Molecular Detection of Human Fungal Pathogens As (Except a Few That Have Newly Evolved As Anthropophilic Dermatophytes

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Detection of Human Fungal Pathogens As (Except a Few That Have Newly Evolved As Anthropophilic Dermatophytes 36 Microsporum* Rahul Sharma and Yvonne Gräser Contents 36.1 . Introduction...................................................................................................................................................................... 285 36.1.1. Classification,.Morphology,.Biology,.and.Epidemiology..................................................................................... 287 36.1.1.1. Classification..........................................................................................................................................287 36.1.1.2. Morphology............................................................................................................................................288 36.1.1.3. Biology.and.Epidemiology.....................................................................................................................289 36.1.2. Clinical.Features.and.Pathogenesis......................................................................................................................290 36.1.2.1. Clinical.Features....................................................................................................................................290 36.1.2.2. Pathogenesis...........................................................................................................................................290 36.1.3. Diagnosis.............................................................................................................................................................. 291 36.1.3.1. Conventional.Techniques....................................................................................................................... 291 36.1.3.2. Molecular.Techniques............................................................................................................................291 36.2. Methods............................................................................................................................................................................ 292 36.2.1. Sample.Preparation...............................................................................................................................................292 36.2.1.1. DNA.Extraction.from.Fungal.Colony....................................................................................................292 36.2.1.2. DNA.Extraction.from.Clinical.Specimen..............................................................................................293 36.2.2. Detection.Procedures............................................................................................................................................293 36.2.2.1. Species.Recognition...............................................................................................................................293 36.2.2.2. Strain.Typing..........................................................................................................................................293 36.3. Conclusions.and.Future.Perspectives............................................................................................................................... 295 Acknowledgments......................................................................................................................................................................295 References..................................................................................................................................................................................295 36.1 introdUCtion phytes—plants);.the.other.two.are.Trichophyton.Malmsten5. and.Epidermophyton.Sabouraud6. first.described.in.1845.and. More . has. been. written. about. ringworm. than. any. other. 1910,.respectively..The.name.Microsporum.refers.to.numer- mycotic.disease.of.animals.and.man.and.for.no.other.myco- sis.is.the.older.literature.more.confused. ous.micro-arthrospores.covering.formed.during.its.(ectothrix. type).growth.on.hair.surface.unlike.Trichophyton.that.grows. 1 G.C. Ainsworth and P.K.C. Austwick, 1973 inside.hair.shaft. The.similarity.among.these.dermatophytic.genera.extends. The .above.quote.was.written.when.polymerase.chain.reac- to.their.nutritional.requirement,.which.is.mainly.keratin7. that. tion.