Larval Helpers and Age Polyethism in Ambrosia Beetles

Total Page:16

File Type:pdf, Size:1020Kb

Larval Helpers and Age Polyethism in Ambrosia Beetles Larval helpers and age polyethism in ambrosia beetles Peter H. W. Biedermann1 and Michael Taborsky Department of Behavioral Ecology, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland Edited by Bert Hölldobler, Arizona State University, Tempe, AZ, and approved September 1, 2011 (received for review May 14, 2011) Division of labor among the workers of insect societies is a the role of division of labor is unknown. Ambrosia beetles live conspicuous feature of their biology. Social tasks are commonly inside trees, which is a habitat extraordinarily favoring social shared among age groups but not between larvae and adults with evolution (12), apparently having fostered at least seven in- completely different morphologies, as in bees, wasps, ants, and dependent origins of fungiculture in beetles (13). Hence, they beetles (i.e., Holometabola). A unique yet hardly studied holome- represent a unique model system to study the evolution of so- tabolous group of insects is the ambrosia beetles. Along with ciality in relation to fungiculture. Interestingly, ambrosia beetles one tribe of ants and one subfamily of termites, wood-dwelling vary in their mating system (inbreeding vs. outbreeding species) ambrosia beetles are the only insect lineage culturing fungi, a trait and ploidy level (haplodiploid vs. diploid species), which are predicted to favor cooperation and division of labor. Their sociality factors that have been assumed to contribute to social evolution, has not been fully demonstrated, because behavioral observations although their respective roles in social evolution are contro- have been missing. Here we present behavioral data and experi- versial (1). The ambrosia beetle subtribe Xyleborini is charac- ments from within nests of an ambrosia beetle, Xyleborinus sax- terized by regular inbreeding, haplodiploidy, and fungiculture (8, esenii. Larval and adult offspring of a single foundress cooperate 14). High relatedness and haplodiploidy in combination with an in brood care, gallery maintenance, and fungus gardening, show- extremely female-biased sex ratio are factors predisposing them ing a clear division of labor between larval and adult colony mem- to advanced sociality (1). Additionally, cooperation in fungi- bers. Larvae enlarge the gallery and participate in brood care and culture is likely because a single individual can hardly maintain gallery hygiene. The cooperative effort of adult females in the a fungus garden on its own (10). Indeed, it was shown that adult colony and the timing of their dispersal depend on the number female offspring delay dispersal from their natal gallery, which of sibling recipients (larvae and pupae), on the presence of the results in an overlap of eggs, larvae, pupae, and at least two mother, and on the number of adult workers. This suggests that generations of adult offspring within a colony (8). A helper effect altruistic help is triggered by demands of brood dependent on of philopatric females has been indicated by the fact that the care. Thus, ambrosia beetles are not only highly social but also number of staying females that do not reproduce correlates show a special form of division of labor that is unique among positively with gallery productivity in Xyleborinus saxesenii Rat- holometabolous insects. zeburg (8). Behavioral observations of ambrosia beetles within their galleries have been missing so far, however, because it is altruism | cooperative fungiculture | insect agriculture | larval workers | virtually impossible to observe them in nature inside the wood. mutualism The only report on eusociality in ambrosia beetles is not based on behavioral data, but reproductive roles have been inferred by ivision of labor enhances work efficiency and is fundamental destructive sampling of active nests of Austroplatypus incompertus to the biological evolution of social complexity (1). This (9). To facilitate observations of beetle behaviors inside galleries, D fi conspicuous feature of social insects largely explains their eco- we developed arti cial observation tubes to contain entire col- logical success (2). Task specialization in insects usually occurs onies of reproducing beetles (15, 16). Here we use this breeding between different age groups. Individuals either pass through technique of X. saxesenii to ask (i) whether offspring produced in consecutive molts during development (Hemimetabola; e.g., a gallery engage in alloparental brood care and fungus mainte- termites, aphids), with immatures resembling small adults and nance, (ii) whether different types of individuals specialize in divergent tasks, and (iii) whether decisions to help and to dis- division of labor occurring typically between such larval nymphs perse relate to the number of potential beneficiaries and the that may show morphological specializations [e.g., first-instar number of potential workers present in the colony. Furthermore, soldier aphids (3)]; or individuals metamorphose by dramatically we evaluate experimentally (iv) whether female