Phylogeny of Dermatophytes with Genomic Character Evaluation of Clinically Distinct Trichophyton Rubrum and T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microsporum Canis Genesig Standard
Primerdesign TM Ltd Microsporum canis PQ-loop repeat protein gene genesig® Standard Kit 150 tests For general laboratory and research use only Quantification of Microsporum canis genomes. 1 genesig Standard kit handbook HB10.04.10 Published Date: 09/11/2018 Introduction to Microsporum canis Microsporum canis is a zoophilic dermatophyte which is responsible for dermatophytosis in dogs and cats. They cause superficial infections of the scalp (tinea capitis) in humans and ringworm in cats and dogs. They belong to the family Arthrodermataceae and are most commonly found in humid and warm climates. They have numerous multi-celled macroconidia which are typically spindle-shaped with 5-15 cells, verrucose, thick-walled, often having a terminal knob and 35-110 by 12-25 µm. In addition, they produce septate hyphae and microconidia and the Microsporum canis genome is estimated at 23 Mb. The fungus is transmitted from animals to humans when handling infected animals or by contact with arthrospores contaminating the environment. Spores are very resistant and can live up to two years infecting animals and humans. They will attach to the skin and germinate producing hyphae, which will then grow in the dead, superficial layers of the skin, hair or nails. They secrete a 31.5 kDa keratinolytic subtilisin-like protease as well as three other subtilisin- like proteases (SUBs), SUB1, SUB2 and SUB3, which cause damage to the skin and hair follicle. Keratinolytic protease also provides the fungus nutrients by degrading keratin structures into easily absorbable metabolites. Infection leads to a hypersensitive reaction of the skin. The skin becomes inflamed causing the fungus to move away from the site to normal, uninfected skin. -
Fungal Infections from Human and Animal Contact
Journal of Patient-Centered Research and Reviews Volume 4 Issue 2 Article 4 4-25-2017 Fungal Infections From Human and Animal Contact Dennis J. Baumgardner Follow this and additional works at: https://aurora.org/jpcrr Part of the Bacterial Infections and Mycoses Commons, Infectious Disease Commons, and the Skin and Connective Tissue Diseases Commons Recommended Citation Baumgardner DJ. Fungal infections from human and animal contact. J Patient Cent Res Rev. 2017;4:78-89. doi: 10.17294/2330-0698.1418 Published quarterly by Midwest-based health system Advocate Aurora Health and indexed in PubMed Central, the Journal of Patient-Centered Research and Reviews (JPCRR) is an open access, peer-reviewed medical journal focused on disseminating scholarly works devoted to improving patient-centered care practices, health outcomes, and the patient experience. REVIEW Fungal Infections From Human and Animal Contact Dennis J. Baumgardner, MD Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, WI; Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI; Center for Urban Population Health, Milwaukee, WI Abstract Fungal infections in humans resulting from human or animal contact are relatively uncommon, but they include a significant proportion of dermatophyte infections. Some of the most commonly encountered diseases of the integument are dermatomycoses. Human or animal contact may be the source of all types of tinea infections, occasional candidal infections, and some other types of superficial or deep fungal infections. This narrative review focuses on the epidemiology, clinical features, diagnosis and treatment of anthropophilic dermatophyte infections primarily found in North America. -
Updating the Taxonomy of Dermatophytes of the BCCM/ IHEM Collection According to the New Standard: a Phylogenetic Approach
