ITS and partial LSU, the riboso- that regularly infect humans. Microsporum is restricted mal 60S protein, and fragments of b-tubulin and to some species around M. canis, while the geophilic translation elongation factor 3. The resulting phyloge- species and zoophilic species that are more remote netic trees showed a large degree of correspondence, from the human sphere are divided over Arthroderma, and topologies matched those of earlier published Lophophyton and Nannizzia. A new genus Guar- phylogenies demonstrating that the phylogenetic rep- romyces is proposed for Keratinomyces ceretanicus. resentation of dermatophytes and dermatophyte-like Thirteen new combinations are proposed; in an over- fungi has reached an acceptable level of stability. All view of all described species it is noted that the largest trees showed Trichophyton to be polyphyletic. In the number of novelties was introduced during the decades present paper, Trichophyton is restricted to mainly the 1920–1940, when morphological characters were used derived clade, resulting in classification of nearly all in addition to clinical features.
    [Show full text]