dispersal depends reorganizing their morphology during the pupal stage (Hol- on the presence of an egg-laying foundress, because her removal ometabola; e.g., bees, wasps, ants, beetles), which predestines should affect the need for alloparental care. We compare our larvae and adults to specialize in different tasks because of their results with the patterns of sociality known from other major morphological and physiological differentiation. Indeed, larvae insect taxa. of the eusocial Hymenoptera, for example, may produce nest- building silk [weaver ants (4)] and may supply adults with extra Results enzymes and nutrients [trophallaxis in several wasps and ants (2, Age- and Sex-Specific Behavior. Gallery maintenance and brood care 5, 6)]. However, all known cooperative actions of holometabo- were allocated differently between different age classes within lous larvae are apparently completely under adult control (2), anest(Fig.1andTable S1). The gallery was extended mainly by and despite the potential for the evolution of highly specialized larvae (digging), which also reduces the spread of mold (SI Text immature helper morphs, larvae of these taxa are largely im- and Fig. S1), whereas fungus care (cropping) and brood protection mobile and helpless and in need of being moved, fed, and cared (blocking) were exclusively conducted by adults. Blocking was only for by adults (7). In ambrosia beetles, however, in which co- operative breeding (8) and eusociality (9) also have been as- sumed, larvae can move and forage independently in the nest, Author contributions: P.H.W.B. and M.T. designed research; P.H.W.B. performed research; which provides great potential for division of labor between P.H.W.B. analyzed data; and P.H.W.B. and M.T. wrote the paper. larvae and adults. The authors declare no conflict of interest. Division of labor sets the stage for the origin of fungiculture in This article is a PNAS Direct Submission. fungus-growing ants and termites (10). Ambrosia beetles origi- 1To whom correspondence should be addressed. E-mail: [email protected]. nate from solitary or colonial ancestors, and their fungus agri- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. culture may have coevolved with sociality (8, 10, 11). However, 1073/pnas.1107758108/-/DCSupplemental. 17064–17069 | PNAS | October 11, 2011 | vol. 108 | no. 41 www.pnas.org/cgi/doi/10.1073/pnas.1107758108 Downloaded by guest on September 30, 2021 EVOLUTION Fig. 1. Division of labor and age polyethism between age and sex classes in X. saxesenii. Bars show the mean (±SE) proportions of time larvae, teneral females, mature females, and males performed different cooperative tasks. Statistically significant differences between the classes are denoted by different letters (P < 0.05; GEE, details in Table S1). Note scale differences between A–C and D–F. performed by foundresses and mature females, and in 33 of 35 fungal layer on each other’s bodies by allogrooming. In males, cases only one individual blocked at a time. In the 25 cases (in 19 allogrooming was frequently followed by a mating attempt; it may of 93 galleries) when we did not observe a blocking female, the thus serve also to obtain information about female mating status. following behavioral scan revealed that larvae had crawled out of the gallery. At least 71 larvae (x = 3.7 larvae per gallery) died in Adult Female Behaviors Depending on Gallery Composition. The this manner, which suggests that an important function of blocking proportion of time adult females exhibited cropping and allog- is to prevent larvae from getting accidentally lost. rooming and the occurrence of blocking were higher during gal- Larvae and adults took different shares in hygienic behaviors. lery stages when brood dependent on care was present in the Only larvae compressed dispersed waste into compact balls colony (preadult and larval-adult gallery stages) than during other (balling; Movie S1). Frass-balls, pieces of wood, or parts of dead times (postlarval gallery stage; Table S2). Shuffling was shown siblings were moved within the gallery and pushed out of the equally often before, during, and after larval presence within entrance (shuffling; Movie S2) mainly by mature females but to a gallery, whereas adult female digging tended to increase per some extent also by larvae and teneral females (Fig. 1 and Table capita after pupation of the last larva. Cannibalism was not shown S1). The ultimate waste disposer was always the mature female before the hatching of adult daughters, and it occurred more that was blocking the entrance. Cannibalism was directed toward often when dependent offspring were still present. Dispersal of adult beetles (1 case), pupae (3 cases), and larvae (37 cases) that adult females seemed to be contingent on brood care demands: it were already dead (in most cases) or that did not respond to significantly increased in the 10 d after a major proportion of being groomed. In such cases the groomer (larva or adult) would larvae had completed their development relative to the 10 d be- use its mandibles to open the body of the groomed sibling within fore (Wilcoxon: z = −3, P < 0.001, n = 23; Fig.
