Xerophthalmia, and Its Sequels, Blindness and Death in Childhood, Simon Franken PH.D

Total Page:16

File Type:pdf, Size:1020Kb

Xerophthalmia, and Its Sequels, Blindness and Death in Childhood, Simon Franken PH.D Xerophthalmia, and its sequels, blindness and death in childhood, Simon Franken PH.D This booklet is not only for ophthalmologists going to developing countries, but is also meant for general practitioners, nurses and healthcare workers going and living there I do hope that it will somehow contribute to the realisation of responsibility in those who have the distribution of food for their task. Preface Having worked during 22 years in developing mainly tropical countries as teaching ophthalmologist I have at times taken pictures of various abnormalities which prompted patients to come to me for help and advise. For some time I had vague plans about publishing material on ophthalmic problems in developing countries. Now having finished my career I want to make my slides available to others for teaching purposes. The present selection described in this booklet is confined to the topic xerophthalmia. The 189 pictures concerning xerophthalmia and related subjects is the core of this small publication. Each of these pictures has been described in this booklet. It was unavoidable to let an introduction to the topic precede these descriptions. The introduction is continued between the descriptions of pictures. For a thorough introduction to the disease entity xerophthalmia the reader will have to consult Dr.Sommers book. In no way do I pretend to be complete. There is material enough and in order to remain informed about newer insights the regular publications by DSM under the title “Sight and Life” is heartily recommended. It is incorporating the Xerophthalmia Club Bulletin and is published by Dr. Klaus Kraemer in Basel. My introduction is further concerned with a number of accompanying details which in my opinion have found insufficient attention or have been overlooked by others who have worked in this field. As I consider the deficiency to cause the development of anterior polar cataract I include pictures of this abnormality here together with what affects conjunctiva and cornea. I do the same with the variety of scars seen in older people. Anyone who wants to use these illustrations with the fitting descriptions published here is free to do so but is requested to mention the source. I hope that this will contribute to the eradication of hunger and nutritional deficiencies. Xerophthalmia Xerophthalmia is the name for the complex of manifestations connected with deficiency of vitamin A. In summary these consist of night blindness, changes in the conjunctiva and in ultimate stages the loss of the cornea. These various abnormalities of this disease entity are little known in well to do countries. The conditions are not seen because the people are well to do in the twenty-first century. They have no shortage of essential food. They live in nutritional luxury. Only in very exceptional instances manifestations of the deficiency may occur in these countries. With the teaching material widely available for training in ophthalmology the theoretical knowledge may encompass the subject xerophthalmia. But ophthalmologists working on in their own country will never see the condition. In case someone is willing to spend some time working in a developing country he is anyhow facing surprising situations. When he or she is willing to work in a poor area of the host country they certainly will be confronted with clinical conditions they have never or seldom met before in their home country and the practitioner will still be unfamiliar with the manifestations of the overwhelming 1 pattern of diseases in his new not to say strange working situation. Apart from the strange language which requires the help of an interpreter, the customs, the way of doing things, the poverty, the limited means and many unforeseen details will be overwhelming. The gross abnormalities will demand their attention and as surgeons they may be inclined to spend their limited time on matters in which they can be effective, booking some tangible and satisfying results before they return home after their adventure. People born in developing countries trained as ophthalmologist in some developed country are not likely to learn during their training there about many conditions common in their home country. Moreover there seems to exist some tendency towards unbelief in this subject. On the whole there still is a widespread ignorance on the subject notwithstanding the work of Oomen, Escapini, Sommer, ten Doesschate and Sauter. In the countries Ghana, Tanzania, Kenya and Nigeria where the condition is seen fairly frequently I have met considerable ignorance on the subject among the nursing staff, sometimes also among the doctors even among some ophthalmologists. This seems part of the enigma shrouding this clinical entity. This may be partly