Thèse De Doctorat

Total Page:16

File Type:pdf, Size:1020Kb

Thèse De Doctorat AIX-MARSEILLE UNIVERSITÉ Ecole Doctorale Sciences de la Vie et de la Santé THÈSE DE DOCTORAT Spécialité: Génétique Presenté par: Le HE Pour obtenir le grade de docteur de l’Université Aix-Marseille Interactions hôte-pathogène entre Caenorhabditis elegans et le champignon Drechmeria coniospora Soutenue le 2 décembre 2016 devant le jury composé de: Dr. Dominique Ferrandon Rapporteur Dr. Hinrich Schulenburg Rapporteur Dr. Philippe Naquet Président Dr. Eric Record Invité Dr. Jonathan Ewbank Directeur de thèse I TABLE OF CONTENTS Table of Figures ................................................................................................................ IV Table of Tables .................................................................................................................. V CHAPTER 1. Introduction............................................................................................ 1 1.1 Host-pathogen interactions ................................................................................... 1 1.1.1 C. elegans and its innate immunity ............................................................... 1 1.1.2 Nematophagous fungus ................................................................................. 5 1.1.3 Plant pathogenic fungi ................................................................................ 10 1.2 Fungal genetic modification ............................................................................... 17 1.2.1 Small RNA for Cross-species gene silencing ............................................. 17 1.2.2 Transformation ............................................................................................ 23 1.3 A D. coniospora effector and its possible host target ........................................ 29 1.3.1 Fungal effectors and saposins ..................................................................... 29 1.3.2 Ascorbate peroxidase fingerprinting-based effector discovery ................... 34 CHAPTER 2. Fungal genetic modification system .................................................... 36 2.1 Plasmid construction based on Gibson assembly and ccdB selection ................ 37 2.2 Article 1 .............................................................................................................. 39 2.2.1 Additional information: transgenic strains list ............................................ 46 2.3 Discussion and perspective ................................................................................ 47 II CHAPTER 3. Cross species RNAi in D. coniospora ................................................. 50 3.1 Primary small RNA for cross-species RNAi ...................................................... 51 3.2 Secondary small RNA for cross-species RNAi .................................................. 54 3.3 Discussion and perspective ................................................................................ 54 CHAPTER 4. D. coniospora effectors and its genomic sequences ............................ 57 4.1 Article 2 .............................................................................................................. 57 4.2 Additional information I- SapA-SapB protein interaction ............................... 108 4.3 Additional information II- Comparison between ATCC 96282 and ARSEF 6962 111 4.4 Using APEX to identify fungal effectors ......................................................... 113 4.4.1 Discussion and perspective ....................................................................... 119 CHAPTER 5. Materials and Methods ...................................................................... 125 5.1 Plasmid construction based on Gibson assembly and ccdB selection .............. 125 5.2 Fungal genetic modification system ................................................................. 126 5.3 SapA-SapB protein interaction ......................................................................... 126 5.4 Fungal effector identification from APEX worm strains ................................. 127 CHAPTER 6. Conclusion and perspective ............................................................... 115 6.1 Conclusion ........................................................................................................ 115 6.2 Perspective ....................................................................................................... 116 III CHAPTER 7. References.......................................................................................... 117 TABLE OF FIGURES Figure 1.1 Saprophytic and parasitic stages of the nematode-trapping fungus Arthrobotrys oligospora. .................................................................................................... 6 Figure 1.2 Tritrophic lifestyles of the nematophagous fungus P. chlamydosporia ........... 7 Figure 1.3 Parasitic lifecycle of D. coniospora .................................................................. 9 Figure 1.4 Diagram of pathogenic lifestyles.. .................................................................. 11 Figure 1.5 Graphical representation of standard internal operon processing ................... 21 Figure 1.6 One-step isothermal in vitro recombination with Gibson Assembly ............... 25 Figure 1.7 Schematic representation of the gene deletion ................................................ 28 Figure 1.8 Gene-for-gene interactions specify plant disease resistance. ........................... 30 Figure 1.9 Schematic diagram of prosaposin and SapA cleavage. ................................... 