Recommended publications
  • Thysanoptera, Phlaeothripinae)
    Zootaxa 4759 (3): 421–426 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4759.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:F725F128-FCF3-4182-8E88-ECC01F881515 Two new monobasic thrips genera for a gall-inducing species and its kleptoparasite (Thysanoptera, Phlaeothripinae) LAURENCE A. MOUND & ALICE WELLS Australian National Insect Collection CSIRO, PO Box 1700, Canberra, ACT 2601 [email protected] Abstract Drypetothrips korykis gen. et sp.n. is described as inducing leaf-margin galls on a small tree in Australia, Drypetes deplanchei [Putranjivaceae]. This thrips is similar in appearance to the smaller species of the genus Kladothrips that induce galls on Acacia species. The galls are invaded by a phytophagous kleptoparasitic thrips, Pharothrips hynnis gen. et sp.n., females of which have a forked plough-like structure protruding ventrally on the frons that is unique amongst Thysanoptera. Key words: autapomorphy, systematic relationships, leaf-margin galls, Australia Introduction The small tree, Drypetes deplanchei [Putranjivaceae], is widespread across northern Australia as far south as New- castle on the east coast. This tree is sometimes referred to as native holly, because the leaf margins can be sharply dentate, but these margins may also be almost smooth, and a species of thrips has been found inducing rolled margin galls on both leaf forms (Fig. 1). These galls and their thrips have been found at sites near Taree in coastal New South Wales, and also at Mt. Nebo near Brisbane in south-eastern Queensland.
    [Show full text]
  • Genomic Signals of Adaptation Towards Mutualism and Sociality in Two Ambrosia Beetle Complexes
    life Article Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes Jazmín Blaz 1, Josué Barrera-Redondo 2, Mirna Vázquez-Rosas-Landa 1, Anahí Canedo-Téxon 1, Eneas Aguirre von Wobeser 3 , Daniel Carrillo 4, Richard Stouthamer 5, Akif Eskalen 6, Emanuel Villafán 1, Alexandro Alonso-Sánchez 1, Araceli Lamelas 1 , Luis Arturo Ibarra-Juarez 1,7 , Claudia Anahí Pérez-Torres 1,7 and Enrique Ibarra-Laclette 1,* 1 Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico; [email protected] (J.B.); [email protected] (M.V.-R.-L.); [email protected] (A.C.-T.); [email protected] (E.V.); [email protected] (A.A.-S.); [email protected] (A.L.); [email protected] (L.A.I.-J.); [email protected] (C.A.P.-T.) 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico; [email protected] 3 Cátedras CONACyT/Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; [email protected] 4 Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA; dancar@ufl.edu 5 Department of Plant Pathology, University of California–Riverside, Riverside, CA 92521, USA; [email protected] 6 Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA; [email protected] 7 Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico * Correspondence: [email protected]; Tel.: +52-(228)-842-18-00 Received: 14 October 2018; Accepted: 20 December 2018; Published: 22 December 2018 Abstract: Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages.
    [Show full text]
  • Fungus-Farming Insects: Multiple Origins and Diverse Evolutionary Histories
    Commentary Fungus-farming insects: Multiple origins and diverse evolutionary histories Ulrich G. Mueller* and Nicole Gerardo* Section of Integrative Biology, Patterson Laboratories, University of Texas, Austin, TX 78712 bout 40–60 million years before the subterranean combs that the termites con- An even richer picture emerges when com- Aadvent of human agriculture, three in- struct within the heart of nest mounds (11). paring termite fungiculture to two other sect lineages, termites, ants, and beetles, Combs are supplied with feces of myriads of known fungus-farming insects, attine ants independently evolved the ability to grow workers that forage on wood, grass, or and ambrosia beetles, which show remark- fungi for food. Like humans, the insect leaves (Fig. 1d). Spores of consumed fungus able evolutionary parallels with fungus- farmers became dependent on cultivated are mixed with the plant forage in the ter- growing termites (Fig. 1 a–c). crops for food and developed task-parti- mite gut and survive the intestinal passage tioned societies cooperating in gigantic ag- (11–14). The addition of a fecal pellet to the Ant and Beetle Fungiculture. In ants, the ricultural enterprises. Agricultural life ulti- comb therefore is functionally equivalent to ability to cultivate fungi for food has arisen mately enabled all of these insect farmers to the sowing of a new fungal crop. This unique only once, dating back Ϸ50–60 million years rise to major ecological importance. Indeed, fungicultural practice enabled Aanen et al. ago (15) and giving rise to roughly 200 the fungus-growing termites of the Old to obtain genetic material of the cultivated known species of fungus-growing (attine) World, the fungus-growing ants of the New fungi directly from termite guts, circumvent- ants (4).
