Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes

Total Page:16

File Type:pdf, Size:1020Kb

Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes Mycopathologia DOI 10.1007/s11046-016-0073-9 Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes G. Sybren de Hoog . Karolina Dukik . Michel Monod . Ann Packeu . Dirk Stubbe . Marijke Hendrickx . Christiane Kupsch . J. Benjamin Stielow . Joanna Freeke . Markus Go¨ker . Ali Rezaei-Matehkolaei . Hossein Mirhendi . Yvonne Gra¨ser Received: 1 July 2016 / Accepted: 28 September 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Type and reference strains of members of anthropophilic dermatophytes in Trichophyton and the onygenalean family Arthrodermataceae have been Epidermophyton, along with some zoophilic species sequenced for rDNA ITS and partial LSU, the riboso- that regularly infect humans. Microsporum is restricted mal 60S protein, and fragments of b-tubulin and to some species around M. canis, while the geophilic translation elongation factor 3. The resulting phyloge- species and zoophilic species that are more remote netic trees showed a large degree of correspondence, from the human sphere are divided over Arthroderma, and topologies matched those of earlier published Lophophyton and Nannizzia. A new genus Guar- phylogenies demonstrating that the phylogenetic rep- romyces is proposed for Keratinomyces ceretanicus. resentation of dermatophytes and dermatophyte-like Thirteen new combinations are proposed; in an over- fungi has reached an acceptable level of stability. All view of all described species it is noted that the largest trees showed Trichophyton to be polyphyletic. In the number of novelties was introduced during the decades present paper, Trichophyton is restricted to mainly the 1920–1940, when morphological characters were used derived clade, resulting in classification of nearly all in addition to clinical features. Species are neo- or epi- typified where necessary, which was the case in Arthroderma curreyi, Epidermophyton floccosum, Electronic supplementary material The online version of Lophophyton gallinae, Trichophyton equinum, T. this article (doi:10.1007/s11046-016-0073-9) contains supple- mentagrophytes, T. quinckeanum, T. schoenleinii, T. mentary material, which is available to authorized users. G. S. de Hoog (&) Á K. Dukik Á J. B. Stielow Á J. Freeke G. S. de Hoog CBS-KNAW Fungal Biodiversity Centre, Utrecht, Shanghai Institute of Medical Mycology, Changzheng The Netherlands Hospital, Second Military Medical University, Shanghai, e-mail: [email protected] China G. S. de Hoog Á K. Dukik G. S. de Hoog Institute of Biodiversity and Ecosystem Dynamics, Biological Sciences Department, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands King Abdulaziz University, Jeddah, Saudi Arabia G. S. de Hoog M. Monod Basic Pathology Department, Federal University of Department of Dermatology, Centre Hospitalier Parana´ State, Curitiba, Parana´, Brazil Universitaire Vaudois, Lausanne, Switzerland G. S. de Hoog Peking University Health Science Center, Research Center for Medical Mycology, Beijing, China 123 Mycopathologia soudanense, and T. verrucosum. In the newly proposed enormously. Species were defined on the basis of taxonomy, Trichophyton contains 16 species, Epider- combined clinical pictures and morphological charac- mophyton one species, Nannizzia 9 species, Microspo- ters in vitro. Sixteen human-associated species were rum 3 species, Lophophyton 1 species, Arthroderma 21 introduced between 1870 and 1920, with Sabouraud’s species and Ctenomyces 1 species, but more detailed [5] magistral overview of the dermatophytes setting a studies remain needed to establish species borderlines. new standard. During the decades that followed, Each species now has a single valid name. Two new application of the new methodological standard led genera are introduced: Guarromyces and Paraphyton. to an explosion of new species and recombined names The number of genera has increased, but species that (Fig. 1). Generic concepts remained confused, leading are relevant to routine diagnostics now belong to to repeated name changes with a total of 350 names smaller groups, which enhances their identification. around the year 1950. Subsequently anamorph nomen- clature stabilized by the wide acceptance of Epider- Keywords Arthrodermataceae Á Dermatophytes Á mophyton, Microsporum and Trichophyton as the Phylogeny Á Taxonomy Á Trichophyton