32 Figure 2.1 Reporter plasmid construction based on pLH4254.. ....................................... 36 Figure 2.2 Knock-out plasmid construction pLH4252.. ................................................... 38 Figure 3.1 RNAi feeding on rde-1 strain.. ....................................................................... 50 Figure 3.2 RNAi feeding on N2 and IG274 strain.. ......................................................... 52 Figure 3.3 Phenotype of strain IG1602 and RNAi feeding on this strain. ........................ 53 Figure 4.1 Immunoprecipitation of SapA-SapB complex............................................... 108 Figure 4.2 Spore morphology difference between ATCC 96282 and ARSEF 6962. ..... 110 Figure 4.3 PCR verification for the extra 10 kb sequence in ARSEF 6962 genome. .... 112 Figure 4.4 Feeding and washing method for sample preparation.. ................................. 114 Figure 4.5 Protein localization from the 2nd round of mass spectrometry analysis ........ 116 IV Figure 4.6 Peptide counts from a published APEX study. .............................................. 121 TABLE OF TABLES Table 1.1 NLP and CNC genes and their induction by different stimuli ............................ 3 Table 1.2 Typical infection structures of some nematophagous fungi .............................. 5 Table 1.3 Example of selected functionally verified fungal effectors in plant pathogenic fungi .................................................................................................................................. 14 Table 2.1 Plasmids constructed based on Gibson Assembly and ccdB selection ............. 36 Table 2.2 Transgenic strains obtained with the protocol of Article 1 ............................... 46 Table 3.1 Key RNAi proteins in D. coniospora ............................................................... 50 Table 4.1 Worm proteins found in JEM907-infected worms ......................................... 110 Table 4.2 Three rounds of Mass spectrometry analysis .................................................. 116 Table 4.3 Proteins from Mass spectrometry analysis ...................................................... 118 V CHAPTER 1. INTRODUCTION 1.1 Host-pathogen interactions 1.1.1 C. elegans and its innate immunity C. elegans is a small (around 1 mm in length), free-living worm, generally found in rotting fruit and plant matter. It feeds on bacteria and fungi. In the laboratory, it can be maintained on agar plates with a spread layer of Escherichia coli as its food. Starting in the mid-1960s, Sydney Brenner developed C. elegans as a model organism, for studying developmental biology and neurobiology (BRENNER 1974). It takes 3 days for the worm to develop from embryo to adult at 20 °C. During its adulthood, a single hermaphrodite can produce around 300 genetically-identical progeny. The hermaphrodite can also be fertilized by males. Males arise at a very low frequency, 0.1% under standard laboratory conditions. The life span of C. elegans is about 2-3 weeks on average at 20 °C. C. elegans was the first multicellular organism to be sequenced (THE C. ELEGANS SEQUENCING CONSORTIUM 1998). Strains are generally of the same, defined, genetic background. Loss- of function mutants for most genes are available. Additionally, one can knock-down most of its genes with RNAi by feeding (further introduced in 1.2.1.1). All these factors have made C. elegans a good model for various biological studies. Pioneered by Ausubel’s lab, C. elegans has also emerged as a model organism for the study of host-pathogen interactions in the last 15 years (MAHAJAN-MIKLOS et al. 1999; TAN et al. 1999). There are 3 layers for C. elegans defence against pathogens. Firstly, worms are capable of distinguishing some pathogens from non-pathogenic microbes and move away 1 from them, thus potentially avoiding infection (SCHULENBURG AND EWBANK 2007; MCMULLAN et al. 2012; NAKAD et al. 2016). In addition, there are two physical barriers
Recommended publications
  • Diversity of Entomopathogens Fungi: Which Groups Conquered the Insect
    bioRxiv preprint doi: https://doi.org/10.1101/003756; this version posted April 14, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Diversity of entomopathogens Fungi: Which groups conquered the insect body? João P. M. Araújoa & David P. Hughesb aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bDepartment of Entomology and Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. [email protected]; [email protected]; ! Abstract The entomopathogenic Fungi comprise a wide range of ecologically diverse species. This group of parasites can be found distributed among all fungal phyla and as well as among the ecologically similar but phylogenetically distinct Oomycetes or water molds, that belong to a different kingdom (Stramenopila). As a group, the entomopathogenic fungi and water molds parasitize a wide range of insect hosts from aquatic larvae in streams to adult insects of high canopy tropical forests. Their hosts are spread among 18 orders of insects, in all developmental stages such as: eggs, larvae, pupae, nymphs and adults exhibiting completely different ecologies. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, much of which remains unknown. Here we gather together a huge amount of records of these entomopathogens to comparing and describe both their morphologies and ecological traits. These findings highlight a wide range of adaptations that evolved following the evolutionary transition to infecting the most diverse and widespread animals on Earth, the insects.