    [Show full text]
  • Continued Eastward Spread of the Invasive Ambrosia Beetle Cyclorhipidion Bodoanum (Reitter, 1913) in Europe and Its Distribution in the World
    BioInvasions Records (2021) Volume 10, Issue 1: 65–73 CORRECTED PROOF Rapid Communication Continued eastward spread of the invasive ambrosia beetle Cyclorhipidion bodoanum (Reitter, 1913) in Europe and its distribution in the world Tomáš Fiala1,*, Miloš Knížek2 and Jaroslav Holuša1 1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic 2Forestry and Game Management Research Institute, Prague, Czech Republic *Corresponding author E-mail: [email protected] Citation: Fiala T, Knížek M, Holuša J (2021) Continued eastward spread of the Abstract invasive ambrosia beetle Cyclorhipidion bodoanum (Reitter, 1913) in Europe and its Ambrosia beetles, including Cyclorhipidion bodoanum, are frequently introduced into distribution in the world. BioInvasions new areas through the international trade of wood and wood products. Cyclorhipidion Records 10(1): 65–73, https://doi.org/10. bodoanum is native to eastern Siberia, the Korean Peninsula, Northeast China, 3391/bir.2021.10.1.08 Southeast Asia, and Japan but has been introduced into North America, and Europe. Received: 4 August 2020 In Europe, it was first discovered in 1960 in Alsace, France, from where it has slowly Accepted: 19 October 2020 spread to the north, southeast, and east. In 2020, C. bodoanum was captured in an Published: 5 January 2021 ethanol-baited insect trap in the Bohemian Massif in the western Czech Republic. The locality is covered by a forest of well-spaced oak trees of various ages, a typical Handling editor: Laura Garzoli habitat for this beetle. The capture of C. bodoanum in the Bohemian Massif, which Thematic editor: Angeliki Martinou is geographically isolated from the rest of Central Europe, confirms that the species Copyright: © Fiala et al.
    [Show full text]
  • Kin Recognition in Social Insects and Other Animals-A Review of Recent Findings and a Consideration of Their Relevance for the Theory of Kin Selection
    Proc. Indian Acad. Sci. (Anim. Sci.), Vol. 94, No. 6, December 1985, pp. 587-621. © Printed in India. Kin recognition in social insects and other animals-A review of recent findings and a consideration of their relevance for the theory of kin selection RAGHAVENDRA GADAGKAR Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India MS received 23 May 1985; revised 26 November 1985 Abstract. Kin selection is a widely invoked mechanism to explain the origin and evolution of social behaviour in animals. Proponents of the theory of kin selection place great emphasis on the correlation between asymmetries in genetic relatedness created by haplodiploidy and the multiple origins ofeusociality in the order Hymenoptera. The fact that a female is more closely related genetically to her full sister than to her daughters makes it more profitable for a Hymenopteran female, in terms of inclusive fitness,to raise full sisters rather than daughters or full siblings with a female biased sex ratio rather than offspring. This is sometimes referred to as the haplodiploidy hypothesis. In reality however, genetic relatedness between workers in social insect colonies and the reproductive brood they rear is far below ()75, the value expected for full sisters, often below (}5 the value expected between mother and daughter and, not uncommonly, approaching zero. Such values are on account of queen turnover, multiple mating by queens or polygyny. This situation raises doubts regarding the haplodiploidy hypothesis unless workers can discriminate between full and half sisters and preferentially direct their altruism towards their full sisters only. This would still mean an effective coefficient of genetic relatedness of(}75 between altruist and recipient.