Mycopathologia https://doi.org/10.1007/s11046-019-00338-7 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL ARTICLE Updating the Taxonomy of Dermatophytes of the BCCM/ IHEM Collection According to the New Standard: A Phylogenetic Approach F. Baert . D. Stubbe . E. D’hooge . A. Packeu . M. Hendrickx Received: 23 January 2019 / Accepted: 30 April 2019 Ó Springer Nature B.V. 2019 Abstract Recent taxonomical revisions based on floccosum as the only representative, fell within the multilocus gene sequencing have provided some Nannizzia clade, whereas the phylogenetic analysis, clarifications to dermatophyte (Arthrodermataceae) based on the ITS region alone, differentiates Epider- family tree. These changes promoted us to investigate mophyton from Nannizzia as a separate genus. Re- the impact of the changed nomenclature of the identification and reclassification of many strains in dermatophyte strains in the BCCM/IHEM fungal the collection have had a profound impact on the collection, which contains strains of all dermatophyte composition of the BCCM/IHEM dermatophyte col- genera except for Ctenomyces. For 688 strains from lection. The biggest change is the decline of preva- this collection, both internal transcribed spacer region lence of Arthroderma strains; starting with 103 strains, (ITS) and partial b-tubulin (BT) sequences were only 22 strains remain in the genus after reassessment. aligned and a multilocus phylogenetic tree was Most Arthroderma strains were reclassified into Tri- constructed. The ITS ? BT phylogentic tree was able chophyton, with A. benhamiae and A. van- to distinguish the genera Arthroderma, Lophophyton, breuseghemii leaving the genus. The amount of Microsporum, Paraphyton, Nannizzia and Trichophy- Microsporum strains also dropped significantly with ton with high certainty. -
Redalyc.Morphological Varieties of Trichophyton Rubrum Clinical Isolates
Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Hernández-Hernández, Francisca; Manzano-Gayosso, Patricia; Córdova-Martínez, Erika; Méndez- Tovar, Luis Javier; López-Martínez, Rubén; García de Acevedo, Beatriz; Orozco-Topete, Rocío; Cerbón, Marco Antonio Morphological varieties of Trichophyton rubrum clinical isolates Revista Mexicana de Micología, núm. 25, diciembre, 2007, pp. 9-14 Sociedad Mexicana de Micología Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=88302504 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Morphological varieties of Trichophyton rubrum clinical isolates Francisca Hernández-Hernández 1, Patricia Manzano-Gayosso1, Erika Córdova-Martínez1, Luis Javier Méndez-Tovar2, Rubén López-Martínez1, Beatriz García de Acevedo3, Rocío Orozco-Topete3, Marco Antonio Cerbón4 1 Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. 2Servicio de Dermatología y Micología, Centro Médico Nacional (CMN) Siglo XXI, IMSS. 3Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”. 4Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. México, D. F., México 7 0 Variedades morfológicas de aislamientos clínicos de Trichophyton rubrum 0 2 , 4 1 Resumen. Trichophyton rubrum es el dermatofito antropofílico causante de micosis - 9 superficiales aislado con mayor frecuencia en todo el mundo. Diversas variedades : 5 2 morfológicas de este dermatofito han sido reportadas, lo cual en algunas ocasiones hace A Í difícil su identificación. Nuestro objetivo fue identificar y determinar la frecuencia de G O variedades morfológicas entre los aislados de T. -
NEWSLETTER 2017•Issue 2
NEWSLETTER 2017•Issue 2 page 2 Deep dermatophytosis page 4 Deep dermatophytosis: A case report page 5 Fereydounia khargensis: A new and uncommon opportunistic yeast from Malaysia page 6 Itraconazole: A quick guide for clinicians Visit us at AFWGonline.com and sign up for updates Editors’ welcome Dr Mitzi M Chua Dr Ariya Chindamporn Adult Infectious Disease Specialist Associate Professor Associate Professor Department of Microbiology Department of Microbiology & Parasitology Faculty of Medicine Cebu Institute of Medicine Chulalongkorn University Cebu City, Philippines Bangkok, Thailand This year we celebrate the 8th year of AFWG: 8 years of pursuing excellence in medical mycology throughout the region; 8 years of sharing expertise and encouraging like-minded professionals to join us in our mission. We are happy to once again share some educational articles from our experts and keep you updated on our activities through this issue. Deep dermatophytosis may be a rare skin infection, but late diagnosis or ineffective treatment may lead to mortality in some cases. This issue of the AFWG newsletter focuses on this fungal infection that usually occurs in immunosuppressed individuals. Dr Pei-Lun Sun takes us through the basics of deep dermatophytosis, presenting data from published studies, and emphasizes the importance of treating superficial tinea infections before starting immunosuppressive treatment. Dr Ruojun Wang and Professor Ruoyu Li share a case of deep dermatophytosis caused by Trichophyton rubrum. In this issue, we also feature a new fungus, Fereydounia khargensis, first discovered in 2014. Ms Ratna Mohd Tap and Dr Fairuz Amran present 2 cases of F. khargensis and show how PCR sequencing is crucial to correct identification of this uncommon yeast. -