genera covering all dermatophytes. Culture and microscopic morphology worked well as diagnostic parameters when fresh isolates were used, but were difficult to maintain and reproduce Introduction because of rapid degeneration. Standardization with reference strains was therefore difficult, and this led to The dermatophytes belong to the oldest groups of the introduction of numerous taxa that are now microorganisms that have been recognized as agents regarded as synonyms of earlier described species. In of human disease. The taxonomy of these fungi was addition, diverse types of morphological mutants were initiated in 1841 with the studies of Robert Remak and described as separate taxa, such as Keratinomyces David Gruby [1]. Between 1840 and 1875, five of the longifusus, which turned out to be Microsporum main species known today, viz. Microsporum audoui- fulvum with strongly coherent conidia [6]. This nii, Epidermophyton floccosum, Trichophyton schoen- misclassification is an unavoidable consequence of a leinii, T. tonsurans and T. mentagrophytes had already diagnostic system based on the phenotype. Similar been described; this was several decades before the misjudgments of mutants of a single species also discovery of Pasteur’s invention of axenic culture [2]. occurred elsewhere, sometimes unknowingly leading The only ubiquitous modern dermatophyte missing to the description of a separate genus for the mutant: from the list is Trichophyton rubrum [3], which has compare, e.g., the genus pairs Bipolaris/Dissitimurus, been hypothesized to have emerged in the twentieth Scedosporium/Polycytella, Exophiala/Sarcinomyces, century [4]. or Trichosporon/Fissuricella [7]. In addition, several After Pasteur’s time, culturing of dermatophytes dermatophytes are known which do not or poorly and description of new species has taken off sporulate in culture and thus show very limited A. Packeu Á D. Stubbe Á M. Hendrickx A. Rezaei-Matehkolaei Mycology and Aerobiology, Scientific Institute of Public Health Research Institute, Infectious and Tropical Health, Brussels, Belgium Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran C. Kupsch Á Y. Gra¨ser (&) Institute of Microbiology and Hygiene, University A. Rezaei-Matehkolaei Medicine Berlin - Charite´, Berlin, Germany Department of Medical Mycology, School of Medicine, e-mail: [email protected] Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran J. B. Stielow Á J. Freeke Thermo Fisher Scientific, Landsmeer, The Netherlands H. Mirhendi Department of Medical Parasitology and Mycology, M. Go¨ker School of Public Health, Tehran University of Medical Leibniz Institute DSMZ-German Collection of Sciences, Tehran, Iran Microorganisms and Cell Cultures, Brunswick, Germany 123 Mycopathologia clinical clinical + culture mang molecular anthropophiles anthropophiles 100 95 242 90 80 76 70 60 50 42 103 40 35 33 30 27 27 23 24 21 20 15 11 rubrum T. 9 9 8 7 7 8 7 48 10 5 3 3 4 3 4 2 1 2 1 2 1 1 2 24 10 0 1891-1895 1911-1915 1916-1920 1936-1940 1941-1945 1946-1950 1961-1965 1966-1970 1971-1975 1981-1985 1986-1990 1991-1995 2006-2010 2011-2015 1840-1845 1846-1850 1856-1860 1861-1865 1866-1870 1871-1875 1876-1880 1881-1885 1886-1890 1896-1900 1901-1905 1906-1910 1921-1925 1931-1935 1951-1955 1956-1960 1976-1980 1996-2000 2001-2005 1851-1855 1926-1930 Fig. 1 Number of name changes of members of Arthroder- bar at the right shows the approximate number of existing mataceae during the period 1840–2015, with 5-year increments. anthropophilic species (n = 10), the number of times these have The largest number of new names was created when morphol- been described (basionyms: n = 103) and the total number of ogy was added to clinical data as criteria for species distinction. name changes for these 10 species (n = 242). Possible [7] and The period 1960–1995 is marked by the addition of teleomorph proven synonyms of Trichophyton rubrum are listed in ocher names, leading to dual nomenclature of the dermatophytes. The (n = 48), of which (n = 24) were basionyms, in red phenotypic characteristics. Classically such species well as related non-pathogenic species like Trichophy- were partly based on clinical symptoms, e.g., T. ton terrestre and T. ajelloi, were found to produce concentricum or T. schoenleinii, but many more, sexual states, for which the genera Arthroderma and undescribed species may exist [8]. Nannizzia were introduced. This led to a new boom in In the last decades