    [Show full text]
  • Fungal Pathogens in Thrips Societies
    Primordial Enemies: Fungal Pathogens in Thrips Societies Christine Turnbull1, Peter D. Wilson1, Stephen Hoggard1, Michael Gillings1, Chris Palmer2, Shannon Smith1, Doug Beattie1, Sam Hussey1, Adam Stow1, Andrew Beattie1* 1 Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia, 2 Department of Natural Resources, Northern Territory Government, Alice Springs, Northern Territory, Australia Abstract Microbial pathogens are ancient selective agents that have driven many aspects of multicellular evolution, including genetic, behavioural, chemical and immune defence systems. It appears that fungi specialised to attack insects were already present in the environments in which social insects first evolved and we hypothesise that if the early stages of social evolution required antifungal defences, then covariance between levels of sociality and antifungal defences might be evident in extant lineages, the defences becoming stronger with group size and increasing social organisation. Thus, we compared the activity of cuticular antifungal compounds in thrips species (Insecta: Thysanoptera) representing a gradient of increasing group size and sociality: solitary, communal, social and eusocial, against the entomopathogen Cordyceps bassiana. Solitary and communal species showed little or no activity. In contrast, the social and eusocial species killed this fungus, suggesting that the evolution of sociality has been accompanied by sharp increases in the effectiveness of antifungal compounds. The antiquity of fungal
    [Show full text]
  • Holocene Palaeoenvironmental Reconstruction Based on Fossil Beetle Faunas from the Altai-Xinjiang Region, China
    Holocene palaeoenvironmental reconstruction based on fossil beetle faunas from the Altai-Xinjiang region, China Thesis submitted for the degree of Doctor of Philosophy at the University of London By Tianshu Zhang February 2018 Department of Geography, Royal Holloway, University of London Declaration of Authorship I Tianshu Zhang hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: Date: 25/02/2018 1 Abstract This project presents the results of the analysis of fossil beetle assemblages extracted from 71 samples from two peat profiles from the Halashazi Wetland in the southern Altai region of northwest China. The fossil assemblages allowed the reconstruction of local environments of the early (10,424 to 9500 cal. yr BP) and middle Holocene (6374 to 4378 cal. yr BP). In total, 54 Coleoptera taxa representing 44 genera and 14 families have been found, and 37 species have been identified, including a new species, Helophorus sinoglacialis. The majority of the fossil beetle species identified are today part of the Siberian fauna, and indicate cold steppe or tundra ecosystems. Based on the biogeographic affinities of the fossil faunas, it appears that the Altai Mountains served as dispersal corridor for cold-adapted (northern) beetle species during the Holocene. Quantified temperature estimates were made using the Mutual Climate Range (MCR) method. In addition, indicator beetle species (cold adapted species and bark beetles) have helped to identify both cold and warm intervals, and moisture conditions have been estimated on the basis of water associated species.
    [Show full text]
  • Honey Bee Presentation
    Population Dynamics of Honeybees – Megan Asche and Kelly Sears Honeybees are eusocial insects that have huge economic importance to the agricultural industry. They are unique in that they have a sex-determination system know as haplodiploidy, which is further complicated through the complementary sex determination (csd) locus. The Csd locus induces a significant genetic load through the consequences of homozygosity in diploid males and heightens the effects of inbreeding. Queen bees are polyandrous, and mate with 10-20 drones. This mating behavior minimizes the likelihood of inbreeding in feral populations. However, within domesticate colonies multiple breeding techniques (closed population, artificial insemination, queen production) have been employed that have selected for economically important traits at the expensive of likely reducing many other traits that are important for colony health. Luckily, despite the breed tendencies of the industry, hybridization with Africanized honeybees has occurred in the Southern US and provided significant gene flow that will help slowly reduce some of the consequences of artificial selection and prohibition of honeybee importation. 1. Graham, Joe M. (editor). The Hive and the Honey Bee (ninth printing). Dadant & Sons. 2010. 2. Guzman-Novoa, Ernesto. Elemental genetics and breeding for the honeybee. 2011 3. Seeley, Thomas D. "Honeybee Ecology: a Study of Adaptation in Social Life 71–74." (1985). 4. Snodgrass, Robert Evans. Anatomy and Physiology of the Honeybee. 1925. 5. Winston, Mark L. The Biology of the Honey Bee. Harvard University Press. 1987. 6. P. R. Oxley. The genetic architecture of honeybee breeding. Advances in insect physiology. (2010) 39: 83-118. 7. Rinderer, Thomas R. Bee Genetics and Breeding.