(PCR)-based.molecular.methods.have.not.yet.arrived. forms.exoskeleton.covering.in.three.groups.of.higher.verte- at.the.fungal.taxonomic.scene.and.especially.for.mycolo- brates,.i.e.,.birds,.reptiles,.and.mammals..Their.keratinolytic. gists’.studying.dermatophytes..The.PCR.technology.as.we. nature.itself.suggests.that.they.originated.when.life.came.to. know.now.was.only.available.when.Kary.B..Mullis.made. land. from. water. because. aquatic. vertebrates. (e.g.,. whales). a.breakthrough.of.amplifying.DNA.in.vitro,2. and.2.years. lack.exoskeleton.adnexes.like.hair,.feather,.hooves,.which.are. later.the.use.of.thermostable.polymerase3. made.the.whole. primarily.made.of.keratin.and.we.don’t.have.Microsporum. process.automated,.which.revolutionized.biological.inves- (or.other.dermatophyte),.which.is.aquatic.(marine).in.nature. tigations.. This. single. method. has. undoubtedly. had. more. because.it.has.been.shown.that.growth.of.human.pathogenic. application. in. biology. today. than. any. other. technique. in. fungi.(including.dermatophyte.M. gypseum).is.inhibited.by. whole. of. biological. sciences. including. diagnosing. human. high.salt.concentrations.8. Also,.rhexolytic.dehiscence.mech- fungal.infections. anism.is.found.among.fungi.that.have.dry.spores.as.in.all. The. genus. Microsporum. established. by. Gruby. in. 18434. Microsporum. species. (and. not. in. mucilaginous. mass. as. in. was.the.first.genus.to.be.described.among.the.three.genera. Fusarium.spp.,.which.form.blastospores)..Among.the.three. commonly. referred. to. as. dermatophytes. (dermal—skin;. dermatophytic.genera,.Microsporum.is.well.adapted.to.soil. *. The.authors.dedicate.this.chapter.to.Prof..Libero.Ajello,.the.man.who.knew.so.well.the.natural.history.of.dermatophytes. 285 © 2011 by Taylor & Francis Group, LLC 286 Molecular Detection of Human Fungal Pathogens as .(except.a.few.that.have.newly.evolved.as.anthropophilic. dermatophytes.. The. gene(s). responsible. for. triggering. or. species).its.entire.species.produce.macroconidia,.which.have. inhibiting.the..production.of.macroconidia.and.the.extent.of. rough.surfaces.unlike.their.Trichophyton.counterparts. this.inactivation.in.anthropophiles.is.yet.to.be.investigated.. The.member.of.the.genus.can.be.grouped.on.the.basis. It.is.seen.in.agar.or.hair.cultures.of.dermatophytes.that.the. of.ecological.preference.as.geophilic.(saprophytes.in.soil),. fungus.forms.spores.once.the.nutrients.are.depleted.(this.is. zoophilic. (adapted. to. lower. animals),. or. anthropophilic. true. for. the. formation. of. sexual. stages,. i.e.,. sexual. repro- (adapted.to.human).9. These.ecological.groupings.of.various. duction. and. formation. of. ascomata. as. in. Takashio. dilute. species.are.reflected.in.the.phylogenetic.clusters.obtained.by. Sabouraud.agar20) .and.the.phenomenon.is.not.uncommon.in. mtDNA10. and.rDNA.studies.11. This.suggests.that.they.all.were. wide.range.of.fungi..Once.a.fungus.gets.human.skin.(which. previously.soil.dwellers.and.used.to.thrive.on.shed.keratin.. is. still. attached. to. human. body),. it. can. ideally. grow. over. Close.or.direct.contact.with.live.animals.and.later.humans. its.whole.body,.but.due.to.variable.microenvironment.and. made. them. well. adapted. to. their. zoophilic. and. anthropo- medical.arrangements,.the.fungus.is.prevented.from.spread- philic.lifestyle,.respectively..Also,.the.anthropophilic.mem- ing.and.mostly.controlled;.however,.severe.cases.are.often. bers.(M. ferrugineum.and.M. audouinii).must.have.evolved. reported.when.no.medical.treatment.is.done.or.due.to.altered. along. with. Homo sapiens. (modern. human),. which. have. microclimate.(caused.by.drugs.or.reduced.inherent.immu- sparse. hairs. on. their. body. unlike. its. earlier. hominid. viz.. nity)..Human.skin.is.like.a.continuous.culture.with.regular. Australopithecus afarensis,.Homo habilis.or.related.primate. supply.of.fresh.keratin.from.beneath..The.fungus.anchors.its. like.ancestors..This.hypothesis.needs.further.investigation. mycelia.with.the.fresh.integument.by.spreading.radial.in.a. with.right.molecular.marker.and.algorithm,12,13. which.could. ring-like.fashion.(hence,.the.popular.term.ringworm.coined. precisely.date.and.calibrate.the.divergence.of.M. canis.into. by.Anglo-Saxon.ancestors.in.sixteenth.century),9. and.thus. sibling.species.M. auduoinii.in.Africa.and.M. ferrugineum. ensuring.its.survival.on host. in.East.Asia.to.superimpose.precisely.with.the.divergence. Africa.is.thought.to.be.the.center.of.origin.of.Homo sapi- of.Homo sapiens.from.Africa.to.East.Asia..One.theory.sug- ens. based. on. the. available. evidence.21. Ancestral. dermato- gests.that.modern.Homo sapiens.developed.relatively.hair- phytes.including.young.anthropophiles.also.might.have.their. less.bodies.to.evade.parasites14. which.certainly.would.have. origin.in.Africa.22.f sI .this.i .true,.then.the.separation.of.two. included.dermatophytic.fungi..For.adaptation.to.this.altered. lineage.to.become.distinct.species.of.the.M. canis.clade.after. trait.of.nakedness15.n i .humans,.the.evolving.dermatophytes. early.humans.moved.“out.of.Africa”.to.Southeast.Asia23,24. (geophiles.>.zoophiles.>.anthropophiles).that.produce.mac- is.probable,.thereby.causing.allopatric.speciation25. resulting. roconidia.for.transmission,.slowly.lost.their.ability.by.natural.