of the twentieth century, it the number of names (Fig. 1) and marked the intro- became obvious that morphology had its limitations duction of dual nomenclature for dermatophytes. The and could not be used as sole characteristic for delineation of sexual interaction began to take an classification or identification. Given these problems, unusual course when Stockdale [12] discovered that Weitzman et al. [9] introduced an additional character members of many apparently non-mating species set in the form of physiological parameters, so-called could be induced to reveal their mating type in an trichophyton-agars utilizing the ability of strains to incomplete mating reaction with testers of Arthro- assimilate
Recommended publications
  • Keratinases and Microbial Degradation of Keratin
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(2):74-82 ISSN: 0976-8610 CODEN (USA): AASRFC Keratinases and microbial degradation of Keratin Itisha Singh 1 and R. K. S. Kushwaha 2 1Department of Microbiology, Saaii College of Medical Sciences and Technology, Chaubepur, Kanpur 2Shri Shakti College, Harbaspur, Ghatampur, Kanpur ______________________________________________________________________________________________ ABSTRACT The present review deals with fungal keratinases including that of dermatophytes. Bacterial keratinases were also included. Temperature and substrate relationship keratinase production has also been discussed. Keratin degradation and industrial involvement of keratinase producing fungi is also reviewed. Key words : Keratinase, keratin, degradation, fungi. ______________________________________________________________________________________________ INTRODUCTION Keratin is an insoluble macromolecule requiring the secretion of extra cellular enzymes for biodegradation to occur. Keratin comprises long polypeptide chains, which are resistant to the activity of non-substrate-specific proteases. Adjacent chains are linked by disulphide bonds thought responsible for the stability and resistance to degradation of keratin (Safranek and Goos, 1982). The degradation of keratinous material is important medically and agriculturally (Shih, 1993; Matsumoto, 1996). Secretion of keratinolytic enzymes is associated with dermatophytic fungi, for which keratin
    [Show full text]
  • The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
    THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible.
    [Show full text]
  • Black Fungal Extremes
    Studies in Mycology 61 (2008) Black fungal extremes Edited by G.S. de Hoog and M. Grube CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Black fungal extremes STUDIE S IN MYCOLOGY 61, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR S Manon van den Hoeven-Verweij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Kasper Luijsterburg, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Diversity of Geophilic Dermatophytes Species in the Soils of Iran; the Significant Preponderance of Nannizzia Fulva
    Journal of Fungi Article Diversity of Geophilic Dermatophytes Species in the Soils of Iran; The Significant Preponderance of Nannizzia fulva Simin Taghipour 1, Mahdi Abastabar 2, Fahimeh Piri 3, Elham Aboualigalehdari 4, Mohammad Reza Jabbari 2, Hossein Zarrinfar 5 , Sadegh Nouripour-Sisakht 6, Rasoul Mohammadi 7, Bahram Ahmadi 8, Saham Ansari 9, Farzad Katiraee 10 , Farhad Niknejad 11 , Mojtaba Didehdar 12, Mehdi Nazeri 13, Koichi Makimura 14 and Ali Rezaei-Matehkolaei 3,4,* 1 Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran; [email protected] 2 Invasive Fungi Research Center, Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; [email protected] (M.A.); [email protected] (M.R.J.) 3 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; [email protected] 4 Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; [email protected] 5 Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran; [email protected] 6 Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75919-94799, Iran; [email protected] Citation: Taghipour, S.; Abastabar, M.; 7 Department of Medical Parasitology and Mycology, School of Medicine, Infectious Diseases and Tropical Piri, F.; Aboualigalehdari, E.; Jabbari, Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; M.R.; Zarrinfar, H.; Nouripour-Sisakht, [email protected] 8 S.; Mohammadi, R.; Ahmadi, B.; Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr 75187-59577, Iran; [email protected] Ansari, S.; et al.