    [Show full text]
  • Redbay Ambrosia Beetle-Laurel Wilt Pathogen: a Potential Major Problem for the Florida Avocado Industry1
    HS1136 Redbay Ambrosia Beetle-Laurel Wilt Pathogen: A Potential Major Problem for the Florida Avocado Industry1 Jonathan H. Crane, Jorgé Peña, and J.L. Osborne2 Descriptions the redbay ambrosia beetle adults and larvae feed on the fungus. Of the many ambrosia beetle species in Ambrosia Beetles Florida, several Xylosandrus species attack avocado trees, but their boring and their associated fungi do not Ambrosia beetles are members of the insect tribe generally cause the entire tree to die (Atkinson and Xyleborini and are known for attacking various Peck, 1994; Bryant, 2007; Mayfield, 2007; Mayfield woody plants, causing some limb and stem dieback and Thomas, 2006). In contrast, the redbay ambrosia and sometimes plant death (Rabaglia et al., 2006; beetle and its associated fungus (which causes laurel Atkinson and Peck, 1994). There are at least 30 wilt; Raffaelea lauricola) can cause whole tree death species of ambrosia beetles in Florida, several of (Fraedrich et al., 2008). which are non-native (Thomas, 2007). Typically ambrosia beetles have a symbiotic relationship with a Most ambrosia beetles attack trees and shrubs fungus, and the beetles carry fungal spores on their that are stressed, dying, or dead. Plant stress may be bodies. the result of drought, flooding, freezing temperature damage, wind damage, or very poor cultural When the beetles bore into the sapwood of the practices. In contrast, some ambrosia beetles -- the host tree, the galleries formed from the beetle boring redbay ambrosia beetle included -- attack healthy are inoculated with the fungal spores, which then trees. More importantly, the fungus that causes laurel germinate and infect the host tissue (Atkinson and wilt, which accompanies this beetle, often causes tree Peck, 1994; Thomas, 2007).
    [Show full text]
  • Pp11–32 Of: Evolution of Ecological and Behavioural Diversity: Australian Acacia Thrips As Model Organisms
    PART I ECOLOGY AND EVOLUTION OF AUSTRALIAN ACACIA THRIPS SYSTEMATIC FOUNDATIONS In Genesis, light and order were brought forth from chaos, and the world’s biota emerged in six metaphorical ‘days’. The job of an insect systematist is similar but considerably more laborious: from a complex assemblage of forms with sparse biological information attached, to organise, describe and categorise diversity into more or less natural units that share genes. Most biologists only come to appreciate these labours when they are compelled to study a group whose taxonomy is in a chaotic state. Until then, they might view taxonomy as the purview of specialists using arcane knowledge for dubious return on investment, rather than the domain of the only scientists fulfilling God’s instructions to Adam that he name each living thing. This volume provides a comprehensive treatment of Acacia thrips systematics and integrates it with other areas of their biology. As such, the interplay between biology and systematics assumes paramount importance. Non-systematists benefit from systematics in myriad ways. First, without systematics, other biologists remain ignorant not only of what biological units they are studying or seeking to conserve, but what they could choose to study. Indeed, the behavioural studies by Crespi (1992a,b) that led to a resurgence of interest in this group were driven by, and wholly dependent upon, Mound’s (1970, 1971) systematic work. Second, the morphology that most systematists use in species description provides an initial guide to ecological and behavioural phenomena most worthy of study, since morphology sits at the doorstep into natural history, behaviour, ecology and evolution.
    [Show full text]
  • Bark and Ambrosia Beetles and Their Associated Fungi Colonizing
    Walnut Council Bulletin Promoting Walnut and Other Fine Hardwoods Volume 40, Number 2 ISSN 1041-5769 June 2013 Walnut Council State Chapter Reports Bark and Ambrosia Beetles and Their Associated Fungi Colonizing Stressed Walnut in Missouri and Indiana Missouri Chapter Indiana Chapter Report The Missouri Chapter of the Walnut Council had its spring The Indiana Chapter met on April 20th at the Bill By Dr. Sharon Reed and Dr. James English, post-doctoral fellow In addition to walnut twig beetles, there are many other types meeting on Friday and Saturday, May 10 & 11 at member’s Rodecker property in central Indiana with 34 in and professor of the University of Missouri Plant Sciences of bark- and wood-boring beetles that create egg galleries in properties in central Missouri. On Friday, the 32 attendees attendance. The sessions were led by Lenny Farlee Division, Dr. Jennifer Juzwik, forest pathologist of the Forest black walnut trees. Most of these beetles carry fungi on their carpooled to the Fred Crouse property. Management of (Purdue University extension), and Phil O’Connor Service Northern Research Station, and Dr. Matt Ginzel, bodies, some of which can be pathogenic to trees. Researchers mainly white and red oak was discussed along with the past (Indiana Division of Forestry). The 10 year old planting associate professor of the Purdue Department of Entomology at the University of Missouri, Purdue University and the Forest management history and plans for the future. featured over 2,000 walnut trees with some single and Service have teamed up to investigate which bark and ambrosia Thousand cankers disease (TCD) is a growing threat to black double row white pine borders.
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]