Recommended publications
  • Geophilic Dermatophytes and Other Keratinophilic Fungi in the Nests of Wetland Birds
    ACTA MyCoLoGICA Vol. 46 (1): 83–107 2011 Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds Teresa KoRnIŁŁoWICz-Kowalska1, IGnacy KIToWSKI2 and HELEnA IGLIK1 1Department of Environmental Microbiology, Mycological Laboratory University of Life Sciences in Lublin Leszczyńskiego 7, PL-20-069 Lublin, [email protected] 2Department of zoology, University of Life Sciences in Lublin, Akademicka 13 PL-20-950 Lublin, [email protected] Korniłłowicz-Kowalska T., Kitowski I., Iglik H.: Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds. Acta Mycol. 46 (1): 83–107, 2011. The frequency and species diversity of keratinophilic fungi in 38 nests of nine species of wetland birds were examined. nine species of geophilic dermatophytes and 13 Chrysosporium species were recorded. Ch. keratinophilum, which together with its teleomorph (Aphanoascus fulvescens) represented 53% of the keratinolytic mycobiota of the nests, was the most frequently observed species. Chrysosporium tropicum, Trichophyton terrestre and Microsporum gypseum populations were less widespread. The distribution of individual populations was not uniform and depended on physical and chemical properties of the nests (humidity, pH). Key words: Ascomycota, mitosporic fungi, Chrysosporium, occurrence, distribution INTRODUCTION Geophilic dermatophytes and species representing the Chrysosporium group (an arbitrary term) related to them are ecologically classified as keratinophilic fungi. Ke- ratinophilic fungi colonise keratin matter (feathers, hair, etc., animal remains) in the soil, on soil surface and in other natural environments. They are keratinolytic fungi physiologically specialised in decomposing native keratin. They fully solubilise na- tive keratin (chicken feathers) used as the only source of carbon and energy in liquid cultures after 70 to 126 days of growth (20°C) (Korniłłowicz-Kowalska 1997).
    [Show full text]
  • Phylogeny of Chrysosporia Infecting Reptiles: Proposal of the New Family Nannizziopsiaceae and Five New Species
    CORE Metadata, citation and similar papers at core.ac.uk Provided byPersoonia Diposit Digital 31, de Documents2013: 86–100 de la UAB www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X669698 Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species A.M. Stchigel1, D.A. Sutton2, J.F. Cano-Lira1, F.J. Cabañes3, L. Abarca3, K. Tintelnot4, B.L. Wickes5, D. García1, J. Guarro1 Key words Abstract We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, animal infections Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including rep- ascomycetes resentatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage Chrysosporium within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the mycoses particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, Nannizziopsiaceae mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study Nannizziopsis results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included Onygenales in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as reptiles new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C.
    [Show full text]
  • New Xerophilic Species of Penicillium from Soil
    Journal of Fungi Article New Xerophilic Species of Penicillium from Soil Ernesto Rodríguez-Andrade, Alberto M. Stchigel * and José F. Cano-Lira Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, Reus, 43201 Tarragona, Spain; [email protected] (E.R.-A.); [email protected] (J.F.C.-L.) * Correspondence: [email protected]; Tel.: +34-977-75-9341 Abstract: Soil is one of the main reservoirs of fungi. The aim of this study was to study the richness of ascomycetes in a set of soil samples from Mexico and Spain. Fungi were isolated after 2% w/v phenol treatment of samples. In that way, several strains of the genus Penicillium were recovered. A phylogenetic analysis based on internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II subunit 2 gene (rpb2) sequences showed that four of these strains had not been described before. Penicillium melanosporum produces monoverticillate conidiophores and brownish conidia covered by an ornate brown sheath. Penicillium michoacanense and Penicillium siccitolerans produce sclerotia, and their asexual morph is similar to species in the section Aspergilloides (despite all of them pertaining to section Lanata-Divaricata). P. michoacanense differs from P. siccitol- erans in having thick-walled peridial cells (thin-walled in P. siccitolerans). Penicillium sexuale differs from Penicillium cryptum in the section Crypta because it does not produce an asexual morph. Its ascostromata have a peridium composed of thick-walled polygonal cells, and its ascospores are broadly lenticular with two equatorial ridges widely separated by a furrow. All four new species are xerophilic.