    [Show full text]
  • Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Unitunicate Pyrenomyceten, Saccharomycetales Und Taphrinales
    Pilzgattungen Europas - Liste 9: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für unitunicate Pyrenomyceten, Saccharomycetales und Taphrinales Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Zur Beachtung: Hier befinden sich auch die Ascomycota ohne Fruchtkörperbildung, selbst dann, wenn diese mit gewissen Discomyceten phylogenetisch verwandt sind. Gattungen 1) Hauptliste 2) Liste der heute nicht mehr gebräuchlichen Gattungsnamen (Anhang) 1) Hauptliste Acanthogymnomyces Udagawa & Uchiyama 2000 (ein Segregate von Spiromastix mit Verwandtschaft zu Shanorella) [Europa?]: Typus: A. terrestris Udagawa & Uchiyama Erstbeschr.: Udagawa, S.I. u. S. Uchiyama (2000), Acanthogymnomyces ..., Mycotaxon 76, 411-418 Acanthonitschkea s. Nitschkia Acanthosphaeria s. Trichosphaeria Actinodendron Orr & Kuehn 1963: Typus: A. verticillatum (A.L. Sm.) Orr & Kuehn (= Gymnoascus verticillatus A.L. Sm.) Erstbeschr.: Orr, G.F. u. H.H. Kuehn (1963), Mycopath. Mycol. Appl. 21, 212 Lit.: Apinis, A.E. (1964), Revision of British Gymnoascaceae, Mycol. Pap. 96 (56 S. u. Taf.) Mulenko, Majewski u. Ruszkiewicz-Michalska (2008), A preliminary checklist of micromycetes in Poland, 330 s. ferner in 1) Ajellomyces McDonough & A.L. Lewis 1968 (= Emmonsiella)/ Ajellomycetaceae: Lebensweise: Z.T. humanpathogen Typus: A. dermatitidis McDonough & A.L. Lewis [Anamorfe: Zymonema dermatitidis (Gilchrist & W.R. Stokes) C.W. Dodge; Synonym: Blastomyces dermatitidis Gilchrist & Stokes nom. inval.; Synanamorfe: Malbranchea-Stadium] Anamorfen-Formgattungen: Emmonsia, Histoplasma, Malbranchea u. Zymonema (= Blastomyces) Bestimm. d. Gatt.: Arx (1971), On Arachniotus and related genera ..., Persoonia 6(3), 371-380 (S. 379); Benny u. Kimbrough (1980), 20; Domsch, Gams u. Anderson (2007), 11; Fennell in Ainsworth et al. (1973), 61 Erstbeschr.: McDonough, E.S. u. A.L.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Occurrence of Nematode – Antagonistic Fungi And
    1 Plant Archives Vol. 19, Supplement 2, 2019 pp. 780-787 e-ISSN:2581-6063 (online), ISSN:0972-5210 OCCURRENCE OF NEMATODE – ANTAGONISTIC FUNGI AND BACTERIA ASSOCIATED WITH PHYTONEMATODES IN THE RHIZOSPHERE OF WHEAT GROWN IN DIFFERENT GOVERNORATES OF EGYPT Korayem, A.M.; Mohamed, M.M.M.; *Noweer, E.M.A.; Abd-El-Khair, H. and Hammam, M.M.A. Plant Pathology Department, National Research Centre, El-Tharir Str., Dokki, Giza, Egypt *Corresponding Author: Ezzat Noweer (Phone: + 2 01223120249; Email: [email protected]) Abstract Survey of plant – parasitic nematodes and their fungal and bacterial antagonists in the rhizosphere of wheat was done in eight governorates, Egypt. A total of 467 soil sample were collected from 72 locations during 2017-2018 growing season. Samples contained eleven phytonematodes, four of them were more common in samples namely, Helicotylenchus spp., Heterodera spp., Pratylenchus spp., and Tylenchorhynchus spp. Fifteen nematode-antagonistic fungi were isolated / from the wheat rhizosphere, nine of them were nematophagous fungi viz. Arthrobotrys conoides, A.oligospora, Dactylaria brochopaga, D.thaumasia var . longa, Dactylella spp ., Monacrosporium spp ., Harposporium anguillulae, Meria spp ., Verticillium spp ., and six of them were fungi producing toxic substances viz. Alternaria spp ., Aspergillus spp ., A.niger, Fusarium spp ., Penicillium spp. and Trichoderma spp . Penicillium spp ., A. conoides, D. Thaumasia var longa, Asperigillus spp ., Verticillium spp . and Trichoderma spp . were the most frequent in samples, their % frequencies were 28.2%, 28.0%, 28.0%, 22.0%, 16.0% and 9.0%, respectively. Six rhizobacteria colonies, Bacillus (B sp1 , B sp2 , B sp3 ), Pseudomonas (P sP1 , P sp2 ) and Serratia sp.