understandable because the deficiency always sneaks in without undeniable manifestation. Only after the liver store of the vitamin is far below an acceptable level its first manifestation i.e. night blindness (nyctalopia) appears and it mostly appears in children. These do not complain about it and parents often do not notice the abnormality. They may guess what is wrong when a child is crying but they are less concerned when the child comes home after playing outside and is not crying. If the parents notice a slight abnormality at all they may think that this behaviour is so common among the youngsters as not to take action in this stage of the deficiency, which in fact is a dangerous condition and has to be called a disease. Here is probably the main snag of the enigma. The children have a deficient state of nutrition but are not ill. At the most they may be listless and have diarrhoea. Most children have diarrhoea and medical personnel thinks in the first place of an infection and blame the worms but do not know that retinol has also a function in and for the intestinal mucosa. Deficiency of vitamin A may cause diarrhoea thus inviting intestinal infection. Without this trigger the parents are not alarmed by the listlessness of their children and do not take action when the children come home before dark. Then there may not be any knowledgeable expert in the vicinity and parents have to use their time working instead of consulting somebody about what does not alarm them at all. Measles is caused by a virus, is very contagious and occurs in epidemic form. No child having contracted this disease is without symptoms. The same is true for whooping cough and chickenpox. The lack of vitamin A may occur on a large scale in a community without a single alarm raising sign. Xerophthalmia may unexpectedly become manifest when a sudden demand on the liver store is made. Xerophthalmia being a deficiency is evidently not contagious. Nevertheless it occurs usually in epidemic form. The people living in what is called a primitive community have an identical pattern of food supply. They share the same sort of belief and therefore have the same sort of taboo regarding foods fit or unfit for children. The pure form of the deficiency is rare. It is likely to occur when the menu is scanty and is combined with taboos concerning food for children. The most heartrending example I did encounter among children coming from an island in eastern Indonesia. They had their menu so limited that they lost their eyes without other signs of malnutrition. They had not lacked calories and did not suffer from an infectious disease. In East Africa I saw similar situations when the already marginal menu was further limited by failing rains, starving cattle and lacking harvests. In a short scheme we may mention the following stages which can be recognised by a clinician with increasing deficiency of vitamin A. First inability to see things after sunset, unless help is given by a bright light. Then there will be diminished production of mucous in 2 the conjunctiva followed by dryness- xerosis. Finally with continuing deficiency the cornea will be affected with diminished sight or blindness as a result. What the deficiency does to other parts of the body often leading to an early death can not find description here but has to be told by others. If carotene is lacking in the menu other necessary ingredients are usually also lacking. When children are struck by for instance measles while they have a shortage of vitamin A they will be subject to visible damage to their eyes while the first stage connected with the extremely low liver stores has not been noticed by anyone. Not only children, also their parents eating the same meal will be subject to the damage caused by the deficiency. Dekkers found that prisoners in Kenya, were night-blind after half a year in prison. They received monotonous food consisting of the staple food white maize and nothing else. The prison food was apparently a little worse than what they had at home. In other prisons in the same country vegetables were grown in the prison garden. These vegetables were added to the menu of the prisoners. It occurred that people coming in with night blindness were cured of their problem after eating a few weeks the better prison food. They did eat vegetables in the posho, the maize porridge! Such reports tell us that their liver stores of the vitamin were at an unacceptable low level before they got into prison. We know about a very exceptional experiment undertaken by a psychiatric patient in a western country who blamed her personal and other social problems on the ingestion of vitamin A and selected her food in such a way that she avoided any intake of this vitamin and its provitamins. It took her six years before she was night-blind. The deficiency has also been present on a large scale in western countries but has largely been forgotten after the signs did not occur anymore.