    [Show full text]
  • The New Species Concept in Dermatophytes—A Polyphasic Approach
    Mycopathologia DOI 10.1007/s11046-008-9099-y The New Species Concept in Dermatophytes—a Polyphasic Approach Yvonne Gra¨ser Æ James Scott Æ Richard Summerbell Received: 15 October 2007 / Accepted: 30 January 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The dermatophytes are among the most among these are the cosmopolitan bane of nails and frequently observed organisms in biomedicine, yet feet, Trichophyton rubrum, and the endemic African there has never been stability in the taxonomy, agent of childhood tinea capitis, Trichophyton identification and naming of the approximately 25 soudanense, which are effectively inseparable in all pathogenic species involved. Since the identification analyses. The molecular data require some reinter- of these species is often epidemiologically and pretation of results seen in conventional phenotypic ethically important, the difficulties in dermatophyte tests, but in most cases, phylogenetic insight is identification are a fruitful topic for modern molec- readily integrated with current laboratory testing ular biological investigation, done in tandem with procedures. renewed investigation of phenotypic characters. Molecular phylogenetic analyses such as multilocus Keywords Dermatophytes Á Taxonomy Á sequence typing have had to be tailored to accom- Molecular identification Á modate differing the mechanisms of speciation that Morphological identification Á Species concept have produced the dermatophytes that are commonly seen today. Even so, some biotypes that were unambiguously considered species in the past, based Introduction: Why Dermatophyte Biosystematics on profound differences in morphology and pattern of and Identification are Important (Medical infection, appear consistently not to be distinct and Scientific Aspects) species in modern molecular analyses. Most notable The dermatophytes belong to the small category of disease organisms that almost every human alive will Y.
    [Show full text]
  • Taxonomy of Dermatophytes – the Classification Systems May Change but the Identification Problems Remain the Same
    ADVANCEMENTS OF MICROBIOLOGY – POSTĘPY MIKROBIOLOGII 2019, 58, 1, 49–58 DOI: 10.21307/PM-2019.58.1.049 TAXONOMY OF DERMATOPHYTES – THE CLASSIFICATION SYSTEMS MAY CHANGE BUT THE IDENTIFICATION PROBLEMS REMAIN THE SAME Sebastian Gnat1, *, Aneta Nowakiewicz1, Przemysław Zięba2 1 University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland 2 State Veterinary Laboratory, Słowicza 2, 20-336 Lublin, Poland Received in August, accepted in November 2018 Abstract: Fungal infections of the skin, hair, and nails are the most prevalent among all fungal infections, currently affecting over 20–25% of the world’s human and animal populations. Dermatophytes are the etiological factors of the most superficial fungal infections. Among other pathogenic filamentous fungi, what distinguishes them is their unique attribute to degrade keratin. The remarkable ability of this group of fungi to survive in different ecosystems results from their morphological and ecological diversity as well as high adaptability to changing environmental conditions. Dermatophytes, although they are one of the oldest groups of microorganisms recognised as patho- gens, have not been classified in a stable taxonomic system for a long time. In terms of diagnostics, dermatophytes still pose a serious problem in the identification procedure, which is often related to therapeutic errors. The increasing number of infections (including zoo- noses), the lack of taxonomic stability, and the ambiguous clinical picture of dermatomycosis cases necessitate the search for new methods for the rapid, cheap, and reproducible species identification of these fungi. In turn, the species identification is determined by the clarity of classifi cation criteria combined with the taxonomic division generally accepted by microbiologists and referring to the views expressed by clinicians, epidemiologists, and scientists.