    [Show full text]
  • Geophilic Dermatophytes and Other Keratinophilic Fungi in the Nests of Wetland Birds
    ACTA MyCoLoGICA Vol. 46 (1): 83–107 2011 Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds Teresa KoRnIŁŁoWICz-Kowalska1, IGnacy KIToWSKI2 and HELEnA IGLIK1 1Department of Environmental Microbiology, Mycological Laboratory University of Life Sciences in Lublin Leszczyńskiego 7, PL-20-069 Lublin, [email protected] 2Department of zoology, University of Life Sciences in Lublin, Akademicka 13 PL-20-950 Lublin, [email protected] Korniłłowicz-Kowalska T., Kitowski I., Iglik H.: Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds. Acta Mycol. 46 (1): 83–107, 2011. The frequency and species diversity of keratinophilic fungi in 38 nests of nine species of wetland birds were examined. nine species of geophilic dermatophytes and 13 Chrysosporium species were recorded. Ch. keratinophilum, which together with its teleomorph (Aphanoascus fulvescens) represented 53% of the keratinolytic mycobiota of the nests, was the most frequently observed species. Chrysosporium tropicum, Trichophyton terrestre and Microsporum gypseum populations were less widespread. The distribution of individual populations was not uniform and depended on physical and chemical properties of the nests (humidity, pH). Key words: Ascomycota, mitosporic fungi, Chrysosporium, occurrence, distribution INTRODUCTION Geophilic dermatophytes and species representing the Chrysosporium group (an arbitrary term) related to them are ecologically classified as keratinophilic fungi. Ke- ratinophilic fungi colonise keratin matter (feathers, hair, etc., animal remains) in the soil, on soil surface and in other natural environments. They are keratinolytic fungi physiologically specialised in decomposing native keratin. They fully solubilise na- tive keratin (chicken feathers) used as the only source of carbon and energy in liquid cultures after 70 to 126 days of growth (20°C) (Korniłłowicz-Kowalska 1997).
    [Show full text]
  • An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
    Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa).
    [Show full text]
  • Abstracts of the International Workshop “ONYGENALES 2020
    CZECH MYCOLOGY 72(2): 163–198, SEPTEMBER 10, 2020 (ONLINE VERSION, ISSN 1805-1421) Abstracts of the International Workshop “ONYGENALES 2020: Basic and Clinical Research Advances in Dermatophytes and Dimorphic Fungi” Prague, Czech Republic, September 10–11, 2020 The ONYGENALES workshop is a bi-annual meeting organised by ISHAM Working Group ONYGENALES (onygenales.org). It brings together researchers, students, clinicians, laboratorians and public health professionals across bio- medical disciplines, who are interested in current developments in dermato- phyte, dimorphic and keratinophilic fungi research. The abstracts are arranged according to the thematic sessions as they ap- peared in the programme: Session 1: Antifungal resistance and susceptibility testing Session 2: Taxonomy of keratinophilic and dimorphic fungi Session 3: Taxonomy of dermatophytes Session 4: Population genetics and genomics Session 5: Emerging and zoonotic pathogens Session 6: Epidemiology Session 7: Diagnostics and treatment approaches Session 8: Virulence factors and pathogenesis The workshop was financially supported by the International Society for Hu- man & Animal Mycology; Faculty of Science, Charles University; Institute of Mi- crobiology of the Czech Academy of Sciences; Czechoslovak Society for Microbi- ology; Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague; Czech Society of Dermatology and Venereology, Member of the Czech Medical Association of J. E. Purkyně; and the Czech
    [Show full text]
  • Abstract Dermatophytes and Other Skin Mycoses Found in Featherless
    Dermatophytes and other skin mycoses found in featherless broiler toe webs – Mbata Dermatophytes and other skin mycoses found in featherless broiler toe webs T.I. Mbata . (1) Department of Microbiology, Federal Polytechnic, Nekede, Owerri, Nigeria . Author of Correspondence: T.I.Mbata, Department of Microbiology, Federal Polytechnic, Nekede, Owerri, Nigeria, E-mail: [email protected]. +2348032618922 Abstract Background: Feartherless broilers which are produced by a complex breeding programme from feathered parents carrying the Sc-gene, dissipates excessive body heat under hot and humid conditions. It has high body weight, and grows very rapidly when compared with standard commercial broilers. Their toe webs are bigger than standard commercial broilers, and could harbor fungi which can cause infections where there is the opportunity. Objectives: To isolate and identify the presence of fungi in toe webs of featherless broilers. Methods: A total of 50 featherless broilers' toe webs samples were examined microscopically for the presence of fungi. The samples were examined microscopically and culturally using standard microbiological techniques. Results: The fungi recovered were as follows. Microsporum gypseum 9 (22%), Trichophyton mentagrophytes var. mentagrophytes 5 (12%), Microsporum gallinae 3 (7%), Aspergilus flavus 10 (24%), Fusarium sp 6 (15%), Alternaria alternata 3 (7%) Scopulariopsis brevicaulis 2 (5%) and Candida albicans 3 (7%), Conclusion: The featherless broilers' toe webs habour fungi which cause mycotic skin disease and cannot be regarded as ordinary normal flora of toe webs Key words: Dermatophytes, Non- dermatophytes, featherless broiler, toe webs. INTRODUCTION Animals serve as reservoirs of the zoophilic dermatophytes, and their infections have Dermatophytes are among the most frequent considerable zoonotic importance.