Recommended publications
  • JMSCR Vol||08||Issue||02||Page 208-210||February 2020
    JMSCR Vol||08||Issue||02||Page 208-210||February 2020 http://jmscr.igmpublication.org/home/ ISSN (e)-2347-176x ISSN (p) 2455-0450 DOI: https://dx.doi.org/10.18535/jmscr/v8i2.40 Keratomalacia - A Case Report Authors Deepthi Pullepu1*, Deepthi Janga2, V Murali Krishna3 *Corresponding Author Deepthi Pullepu Department of Ophthalmology, Rangaraya Medical College, Kakinada, Andhra Pradesh, India Abstract Xerophthalmia refers to an ocular condition of destructive dryness of conjunctiva and cornea caused due to severe vitamin A deficiency. Usually affects infants, children and women of reproductive age group. It is estimated to affect about one-third of children under the age of five around the world. Keratomalacia means dry and cloudy cornea which melts and perforates, caused due to severe vitamin A deficiency. Here we describe a case of 21 year old female with neurofibromatosis type 1 presenting with keratomalacia. Keywords: Vitamin A deficiency, Xerophthalmia, Keratomalacia. Introduction blindness is a significant contributor Vitamin A is essential for the functioning of the In India, it is estimated that there are immune system, healthy growth and development approximately 6.8 million people who have vision of body and is usually acquired through diet. less than 6/60 in at least one eye due to corneal Globally, 190 million children under five years of diseases; of these, about a million have bilateral age are affected by vitamin A deficiency involvement. They suffer from an increased risk of visual Corneal blindness resulting due to this disease can impairment, illness and death from childhood be completely prevented by institution of effective infections such as measles and those causing preventive or prophylactic measures at the diarrhoea community level.
    [Show full text]
  • Abstract: a 19 Year Old Male Was Diagnosed with Vitamin a Deficiency
    Robert Adam Young Abstract: A 19 year old male was diagnosed with vitamin A deficiency (VAD). Clinical examination shows conjunctival changes with central and marginal corneal ulcers. Patient history and lab testing were used to confirm the diagnosis. I. Case History 19 year old Hispanic Male Presents with chief complaint of progressive blur at distance and near in both eyes, foreign body sensation, ocular pain, photophobia, and epiphora; signs/symptoms are worse in the morning upon wakening. Started 6 months to 1 year ago, and has progressively gotten worse. Patient reports that the right eye is worse than the left eye. Ocular history of Ocular Rosacea Medical history of Hypoaldosteronism, Pernicious Anemia, and Type 2 Polyglandular Autoimmune Syndrome Last eye examination was two weeks ago at a medical center Presenting topical/systemic medications - Tobramycin TID OU, Prednisolone Acetate QD OU (has used for two weeks); Fludrocortisone (used long-term per PCP) Other pertinent info includes reports that patient cannot gain weight, although he has a regular appetite. Patient presents looking very slim, malnourished, and undersized for his age. II. Pertinent findings Entering unaided acuities are 20/400 OD with no improvement with pinhole; 20/50 OS that improves to 20/25 with pinhole. Pupil testing shows (-)APD; Pupils are 6mm in dim light, and constrict to 4mm in bright light. Ocular motilities are full and smooth with no reports of diplopia or pain. Tonometry was performed with tonopen and revealed intraocular pressures of 12 mmHg OD and 11 mmHG OS. Slit lamp examination shows 2+ conjunctival injection with trace-mild bitot spots both nasal and temporal, OU.
    [Show full text]
  • Current Health Issues in the Caribbean BLINDNESS in THE
    Current Health Issues in the Caribbean BLINDNESS IN THE CARIBBEAN Alfred L. Anduze, M.D. St. Croix Vision Center St. Croix Hospital St. Croix U.S. Virgin Islands Caribbean Studies Association Merida, Mexico May 26, 1994 Abstract: Blindness in the Caribbean Background: The prevailing of blindness in the Caribbean region are reviewed in the context of world blindness statistics to identify differences and similarities that might exist. Method: A review of the status of blindness in the U.S. Virgin Islands, Barbados, Jamaica, Puerto Rico, Trinidad, and Mexico; individually with regard to causal etiology, epidemiology, treatment and possible future research. Results: Blindness in the Caribbean is the result of genetics, tropical environment and cultural habits of the inhabitants and consist of Age-related macular disease, Infectious diseases, Diabetes mellitus, Glaucoma, Congenital defects, Xerophthalmia, Trachoma, Trauma and Cataracts. Conclusion: There are almost 50 million people who are legally blind worldwide (i.e. with a vision of 20/200 or less) 2-3 million in the Caribbean region. The social and economic consequences are serious additional deterrents in developing countries. Outline: Causes of Blindness in the Caribbean I. Age-related macular disease a. Vascular insufficiency b. Senile macular degeneration II. Cataracts III. Glaucoma IV. Diabetes mellitus V. Infectious diseases a. Trachoma b. Onchocerciasis c. Leprosy d. Toxoplasmosis e. Toxocariasis f. AIDS VI. Trauma a. industrial/work-related b. sports c. home accidents VII. Nutritional a. Xerophthalmia/keratomalacia b. Iron-deficiency anemia c. Tobacco/Alcohol Retinopathy VIII. Congenital defects a. genetic syndromes b. strabismus Legal blindness is acceptably defined as vision 20/200 (6/60) or less.