    [Show full text]
  • Complete References List
    Aanen, D. K. & T. W. Kuyper (1999). Intercompatibility tests in the Hebeloma crustuliniforme complex in northwestern Europe. Mycologia 91: 783-795. Aanen, D. K., T. W. Kuyper, T. Boekhout & R. F. Hoekstra (2000). Phylogenetic relationships in the genus Hebeloma based on ITS1 and 2 sequences, with special emphasis on the Hebeloma crustuliniforme complex. Mycologia 92: 269-281. Aanen, D. K. & T. W. Kuyper (2004). A comparison of the application of a biological and phenetic species concept in the Hebeloma crustuliniforme complex within a phylogenetic framework. Persoonia 18: 285-316. Abbott, S. O. & Currah, R. S. (1997). The Helvellaceae: Systematic revision and occurrence in northern and northwestern North America. Mycotaxon 62: 1-125. Abesha, E., G. Caetano-Anollés & K. Høiland (2003). Population genetics and spatial structure of the fairy ring fungus Marasmius oreades in a Norwegian sand dune ecosystem. Mycologia 95: 1021-1031. Abraham, S. P. & A. R. Loeblich III (1995). Gymnopilus palmicola a lignicolous Basidiomycete, growing on the adventitious roots of the palm sabal palmetto in Texas. Principes 39: 84-88. Abrar, S., S. Swapna & M. Krishnappa (2012). Development and morphology of Lysurus cruciatus--an addition to the Indian mycobiota. Mycotaxon 122: 217-282. Accioly, T., R. H. S. F. Cruz, N. M. Assis, N. K. Ishikawa, K. Hosaka, M. P. Martín & I. G. Baseia (2018). Amazonian bird's nest fungi (Basidiomycota): Current knowledge and novelties on Cyathus species. Mycoscience 59: 331-342. Acharya, K., P. Pradhan, N. Chakraborty, A. K. Dutta, S. Saha, S. Sarkar & S. Giri (2010). Two species of Lysurus Fr.: addition to the macrofungi of West Bengal.
    [Show full text]
  • A New Species of <I>Hohenbuehelia</I>
    MYCOTAXON Volume 108, pp. 445–448 April–June 2009 A new species of Hohenbuehelia from China Yu Liu & Tolgor Bau * [email protected] Institute of Mycology, Jilin Agricultural University Changchun 130118, China Abstract — Hohenbuehelia olivacea from China is described as new to science. Key words — Basidiomycota, Pleurotaceae, taxonomy Introduction The genus Hohenbuehelia was established by Schulzer (Schulzer et al. 1866), and it belongs to the family Pleurotaceae (Kirk et al. 2001). The main characteristics of the genus are small to large basidiomata, gills that are decurrent or radiate from a point of central or lateral attachment on the under side of the cap, sessile or stipitate with a lateral pseudostipe (rarely a central stipe), a gelatinous zone often forming below the cap cuticle, monomitic and clamped hyphae, thick- walled metuloids, fusiform cheilocystidia, and commonly with an hour-glass secretory cell surrounded by a mucous droplet at the tip of a short or elongated neck (Thorn 1986, Corner 1994). In earlier studies (Teng 1963; He 1992; Bi et al. 1993, 1997; Chang & Mao 1995; Mao 1998; Chang et al. 2001; Li & Bau 2003), eleven taxa representing Hohenbuehelia have been recorded in China. Recently, an additional new species was discovered during the research on the genus based on morphological examinations of collections. Materials and methods Specimens were examined with traditional taxonomic methods. KOH solution and Melzer’s reagent were used as the mountants when examining the microstructure. Morphological characteristics of the species were described and illustrated according to the observation of the materials. Colour descriptions for * Author for correspondence 446 ... Liu & Bau the new species refer to Ridgway (1912).