Introduction to Mycology
INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1. -
Diversification of Fungal Chitinases and Their Functional Differentiation in 2 Histoplasma Capsulatum 3
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.137125; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Diversification of fungal chitinases and their functional differentiation in 2 Histoplasma capsulatum 3 4 Kristie D. Goughenour1*, Janice Whalin1, 5 Jason C. Slot2, Chad A. Rappleye1# 6 7 1 Department of Microbiology, Ohio State University 8 2 Department of Plant Pathology, Ohio State University 9 10 11 #corresponding author: 12 [email protected] 13 614-247-2718 14 15 *current affiliation: 16 Division of Pulmonary and Critical Care Medicine 17 University of Michigan 18 VA Ann Arbor Healthcare System, Research Service 19 Ann Arbor, Michigan, USA 20 21 22 running title: Fungal chitinases 23 24 keywords: chitinase, GH18, fungi, Histoplasma 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.137125; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 26 ABSTRACT 27 Chitinases enzymatically hydrolyze chitin, a highly abundant biomolecule with many potential 28 industrial and medical uses in addition to their natural biological roles. Fungi are a rich source of 29 chitinases, however the phylogenetic and functional diversity of fungal chitinases are not well 30 understood. -
Bodenmikrobiologie (Version: 07/2019)
Langzeitmonitoring von Ökosystemprozessen - Methoden-Handbuch Modul 04: Bodenmikrobiologie (Version: 07/2019) www.hohetauern.at Impressum Impressum Für den Inhalt verantwortlich: Dr. Fernando Fernández Mendoza & Prof. Mag Dr. Martin Grube Institut für Biologie, Bereich Pflanzenwissenschaften, Universität Graz, Holteigasse 6, 8010 Graz Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O. Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird im Jahr 2017 beprobt. © Newesely Zitiervorschlag: Fernández Mendoza F, Grube M (2019) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 04: Mikrobiologie. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8752-3, doi: 10.1553/GCP_LZM_NPHT_Modul04 Weblink: https://verlag.oeaw.ac.at und http://www.parcs.at/npht/mmd_fullentry.php?docu_id=38612 Inhaltsverzeichnis Zielsetzung ...................................................................................................................................................... 1 Inhalt Vorbereitungsarbeit und benötigtes Material ................................................................................................... 2 a. Materialien für die Probenahme und Probenaufbewahrung ................................................................ 2 b. Materialien und Geräte für die Laboranalyse ...................................................................................... 2 Arbeitsablauf ................................................................................................................................................... -
Keratinases and Microbial Degradation of Keratin