    [Show full text]
  • 2002 Samel 10 Most Common Systemic Health Conditions with A
    Avanti Samel / March 15, 2002 10 Most Common Systemic Health Conditions with a Listing of Frequently Prescribed Medications and their Ocular Side Effects HYPERTENSION ACE Inhibitors: Captopril (Capoten}- blurred vision Enalapril (Vasotec) - Blurred vision, conjunctivitis, dry eyes, tearing Quinipril (Accupril)- amblyopia Benazepril (Lotensin)- N/A Lisinopril (Zestril) - Visual loss, diplopia, blurred vision, photophobia Beta-Blockers: Propranolol (Inderal)- visual disturbances, dry eyes Atenolol (Tenormin)- blurred vision, dry eyes, visual disturbances Metoprolol (Lopressor) - blurred vision, dry eyes calcium Channel Blockers: Diltiazem (Cardizem)- Amblyopia, eye irritation Amlodipine (Norvasc)- abnormal vision, conjunctivitis, diplopia, eye pain Verapamil (Calan)- Blurred vision Nifedipine (Procardia) - blurred vision, Transient blindness at the peak of plasma level · Diuretics: Thiazides: Chlorothiazide (Diuril) - Transient blurred vision, xanthopsia Loop: Furosemide (Lasix) - Blurred vision, Xanthopsia Potassium Sparing: Amiloride (Midamor) - Visual disturbances, Increased lOP Triamterene (Dyrenium)- N/A HYPERLIPIDEMIA Statins: Lovastatin (Mevacor) - Blurred vision, Eye irritation Simvastatin (Zocor)- Cataracts Atorvastatin (Lipitor)- Amblyopia, dry eyes, refraction disorder, eye hemorrhage, glaucoma Resins: Cholestyramine (Questran)- Uveitis Fibrates: Gemfibrozil (Lopid)- Blurred vision Niacin: Niacin (Niacor) - Toxic amblyopia, cystoid macular edema ASTHMA ( ) Beta 2 Agonists: Albuterol (Proventil) - N/A ( Salmeterol (Serevent)-
    [Show full text]
  • © Alan Macfarlane and Gerry Martin, 2002 1 MYOPIA: ITS
    © Alan Macfarlane and Gerry Martin, 2002 MYOPIA: ITS COMPARATIVE INCIDENCE AND PROBABLE CAUSES What Rasmussen encountered in his many years of working with Chinese eye problem astonished him. He summarized his impressions thus. 'Three facts stand out clearly in both ancient and modern records of Chinese eyesight: one that they are a highly myopic nation; two that keratomalacia is the major cause of ocular disease; and three that presbyopia is earlier than in the West by about five years. They stand out against an historical background of neglect and abuse, malnutrition, and centuries of State indifference.' (p.48) Moving on to the statistics of myopia, he summarized the research of a quarter of a century by saying that 'only 20 per cent. of all lenses supplied by the ancients, and similar amount by the moderns (excluding high astigmatic) were for old-sight lenses. It is the other 80 per cent. that matters; the 65 per cent. for myopia and the 15 per cent. for glare and therapeutics.' (p.20) Elsewhere he gives slightly different statistics, which applied to those aged under forty years, showed that approximately 75 per cent. of the lenses were supplied for myopia. In a detailed table he presents the figures; in the 'Ancient Chinese Sight Records', 65% were for myopia; in the 'Modern Chinese Sight Records' myopia (simple) or with astigmatism combined accounted for 70% of the lenses.(p.48) The second figure of 70% was based on 120,000 case histories collected by Rasmussen and his colleagues over a period of 25 years. (p.49) The significance of the degree of myopia only comes out if we compare the Chinese figures with those for other nationalities.