    [Show full text]
  • Phylogeny of Chrysosporia Infecting Reptiles: Proposal of the New Family Nannizziopsiaceae and Five New Species
    CORE Metadata, citation and similar papers at core.ac.uk Provided byPersoonia Diposit Digital 31, de Documents2013: 86–100 de la UAB www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X669698 Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species A.M. Stchigel1, D.A. Sutton2, J.F. Cano-Lira1, F.J. Cabañes3, L. Abarca3, K. Tintelnot4, B.L. Wickes5, D. García1, J. Guarro1 Key words Abstract We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, animal infections Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including rep- ascomycetes resentatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage Chrysosporium within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the mycoses particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, Nannizziopsiaceae mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study Nannizziopsis results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included Onygenales in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as reptiles new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C.
    [Show full text]
  • The New Species Concept in Dermatophytes—A Polyphasic Approach
    Mycopathologia DOI 10.1007/s11046-008-9099-y The New Species Concept in Dermatophytes—a Polyphasic Approach Yvonne Gra¨ser Æ James Scott Æ Richard Summerbell Received: 15 October 2007 / Accepted: 30 January 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The dermatophytes are among the most among these are the cosmopolitan bane of nails and frequently observed organisms in biomedicine, yet feet, Trichophyton rubrum, and the endemic African there has never been stability in the taxonomy, agent of childhood tinea capitis, Trichophyton identification and naming of the approximately 25 soudanense, which are effectively inseparable in all pathogenic species involved. Since the identification analyses. The molecular data require some reinter- of these species is often epidemiologically and pretation of results seen in conventional phenotypic ethically important, the difficulties in dermatophyte tests, but in most cases, phylogenetic insight is identification are a fruitful topic for modern molec- readily integrated with current laboratory testing ular biological investigation, done in tandem with procedures. renewed investigation of phenotypic characters. Molecular phylogenetic analyses such as multilocus Keywords Dermatophytes Á Taxonomy Á sequence typing have had to be tailored to accom- Molecular identification Á modate differing the mechanisms of speciation that Morphological identification Á Species concept have produced the dermatophytes that are commonly seen today. Even so, some biotypes that were unambiguously considered species in the past, based Introduction: Why Dermatophyte Biosystematics on profound differences in morphology and pattern of and Identification are Important (Medical infection, appear consistently not to be distinct and Scientific Aspects) species in modern molecular analyses. Most notable The dermatophytes belong to the small category of disease organisms that almost every human alive will Y.
    [Show full text]
  • Dermatophytosis in Small Animals Antonella S
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Review Article SOJ Microbiology & Infectious Diseases Open Access Dermatophytosis in Small Animals Antonella S. Mattei1*, Márcia A. Beber2 and Isabel M. Madrid3 1University Federal of Rio Grande (FURG), Medical School, RS, Brazil 2Undergraduate Student in Dentistry, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil 3Facuty of Veterinary, Zoonosis Center Control, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil Received: March 06, 2014; Accepted: September 19, 2014; Published: November 04, 2014 *Corresponding author: Antonella Souza Mattei, University Federal of Rio Grande (FURG), Medical School, RS, Brazil, Tel: +55(53)-91447884; E-mail: an- [email protected] Originally soil inhabitants, dermatophytes have evolved to Abstract geophilic, zoophilic, and anthropophilic species based on their dermatophytosis in small animals. In the last years, the pet population maininfect habitatanimals or and host. humans Three dermatophytes and are accordingly genera classified Trichophyton into, has increasedThe purpose as well of the this interest article in havingwas animalsto briefly as pets.review Because about of Microsporum, and Epidermophyton-comprise more than 40 this, these small animals are more and more inserted in our daily life. different species [4,5]. The understanding of ringworm epidemiology, diagnosis, treatment and control in pets is very important for the reason that pets are often Animals can be infected by a great variety of dermatophytes, asymptomatic carriers of dermatophytes being important sources of mostly zoophilic but also geophilic species, and exceptionally infection and/or carriers of infection. So, it is very important to know about this disease to reduce the spread of zoophilic fungal infections anthropophilic dermatophytes (Table 1) [6].
    [Show full text]