    [Show full text]
  • S21 Konferans TIPTA ÖNEMLİ MANTARLARIN FİLOGENETİK VE
    Konferans TIPTA ÖNEMLİ MANTARLARIN FİLOGENETİK VE SİSTEMATİĞİ Ahmet ASAN Trakya Üniversitesi, Fen-Edebiyat Fakültesi Biyoloji Bölümü, Edirne, ([email protected]; [email protected]) Fungal infeksiyonlar dünyada oldukça yaygındır. Bulaşıcı özellik taşıyan yüzeyel infeksiyon- lar, dermatofitler ve Candida türleri tarafından oluşturulmaktadır. Bu tür infeksiyonların tanısı zordur ve bazen ekzama gibi diğer hastalıklarla karıştırılabilmektedir (1). Mantarların insanlarda hastalığa yol açtığı, ilk defa 1839’da gösterilmiştir. Schoenlein ve Gruby, daha sonra Trichophyton schoenleinii olarak adlandırılan ve kafa derisinde infeksiyona veya kelliğe (= favus) neden olan türü keşfetmişlerdir (2). Fakat yıllar boyunca fungal hastalıklar bakteriyal hastalıkların gölgesinde kalmıştır. Mantar hastalıklarının önemi, özellikle 1970’li yıllardan sonra artmıştır. Çünkü bu tarihden sonra, uluslararası ulaşım ve bağışıklığı bastırıcı ilaçların kullanımı artmış; ilave olarak AIDS hastalığı ortaya çıkmıştır. Bilinmeyen veya başlangıçta patojen olmadığı düşünülen mantarların neden olduğu fırsatçı infeksiyonların gittikçe arttığı da bilinmektedir. İnsanlarda infeksiyona neden olan birçok tür ve birçok yeni insan patojeni her yıl keşfedilmekte, bu durum fungal taksonomiyi önemli hale getirmektedir (3). Doğru tedavi için mantarın doğru tanınması çok önemlidir. Gelişen dünyada bağışıklık sistemi zayıf hastalarda meydana gelen ölümlerin % 5’den fazlasının sebebi patojen mantarlardır. Tıbbi tedavide artış görülmesine rağmen, fungal infeksiyonların insidansında
    [Show full text]
  • Comparative Genomic Analyses of the Human Fungal Pathogens Coccidioides and Their Relatives
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives Thomas J. Sharpton,1,11 Jason E. Stajich,1 Steven D. Rounsley,2 Malcolm J. Gardner,3 Jennifer R. Wortman,4 Vinita S. Jordar,5 Rama Maiti,5 Chinnappa D. Kodira,6 Daniel E. Neafsey,6 Qiandong Zeng,6 Chiung-Yu Hung,7 Cody McMahan,7 Anna Muszewska,8 Marcin Grynberg,8 M. Alejandra Mandel,2 Ellen M. Kellner,2 Bridget M. Barker,2 John N. Galgiani,9 Marc J. Orbach,2 Theo N. Kirkland,10 Garry T. Cole,7 Matthew R. Henn,6 Bruce W. Birren,6 and John W. Taylor1 1Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA; 2Department of Plant Sciences, The University of Arizona, Tucson Arizona 85721, USA; 3Department of Global Health, Seattle Biomedical Research Institute, Seattle, Washington 98109-5219, USA; 4Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; 5J. Craig Venter Institute, Rockville, Maryland 20850, USA; 6Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 7Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA; 8Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; 9Valley Fever Center for Excellence, The University of Arizona, Tuscon, Arizona 85721, USA ; 10Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans.