    [Show full text]
  • The Main Causes of Blindness and Low Vision in School for Blind
    26ORIGINAL ARTICLE DOI 10.5935/0034-7280.20160006 The main causes of blindness and low vision in school for blind As principais causas de cegueira e baixa visão em escola para deficientes visuais Abelardo Couto Junior1, Lucas Azeredo Gonçalves de Oliveira2 ABSTRACT Objective: Identify and analyze the main causes of blindness and low vision in school for blind. Methods: One hundred sixty-five medical records of visually impaired students were reviewed in an institution specialized in teaching the blind, treated between august 2013 and may 2014. The variables analyzed were age, sex, visual acuity, primary and secondary diagnoses, treatment, optical prescription features and prognosis. Results: 165 students were evaluated, 91 students (55%) are legally blind and only 74 (45%) of the students are classified as low vision. The main causes of blindness were: retinopathy of prematurity (21%), optic nerve atrophy (18%), congenital glaucoma (16%), retinal dystrophy (11%) and cancer (8%). The causes of low vision were: congenital cataract (18%), congenital glaucoma (15%) and retinochoroidal scarring (12%). Conclusion: The main causes of blindness and low vision in the Benjamin Constant Institute are from preventable diseases. Keywords: Blindness; Low vision; Visual acuity; Child; Health school RESUMO Objetivo: Identificar e analisar as principais causas de cegueira e baixa visão em escola para deficientes visuais. Métodos: Foram revisados 165 prontuários de alunos portadores de deficiência visual em instituição especializada no ensino de cegos, atendidos no período de agosto de 2013 a maio de 2014. As variáveis analisadas foram: idade, gênero, acuidade visual, diagnóstico principal e secundário, tratamento, recursos ópticos prescritos e prognóstico. Resultados: Dos 165 alunos avaliados, 91 alunos (55%) são legalmente cegos e apenas 74 (45%) dos alunos são enquadrados como baixa visão.
    [Show full text]
  • Ophthaproblem
    Pratique clinique Clinical Pract ice Ophthaproblem Shaun Segal Sanjay Sharma, MD, MSC, MBA, FRCSC : Ophthalmic Photography : Ophthalmic Photography Photo credit Photo Dieu Hotel University, Laboratory of Queen’s Kingston, Ont. Hospital, 30-year-old woman had been admitted to hospital in infancy with diarrhea, steatorrhea, and failure to thrive. During late childhood, she developed atypi- Acal retinitis pigmentosa involving the retina and a progressive ataxic neuropathy. Investigations showed her serum lacked beta-lipoprotein and her red corpuscles had a spiky shape. Recent ophthalmic examination revealed substantial choroidal atrophy around the disk and a speckled peripheral fundus. Which vitamins should this patient be given as therapy for her disorder? 1. Vitamin A 2. Vitamin E 3. Vitamin C 4. Vitamin B Answer on page 1085 Mr Segal is a medical student at Queen’s University in Kingston, Ont. Dr Sharma is an Associate Professor of Ophthalmology and an Assistant Professor of Epidemiology at Queen’s University VOL 5: AUGUST • AOÛT 2005 d Canadian Family Physician • Le Médecin de famille canadien 1079 Pratique clinique Clinical Pract ice Answer to Ophthaproblem continued from page 1079 1. Vitamin A and 2. vitamin E Th is patient has abetalipoproteinemia (ABL), some- times called Bassen-Kornzweig syndrome,1 a dis- ease characterized by malabsorption of fat. The condition is treated with supplements of the two fat-soluble vitamins A and E. Abetalipoproteinemia manifests itself through signs of lipid malabsorp- tion, dense contracted red blood
    [Show full text]
  • Prevalence and Causes of Low Vision and Blindness Worldwide
    S Afr Optom 2005 64 (2) 44 − 54 Prevalence and causes of low vision and blindness worldwide AO Oduntan* Department of Optometry, University of Limpopo, Private Bag X1106, Sovenga, 0727 South Africa <[email protected]> Abstract Introduction A recent review of the causes and prevalence There are many low vision and blind people of low vision and blindness world wide is lack- worldwide, and there is a considerable amount of ing. Such review is important for highlighting data available on the prevalence of low vision and the causes and prevalence of visual impairment blindness in many parts of the world. The data, in the different parts of the world. Also, it is however, vary significantly from one continent to important in providing information on the types another. In 1995, the World Health Organization and magnitude of eye care programs needed in (WHO) Task Force on data on blindness estimated different parts of the world. In this article, the that there were 37.1 million blind people world- causes and prevalence of low vision and blind- wide, indicating a global prevalence of 0.7 percent1. ness in different parts of the world are reviewed According to that report, the prevalence values and the socio-economic and psychological range from 0.3% in the developed countries to implications are briefly discussed. The review 1.4% in Sub-Saharan African countries. The preva- is based on an extensive review of the litera- lence of visual impairment is expected to be higher ture using computer data bases combined with in the developing countries due to the low level of review of available national, regional and inter- health care services in many of the countries.