    [Show full text]
  • Review of Agricultural and Medicinal Applications of Basidiomycete Mushrooms
    Medio ambiente y desarrollo sustentable Artículo arbitrado Review of agricultural and medicinal applications of basidiomycete mushrooms Revisión sobre las aplicaciones de las setas en agricultura y medicina LORETO ROBLES-HERNÁNDEZ1, 2, ANA CECILIA-GONZÁLEZ- FRANCO1, JUAN MANUEL SOTO- PARRA1 AND FEDERICO MONTES-DOMÍNGUEZ1 Recibido: Abril 18, 2008 Aceptado: Septiembre 09, 2008 Abstract Resumen Basidiomycetes are characterized in part because they produce Los basidiomycetos se caracterizan en parte por producir their basidiospores on a basidium and many but not all have sus basidiosporas sobre un basidio y por tener fíbulas que clamp connections that no other group of fungi has. otros grupos de hongos no tienen. Los basidiomicetos se Basidiomycetes are divided into four classes, Gasteromycetes, dividen en cuatro clases: Gasteromycetos, Ustilaginomycetos, Ustilaginomycetes, Urediniomycetes and Hymenomycetes. The Urediniomycetos e Hymenomycetos. Los Hymenomycetos class Hymenomycetes is characterized by the formation of forma sus basidios en un himenio y sus basidiocarpos basidia in a hymenium. Members of this class form visible macroscópicos son de formas variadas, tales como las setas, macroscopic basidiocarps of different shapes, such as los bejines, los hongos de repisa, etc. Las setas tienen mushrooms, puffballs, shelf fungi, jelly fungi, and bird’s nest propiedades únicas que han influenciado de manera importante fungi. Mushrooms have many unique properties that have played la historia del ser humano, religión y cultura. De todos los major roles in human history, religion, and culture. Of all the hongos, las setas son las más visibles y llamativos. El propósito fungi, these organisms are the most visible and the most colorful. de este trabajo fue revisar el potencial de las setas como The purpose of this work was to review the potential of productoras de metabolitos con aplicaciones en agricultura y basidiomycete mushrooms as producers of metabolites with medicina.
    [Show full text]
  • Conhecimento, Conservação E Uso De FUNGOS Presidente Da República Jair Messias Bolsonaro
    EDITORES Luiz Antonio de Oliveira Maria Aparecida de Jesus Ani Beatriz Jackisch Matsuura Luadir Gasparotto Juliana Gomes de Souza Oliveira Reginaldo Gonçalves de Lima-Neto Liliane Coelho da Rocha Conhecimento, conservação e uso de FUNGOS PRESIDENTE DA REPÚBLICA Jair Messias Bolsonaro MINISTRO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO Marcos César Pontes DIRETORA DO INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA Antonia Maria Ramos Franco Pereira EDITORES Luiz Antonio de Oliveira Maria Aparecida de Jesus Ani Beatriz Jackisch Matsuura Luadir Gasparotto Juliana Gomes de Souza Oliveira Reginaldo Gonçalves de Lima-Neto Liliane Coelho da Rocha Conhecimento, conservação e uso de FUNGOS Manaus 2019 Copyright © 2019, Instituto Nacional de Pesquisas da Amazônia. Todos os direitos reservados. Nenhuma parte desta obra pode ser reproduzida, arqui- vada ou transmitida, em qualquer forma ou por qualquer meio, sem permissão escrita da organização do evento. EDITORES EDITORA INPA Oliveira, L.A., Jesus, M.A., Jackisch-Matsuura, A.B., Gasparotto, Editor: Mario Cohn-Haft. L., Oliveira, J.G.S, Lima-Neto, R.G., Rocha, L.C. Produção editorial: Rodrigo Verçosa, Shirley Ribeiro Cavalcante, Tito Fernandes. EDIÇÃO TÉCNICA Bolsistas: Alan Alves, Luiza Veloso, Mariana Franco, Luiz Antonio de Oliveira, Maria Aparecida de Jesus, Mirian Fontoura, Neoliane Cardoso, Stefany de Castro. Luadir Gasparotto, Ani Beatriz Jackisch Matsuura e Liliane Coelho da Rocha CAPA REVISÃO TÉCNICA Rodrigo Verçosa LuizAntonio de Oliveira, Luadir Gasparotto e Maria Aparecida de Jesus DIAGRAMAÇÃO Juliana Gomes de Souza Oliveira e Rodrigo Verçosa FOTOGRAFIAS As fotos dos fungos da capa dos anais foram as selecionadas no EDITORAÇÃO ELETRÔNICA concurso de fotografia “Maria Eneyda Pacheco Kauffman Fidalgo” Rodrigo Verçosa Todos os resumos publicados neste livro fornecidos pelos autores e o conteúdo dos textos é de exclusiva responsabilidade dos mesmos.