    [Show full text]
  • Metagenome Sequence of Elaphomyces Granulatus From
    bs_bs_banner Environmental Microbiology (2015) 17(8), 2952–2968 doi:10.1111/1462-2920.12840 Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome C. Alisha Quandt,1*† Annegret Kohler,2 the sequencing of sporocarp tissue, this study has Cedar N. Hesse,3 Thomas J. Sharpton,4,5 provided insights into Elaphomyces phylogenetics, Francis Martin2 and Joseph W. Spatafora1 genomics, metagenomics and the evolution of the Departments of 1Botany and Plant Pathology, ectomycorrhizal association. 4Microbiology and 5Statistics, Oregon State University, Corvallis, OR 97331, USA. Introduction 2Institut National de la Recherché Agronomique, Centre Elaphomyces Nees (Elaphomycetaceae, Eurotiales) is an de Nancy, Champenoux, France. ectomycorrhizal genus of fungi with broad host associa- 3Bioscience Division, Los Alamos National Laboratory, tions that include both angiosperms and gymnosperms Los Alamos, NM, USA. (Trappe, 1979). As the only family to include mycorrhizal taxa within class Eurotiomycetes, Elaphomycetaceae Summary represents one of the few independent origins of the mycorrhizal symbiosis in Ascomycota (Tedersoo et al., Many obligate symbiotic fungi are difficult to maintain 2010). Other ectomycorrhizal Ascomycota include several in culture, and there is a growing need for alternative genera within Pezizomycetes (e.g. Tuber, Otidea, etc.) approaches to obtaining tissue and subsequent and Cenococcum in Dothideomycetes (Tedersoo et al., genomic assemblies from such species. In this 2006; 2010). The only other genome sequence pub- study, the genome of Elaphomyces granulatus was lished from an ectomycorrhizal ascomycete is Tuber sequenced from sporocarp tissue. The genome melanosporum (Pezizales, Pezizomycetes), the black assembly remains on many contigs, but gene space perigord truffle (Martin et al., 2010).
    [Show full text]
  • Occurrence and Characteristics of Mycotic Agents Isolated from Skin Lesions of Trade Horses and Donkeys in Obollo-Afor, Enugu State, Nigeria
    i OCCURRENCE AND CHARACTERISTICS OF MYCOTIC AGENTS ISOLATED FROM SKIN LESIONS OF TRADE HORSES AND DONKEYS IN OBOLLO-AFOR, ENUGU STATE, NIGERIA BY ANEKE, CHIOMA INYANG PG/M.Sc/13/65113 DEPARTMENT OF VETERINARY PATHOLOGY AND MICROBIOLOGY FACULTY OF VETERINARY MEDICINE UNIVERSITY OF NIGERIA, NSUKKA FEBRUARY, 2016 ii TITLE OCCURRENCE AND CHARACTERISTICS OF MYCOTIC AGENTS ISOLATED FROM SKIN LESIONS OF TRADE HORSES AND DONKEYS IN OBOLLO-AFOR, ENUGU STATE, NIGERIA BY ANEKE, CHIOMA INYANG PG/M.Sc/13/65113 A RESEARCH DISSERTATION SUBMITTED TO THE DEPARTMENT OF VETERINARY PATHOLOGY AND MICROBIOLOGY, FACULTY OF VETERINARY MEDICINE UNIVERSITY OF NIGERIA, NSUKKA IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (M.Sc) IN VETERINARY MICROBIOLOGY FEBRUARY, 201 iii DECLARATION I declare that the work presented in this thesis entitled “OCCURRENCE AND CHARACTERISTICS OF MYCOTIC AGENTS ISOLATED FROM SKIN LESIONS OF TRADE HORSES AND DONKEYS IN OBOLLO-AFOR, ENUGU STATE, NIGERIA’’ has been carried out by me in the Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria under the supervision of Prof. K.F Chah and Prof (Mrs) J.I Okafor. The information derived from the literature has been duly acknowledged in the text and a list of references provided. No part of this thesis has previously been presented for another Degree or Diploma at this or any other institution. I declare that the work described in this dissertation is my original work and has not been previously submitted for any degree to any university or similar institution.
    [Show full text]
  • Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2015 Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections Ellen G. Klinger Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Klinger, Ellen G., "Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections" (2015). All Graduate Theses and Dissertations. 4441. https://digitalcommons.usu.edu/etd/4441 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. VIRULENCE EVOLUTION OF FUNGAL PATHOGENS IN SOCIAL AND SOLITARY BEES WITH AN EMPHASIS ON MULTIPLE INFECTIONS by Ellen G. Klinger A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biology Approved: Dennis L. Welker Rosalind R. James Major Professor Project Advisor Donald W. Roberts John R. Stevens Committee Member Committee Member Carol D. von Dohlen Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2015 ii Disclaimer regarding products used in the dissertation: This paper reports the results of research only. The mention of a proprietary product does not constitute an endorsement or a recommendation by the USDA for its use. Disclaimer about copyrights: The dissertation was prepared by a USDA employee as part of his/her official duties.