    [Show full text]
  • Therapy-Resistant Dry Itchy Eyes Rima Wardeh* , Volker Besgen and Walter Sekundo
    Wardeh et al. Journal of Ophthalmic Inflammation and Infection (2019) 9:13 Journal of Ophthalmic https://doi.org/10.1186/s12348-019-0178-7 Inflammation and Infection BRIEFREPORT Open Access Therapy-resistant dry itchy eyes Rima Wardeh* , Volker Besgen and Walter Sekundo Abstract An 8 years old male presented to our clinic with dry eye symptomes. Different therapiy attemps were made in the last few months and did not lead to any improvement. Examining this patient revealed multiple signs of vitamin A deficiency, which could confirmed by laboratory examination. The initial substitution of vitamin A led to a fast rehabilitation and a following nutrition consulting kept the patient symptom-free over 6 month follow up. Vitamin A deficiency -although rare in the developed countries- is an importent differential diagnosis of the dry eye especially in children. Vitamin A deficiency not only causes ocular manifistaion, but also general symptoms. Dietary change and initial subtitution is the key element for a fast and sustaining improvement. Medical history follow-up examination showed no improvement in the An 8-year-old male child was referred to our pediatric visual acuity nor in the corneal surface. In addition, the ophthalmology department because of burning sensation conjunctiva had developed triangular-shaped superficial and itching in both eyes during the last 4 months. His spots with keratinization in the bulbar conjunctiva nas- mother reported that the child was always pinching his ally, inferiorly, and temporally near the limbus of both eyes while reading or focusing. Topical therapy with eyes. With these findings, the diagnosis of conjunctival dexamethasone eye drops, antihistamine eye drops and corneal xerosis due to vitamin A deficiency was sus- (ketotifen), antibiotic eye drops (ofloxacine) and im- pected.
    [Show full text]
  • The Definition and Classification of Dry Eye Disease
    DEWS Definition and Classification The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry E y e W ork Shop (2 0 0 7 ) ABSTRACT The aim of the DEWS Definition and Classifica- I. INTRODUCTION tion Subcommittee was to provide a contemporary definition he Definition and Classification Subcommittee of dry eye disease, supported within a comprehensive clas- reviewed previous definitions and classification sification framework. A new definition of dry eye was devel- T schemes for dry eye, as well as the current clinical oped to reflect current understanding of the disease, and the and basic science literature that has increased and clarified committee recommended a three-part classification system. knowledge of the factors that characteriz e and contribute to The first part is etiopathogenic and illustrates the multiple dry eye. Based on its findings, the Subcommittee presents causes of dry eye. The second is mechanistic and shows how herein an updated definition of dry eye and classifications each cause of dry eye may act through a common pathway. based on etiology, mechanisms, and severity of disease. It is stressed that any form of dry eye can interact with and exacerbate other forms of dry eye, as part of a vicious circle. II. GOALS OF THE DEFINITION AND Finally, a scheme is presented, based on the severity of the CLASSIFICATION SUBCOMMITTEE dry eye disease, which is expected to provide a rational basis The goals of the DEWS Definition and Classification for therapy. These guidelines are not intended to override the Subcommittee were to develop a contemporary definition of clinical assessment and judgment of an expert clinician in dry eye disease and to develop a three-part classification of individual cases, but they should prove helpful in the conduct dry eye, based on etiology, mechanisms, and disease stage.