    [Show full text]
  • Nematoctonus Robustus Species Complex
    Persoonia 41, 2018: 202–212 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.41.10 New species of Hohenbuehelia, with comments on the Hohenbuehelia atrocoerulea – Nematoctonus robustus species complex G. Consiglio1, L. Setti 2, R.G. Thorn3,* Key words Abstract Four new species of Hohenbuehelia (Fungi: Pleurotaceae) are described in the group of Hohenbuehelia atrocoerulea and Hohenbuehelia grisea. Hohenbuehelia algonquinensis, found on Pinus in Ontario, Canada, may 28S be distinguished macroscopically from bluish collections of H. atrocoerulea and watery grey-brown collections of 5 new taxa H. grisea by its coal-black pileus. Hohenbuehelia canadensis, on or associated with Pinus in both Ontario and barcoding Alberta, Canada, and Hohenbuehelia nimueae, on Salix in Ontario and Abies in Wyoming, USA, have similarly dark mushrooms fruiting bodies and were previously misidentified as H. approximans (which we treat as a synonym of H. grisea), molecular phylogeny H. atrocoerulea, H. mustialensis or H. nigra. The latter species is shown to be a member of Resupinatus, despite nematophagous the presence of prominent metuloid cystidia in its hymenium. Hohenbuehelia carlothornii has been found in Costa Resupinatus niger Rica; collections of the sexual fruiting bodies were previously identified as H. grisea and isolates from soil nema- todes were identified by the anamorph name Nematoctonus robustus. That name has been treated as a synonym of H. atrocoerulea but, given the genetic and geographic variation within this complex, we transfer it to Hohenbue- helia as a distinct species. Sequences of the nuclear ribosomal DNA internal transcribed spacer region (ITS), the D1/D2 variable region of the large subunit gene, and a portion of the translation elongation factor (TEF1) gene provide good separation and support for these new species.