    [Show full text]
  • Biological and Evolutionary Diversity in the Genus Aspergillus
    Sexual structures in Aspergillus -- morphology, importance and genomics David M. Geiser Department of Plant Pathology Penn State University University Park, PA Geiser mini-CV • 1989-95: PhD at University of Georgia (Bill Timberlake and Mike Arnold): Aspergillus molecular evolutionary genetics (A. nidulans) • 1995-98: postdoc at UC Berkeley (John Taylor): (A. flavus/oryzae/parasiticus, A. fumigatus, A. sydowii) • 1998-: Faculty at Penn State; Director of Fusarium Research Center -- molecular evolution of Fusarium and other fungi Chaetosartorya Petromyces Hemicarpenteles Neosartorya Fennellia Aspergillus Neocarpenteles Eurotium Warcupiella Neopetromyces Emericella Sexual structures in Aspergillus -- morphology, importance and genomics • Sexual stages associated with Aspergillus • The impact (and lack thereof) of the sexual stage on population biology • What does it mean? Characteristics of clinically important Aspergillus spp. • Ability to grow at 37C • Commonly encountered by humans • Prolific sporulators • Nothing here about sexual stages Approx. 1/3 Aspergillus species has a known sexual stage Petromyces (3) Neopetromyces (1) Neosartorya (32, 3 heterothallic) Chaetosartorya (4) Aspergillus Emericella (34, 1 heterothallic) 148 homothallic 4 heterothallic (427 names) Fennellia (3) Eurotium (69) Warcupiella (1) Hemicarpenteles (4) Neocarpenteles (1) Heterothallics rare; virtually all have a conidial stage Types of ascomata cleistothecium (no hymenium - naked passive spore dispersal) asci asci and paraphyses (hymenium) apothecium perithecium
    [Show full text]
  • Studies on Microbial Production of Lipoxygenase Inhibitor
    STUDIES ON MICROBIAL PRODUCTION OF LIPOXYGENASE INHIBITOR A thesis submitted to the UNIVERSITY OF MYSORE for the award of the degree of DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY By CHIDANANDA.C Department of Fermentation Technology and Bioengineering Central Food Technological Research Institute Council of Scientific and Industrial Research Mysore-570020, INDAI June 2008 Chidananda. C, Date: Senior Research Fellow, Fermentation Technology and Bioengineering Department, Central Food Technological Research Institute, Mysore-570 013. DECLARATION I hereby declare that the thesis entitled “STUDIES ON MICROBIAL PRODUCTION OF LIPOXYGENASE INHIBITOR” submitted to the University of Mysore for the award of the degree of DOCTOR OF PHILOSOPHY is the result of the research work carried out by me in the Discipline of Fermentation Technology and Bioengineering, Central Food Technological Research Institute, Mysore, India, under the guidance of Dr Avinash P Sattur during the period April 2005- June 2008. I further declare that the work embodied in this thesis had not been submitted for the award of degree, diploma or any other similar title. (Chidananda. C) Dr. Avinash P. Sattur, Date: Scientist, Fermentation Technology and Bioengineering Department, CERTIFICATE I hereby certify that the thesis entitled “STUDIES ON MICROBIAL PRODUCTION OF LIPOXIGENASE INHIBITOR” submitted to the University of Mysore for the award of the degree of DOCTOR OF PHILOSOPHY by Mr. CHIDANANDA.C, is the result of the research work carried out by him in the discipline of Fermentation Technology and Bioengineering, Central Food Technological Research Institute, Mysore, India, under my guidance during the period April 2005-June 2008. (Avinash P Sattur) Abstract The thesis reports isolation of several fungal cultures from forest soil and screening of the metabolites for their ability to produce inhibitors against lipoxygenase.
    [Show full text]