    [Show full text]
  • Original Article the Role and Function of Matrix Metalloproteinase-8 in Rhegmatogenous Retinal Detachment
    Int J Clin Exp Pathol 2017;10(7):7325-7332 www.ijcep.com /ISSN:1936-2625/IJCEP0039672 Original Article The role and function of matrix metalloproteinase-8 in rhegmatogenous retinal detachment Hong Pan1, Zhiming Zheng2 Departments of 1Ophthalmology, 2Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People’s Republic of China Received September 7, 2016; Accepted November 18, 2016; Epub July 1, 2017; Published July 15, 2017 Abstract: Rhegmatogenous retinal detachment (RRD) is one blinding disease, and has pathological features cor- related with migration of retinal pigment epithelium (RPE) cells to viscous body. Matrix metalloproteinase-8 (MMP-8) participates in eye diseases including xerophthalmia and retinal disease. Its role in RRD, however, has not been illustrated with the functional mechanism. RPE cells from RRD model mice and normal mice were separated and cultured. MMP-8 expression plasmid was transfected into RPE cell in model group. Real time PCR and Western blot were employed to test expression level of MMP-8, whilst MTT method was used to test proliferation activity of RPE cells. Caspase 3 activity was quantified by test kit. Transwell migration assay was adopted to measure invasion ability of RPE cells. ELISA method was used to test expression level of inflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). MMP-8 expression level was significantly decreased in RPE cells of RRD group, which also had enhanced cell proliferation and migration, accompanied with higher IL-1β and TNF-α levels (P<0.05 compared to control group). After MMP-8 transfection and over-expression, RPE cell proliferation and migration were inhibited, along with higher Caspase 3 activity, plus lower IL-1β and TNF-α expression (P<0.05 compared to model group).
    [Show full text]
  • Prevention of Childhood Blindness Teaching Set
    INTERNATIONAL CENTRE FOR EYE HEALTH Prevention of Childhood Blindness Teaching Set © 1998, updated 2007, International Centre for Eye Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK. Web sites: www.iceh.org.uk and www.jceh.co.uk. Supported by CBM International, HelpAge International, Sight Savers International, Task Force Sight and Life. Table of Contents 1. Childhood Blindness Worldwide 2 2. Causes of Childhood Blindness 3 3. Onset of Blindness 4 4. Examination for Eye Disease in Children 5 5. Vitamin A Deficiency and the Eye 6 6. Symptoms and Signs of Xerophthalmia 8 7. Treatment of Xerophthalmia 10 8. Prevention of Xerophthalmia 12 9. Measles and Corneal Ulceration 14 10. Prevention and Treatment of Measles 15 11. Herpes Simplex Virus 16 12. Harmful Traditional Eye Medicines 17 13. Newborn Conjunctivitis 19 14. Treatment of Newborn Conjunctivitis 21 15. Corneal Ulceration 22 16. Corneal Scarring 25 17. Congenital Cataract 26 18. Causes and Investigation of Congenital Cataract 27 19. Surgery for Congenital Cataract 29 20. Congenital Glaucoma 31 21. Retinoblastoma 33 22. Retinopathy of Prematurity 35 23. Eye Injuries 37 24. Summary 39 Acknowledgments 41 1 1. Childhood Blindness Worldwide 600,000 39% 500,000 34% 400,000 21% 300,000 200,000 Numbers of blind Numberschildren of blind 6% 100,000 0 Rich Middle Poor Very poor Standards of living and health care services How many children in the world are blind? The exact number of children blind in the world is not known but it is estimated that the figure is approximately 1.4 million, with up to 500,000 new cases every year.
    [Show full text]