    [Show full text]
  • Morphological and Molecular Systematics of Resupinatus (Basidiomycota)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-24-2015 12:00 AM Morphological and Molecular Systematics of Resupinatus (Basidiomycota) Jennifer McDonald The University of Western Ontario Supervisor Dr. R. Greg Thorn The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jennifer McDonald 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Life Sciences Commons Recommended Citation McDonald, Jennifer, "Morphological and Molecular Systematics of Resupinatus (Basidiomycota)" (2015). Electronic Thesis and Dissertation Repository. 3135. https://ir.lib.uwo.ca/etd/3135 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Morphological and Molecular Systematics of Resupinatus (Basidiomycota) (Thesis format: Integrated Article) by Jennifer Victoria McDonald Graduate Program in Biology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Jennifer V. McDonald 2015 i Abstract Cyphelloid fungi (small, cup-shaped Agaricomycetes with a smooth spore-bearing surface) are, compared to their
    [Show full text]
  • Gestion Parasitosis María Sol Arias
    ¿CÓMO ACTUAR FRENTE A LOS PARASITISMOS EN GANADERÍA ECOLÓGICA? Manresa, 13 de diciembre Dra. María Sol Arias Vázquez COPAR (Control Parasitario, Universidad de Santiago de Compostela, Facultad de Veterinaria, Lugo, España). E-mail: [email protected] PATOGENICIDAD DE LOS PARÁSITOS EN ANIMALES DE RENTA □ Ingestión reducida (↓ 25%, carga 200 ngi vacuno) □ Digestibilidad reducida (úlceras, gastroenteritis, diarreas sanguinolentas) □ Absorción disminuida (erosión mucosa, petequias, necrosis) Numerosos estudios □ Alteración del metabolismo de la energía y proteína - Reducción en la ganancia de peso □ Expoliación - Disminución de la función del SI - Descenso de la eficacia reproductiva □ Competencia - Limitación para adaptarse a nuevas situaciones de estrés □ Reproducción (retraso pubertad, índices de fertilidad) - Reducción en la producción láctea - Alteraciones en la capa (pelo y piel) - Infecciones secundarias - Muerte poco frecuente NECESIDAD DE UN CONTROL PARASITARIO EFICAZ Y ADECUADO ANÁLISIS DE LAS INFECCIONES PARASITARIAS EN VACUNO PORCENTAJE DE ANIMALES QUE ELIMINAN HUEVOS DE PAR ÁSITOS EN SUS HECES TIPO DE MANEJO % Coccidios % Cestodos % Trematodos % Nematodos Extensivo 4 (0, 8) 18 (11, 26) 25 (16, 33) 73 (65, 82) (N = 98) OR= 0,10 OR= 3,96 OR = 0,99 OR= 1,45 Semi-extensivo 16 (7, 25) 69 (57, 80) 94 (88, 100) 0 (N= 64) OR= 2,10 OR= 16,41 OR= 9,63 Intensivo 46 (37, 55) 2 (0, 4) 51 (42, 60) 0 (N= 122) OR= 33,1 OR= 0,02 OR= 0,23 X2 179,168 23,720 101,799 37,580 (Arias et al ., 2012) GANADERIA ECOLÓGICA = PASTOREO EXTENSIVO = BIENESTAR ANIMAL ≥ 60 % de la ración Pastoreo: ↑ posibilidades ingestión formas infectivas parasitarias Nematodos CICLO gastrointestinales L1 L3 L2 Entre los parásitos más importantes en ganado en pastoreo, por su frecuencia y los daños que provocan, se encuentran los nematodos gastrointestinales.
    [Show full text]
  • Adobe Photoshop
    Slime-Spored Genera: Lecanicillium and similar genera Biological Integrated Pest Management Research Catalog compiled Robert W. Holley Center for Agriculture & Health 16 January 2014 538 Tower Road Fully Indexed Ithaca, New York 14853-2901 (USA) Includes 951 isolates CONTACTING ARSEF COLLECTION STAFF Richard A. Humber Curator and Insect Mycologist [email protected] phone: [+1] 607-255-1276 fax: [+1] 607-255-1132 Karen S. Hansen Biological Technician [email protected] phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 Micheal M. Wheeler Biological Technician [email protected] phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 USDA-ARS Biological Integrated Pest Management Research Robert W. Holley Center for Agriculture and Health 538 Tower Road Ithaca, New York 14853-2901 (USA) ii New nomenclatural rules bring new challenges, and new taxonomic revisions for entomopathogenic fungi Richard A. Humber Insect Mycologist and Curator, ARSEF February 2014 The previous (2007) version of this introductory material for ARSEF catalogs sought to explain some of the phylogenetical rationale for major changes to the taxonomy of many key fungal entomopathogens, especially those involving some key conidial and sexual genera of the ascomycete order Hypocreales. Phylogenetic revisions of the taxonomies of entomopathogenic fungi continued to appear, and the results of these revisions are reflected in the ARSEF catalog as quickly and completely as we can do so. As many of people dealing with entomopathogenic fungi are already aware, there has been one still recent event that has a more far-reaching and pervasive influence whose magnitude still remains to be fully appreciated, but that leaves much of the mycological world (including insect mycology) semiparalyzed by uncertainty and worried about the extent and impacts of changes that still remain unformalized and, hence, a continuing subject for speculation and prediction.
    [Show full text]