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(2):74-82 ISSN: 0976-8610 CODEN (USA): AASRFC Keratinases and microbial degradation of Keratin Itisha Singh 1 and R. K. S. Kushwaha 2 1Department of Microbiology, Saaii College of Medical Sciences and Technology, Chaubepur, Kanpur 2Shri Shakti College, Harbaspur, Ghatampur, Kanpur ______________________________________________________________________________________________ ABSTRACT The present review deals with fungal keratinases including that of dermatophytes. Bacterial keratinases were also included. Temperature and substrate relationship keratinase production has also been discussed. Keratin degradation and industrial involvement of keratinase producing fungi is also reviewed. Key words : Keratinase, keratin, degradation, fungi. ______________________________________________________________________________________________ INTRODUCTION Keratin is an insoluble macromolecule requiring the secretion of extra cellular enzymes for biodegradation to occur. Keratin comprises long polypeptide chains, which are resistant to the activity of non-substrate-specific proteases. Adjacent chains are linked by disulphide bonds thought responsible for the stability and resistance to degradation of keratin (Safranek and Goos, 1982). The degradation of keratinous material is important medically and agriculturally (Shih, 1993; Matsumoto, 1996). Secretion of keratinolytic enzymes is associated with dermatophytic fungi, for which keratin -
Index to the NLM Classification 2011
National Library of Medicine Classification 2011 Index Disease see Tyrosinemias 1-8 5,12-diHETE see Leukotriene B4 1,2-Benzopyrones see Coumarins 5,12-HETE see Leukotriene B4 1,2-Dibromoethane see Ethylene Dibromide 5-HT see Serotonin 1,8-Dihydroxy-9-anthrone see Anthralin 5-HT Antagonists see Serotonin Antagonists 1-Oxacephalosporin see Moxalactam 5-Hydroxytryptamine see Serotonin 1-Propanol 5-Hydroxytryptamine Antagonists see Serotonin Organic chemistry QD 305.A4 Antagonists Pharmacology QV 82 6-Mercaptopurine QV 269 1-Sar-8-Ala Angiotensin II see Saralasin 7S RNA see RNA, Small Nuclear 1-Sarcosine-8-Alanine Angiotensin II see Saralasin 8-Hydroxyquinoline see Oxyquinoline 13-cis-Retinoic Acid see Isotretinoin 8-Methoxypsoralen see Methoxsalen 15th Century History see History, 15th Century 8-Quinolinol see Oxyquinoline 16th Century History see History, 16th Century 17 beta-Estradiol see Estradiol 17-Ketosteroids WK 755 A 17-Oxosteroids see 17-Ketosteroids A Fibers see Nerve Fibers, Myelinated 17th Century History see History, 17th Century Aardvarks see Xenarthra 18th Century History see History, 18th Century Abate see Temefos 19th Century History see History, 19th Century Abattoirs WA 707 2',3'-Cyclic-Nucleotide Phosphodiesterases QU 136 Abbreviations 2,4-D see 2,4-Dichlorophenoxyacetic Acid Chemistry QD 7 2,4-Dichlorophenoxyacetic Acid General P 365-365.5 Organic chemistry QD 341.A2 Library symbols (U.S.) Z 881 2',5'-Oligoadenylate Polymerase see Medical W 13 2',5'-Oligoadenylate Synthetase By specialties (Form number 13 in any NLM -
Effect of Rutaceae Plant's Essential Oils and Leaf Extracts on Dermatophytic Fungal Cell Morphology
Effect of Rutaceae plant’s essential oils and leaf extracts on dermatophytic fungal cell morphology: a hope for the development of an effective antifungal from natural origin Submitted in fulfillment of the academic requirements for the degree of DOCTOR OF PHILOSOPHY By OLUFUNKE OMOWUMI FAJINMI Research Centre for Plant Growth and Development School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal, Pietermaritzburg May 2016 Pictures sourced from google A healthy, glowing, beautiful skin….the pride of every woman i . Table of Contents STUDENT DECLARATION ................................................................................................... v DECLARATION BY SUPERVISORS ....................................................................................... vi COLLEGE OF AGRICULTURE ENGINEERING & SCIENCE DECLARATION 1- PLAGIARISM ........ vii ACKNOWLEDGEMENTS .................................................................................................. viii COLLEGE OF AGRICULTURE ENGINEERING & SCIENCE DECLARATION 2- PUBLICATIONS ....... x LIST OF FIGURES .............................................................................................................. xi LIST OF TABLES ............................................................................................................... xii LIST OF ABBREVIATIONS ................................................................................................ xiv ABSTRACT ..................................................................................................................... -
The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible.