Cambridge University Press 978-1-107-04339-8 — Comparative Social Evolution Edited by Dustin R

Total Page:16

File Type:pdf, Size:1020Kb

Cambridge University Press 978-1-107-04339-8 — Comparative Social Evolution Edited by Dustin R Cambridge University Press 978-1-107-04339-8 — Comparative Social Evolution Edited by Dustin R. Rubenstein , Patrick Abbot Index More Information Index Acacia spp., 154, 157, 161, 168–169, 171, 178 A. guaxamayos, 200 Acanthochromis polyacanthus, 363 A. jabaquara, 191, 192, 200, 205, 210 Achaearaneae spp., 191, See Parasteatoda spp. A. lorenzo, 208 Acrocephalus sechellensis, 324, 329, 336 A. oritoyacu, 208 Acromyrmex spp., 28 A. rupununi, 208 Aculeata, 84, 106 A. studiosus, 202 Aebutina spp., 191, 202, 205 Anoplotermes spp., 135 A. binotata, 190, 191, 194, 208 Anseriformes, 330 Aegithalos caudatus, 326, 330, 333, 338, 340 Anthocoridae, 163 Agamidae, 407 Anthophila, 50 Agapostemon virescens,59 Aotus azarae, 260 Agelaia vicina, 101 Aphelocoma spp. Agelas spp., 234 A. coerulescens, 324, 327, 330, 335 A. clathrodes, 234 A. wollweberi, 323, 327 Agelena spp., 191, 202, 204–205 Aphididae, 155 A. consociata, 204 Apicotermitinae, 127, 132 A. republicana, 204 Apidae, 56 Agelenidae, 191 Apiformes, 65 alarm calls, 258, 292, 299 Apini, 56–57, 63 alates, 125, 129 Apis spp.,58–59, 64–65, 68, 72, 106, 428 Allee effect, 192, 209 A. (Megapis) dorsata,64 Allodapini, 56, 62, 64–65, 71 A. (Micrapis) florea,64 allogrooming (termites), 131, 133 A. cerana, 59, 64 alloparental care A. mellifera, 50, 64, 71–72, 106 definition of, 3 A. mellifera scutellata,59 Alopex lagopus semenovi, 289 Apodidae, 322 Alouatta palliata, 253 Apoica pallens, 102 Alpheidae, 224–225, 228, 232, 236, 240, 243 Apoidea, 50, 56, 64–65 altriciality, 293, 302, 440 apomictic parthenogenesis, 165 Amphiprion spp., 368 apterous line, 129 A. clarkia, 368 Araneidae, 194 A. melanopus, 368 Archipsocidae, 213 A. percula, 360, 368 Archotermopsidae, 126–128, 132, 134, 137 ancestral monandry, 97, 104 Arctostaphylos spp., 160 ancestral monogamy, 69, 297, 417 Arpactophilus mimi,86–87 ancestral monogyny, 25 Artiodactyla, 308 Andrenidae, 52 Arvicolinae, 290 Anelosimus spp., 191, 196, 199–203, 205–207, 210 Astegopteryx spp. A. arizona, 199 A. spinocephala, 165 A. dubiosus, 200, 212 A. styracicola, 176 A. elegans, 210 Ateles spp., 257 A. eximius, 192, 193, 196, 200–201, 206 A. belzebuth, 268 457 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-04339-8 — Comparative Social Evolution Edited by Dustin R. Rubenstein , Patrick Abbot Index More Information 458 Index Attini, 32, 135 Cercopithecus spp. Augochlorella striata,72 C. mitis, 256 Augochlorini, 56 C. solatus, 268 Auplopus semialatus,86–87 Ceryle rudis, 340 Cetacea, 284 basking, 27, 327, 398, 402–403, 405 Cetartiodactyla, 284 Bathyergidae, 286, 290, 297, 303 Chamaemyiidae, 163 Bellatorias spp., 391, 393 Chartergus chartarius, 100 B. frerei, 395, 399 Cheirogaleus medius, 260 B. major, 395, 399 Chiroptera, 284–310 Belonogaster spp., 97, 104 Chlorocebus spp., 262 B. petiolata, 87, 95, 102 chorionated oocytes, 172 between-group contest competition (BGC), 261 Cichlidae, 355–378 bivoltinism, 63 claustral founding, 24, 27 Bombini, 56–57, 106 cleptoparasitism, 59, 65, 87, 94 Bombus spp., 64, 70 Climacteris spp., 340 B. hypnorum,70 cloaca-pecking, 328 Bopyridae, 238 clypeus, 98 bourgeois males, 376 Coelotes terrestris, 205 Brachygastra mellifica,95 Coliiformes, 327 Brachyteles spp., 257 Collembola, 38, 87 B. hypoxanthus, 260 colony failure, 24, 94, 99–100, 201, 232 brood farming out (fishes), 357 colony fission, 24, 68, 72, 140–141, 190, 207 brood parasitism, 62, 325, 337 colony-level selection, 61 Bucerotidae, 329 Colophina clematis, 158 Bucorvus leadbeateri, 335 communal breeding, overview of, 441 budding. See colony fission communal nursing, 255, 289, 294 Buteo galapagoensis, 325 communal roosting, 326–327 Connochaetes taurinus, 289 Callitrichinae, 260, 266 conspicuous coloration, 407 Calocitta formosa, 340 cooperation scores, 286 Canidae, 286, 290, 295, 297 cooperative courtship, 356 Canis lupus, 292 cooperative polyandry, 362 cannibalism, 30, 37 coordinated snapping, 237, 241 Caprimulgiformes, 330 Coraciiformes, 331 Caracanthus spp., 360 Coraciimorphae, 321–322 Cardiocondyla spp., 29, 35 corbiculate apids, 56–57, 60, 65, 106 C. elegans,29 Corcorax melanorhamphos, 330, 335 C. obscurior,35 Cordylidae, 393, 395, 407, 415 Caridea, 238 cornicle, 164 Carnivora, 284–310 Corucia spp., 391 Castor canadensis, 296 C. zebrata, 395, 400, 407 Castoridae, 290, 302 Corvida, 269 Catarrhini, 255 Corvinella corvina, 324 Cavia porcellus, 290 Corvus spp. Caviomorpha, 286, 296–297 C. brachyrhynchos, 340 Cebus spp. C. corone, 339 C. capucinus, 260, 265, 268 Crabronidae, 85 C. olivaceus, 268 Crinoidea, 225 central place foraging, 26, 74, 129–130, 133, 429, Crocuta crocuta, 271, 289, 292, 298, 305–306, 434, 442–444 309 Cerataphidini, 168 Crotophaga spp., 324 Ceratina spp., 66 Crustacea, 224, 360, 368 C. australensis,70 Cryptocercidae, 126, 137 Cerceris australis,86–87 Cryptocercus spp., 131, 136, 139, 142 Cercopithecinae, 262, 267 C. punctulatus, 139 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-04339-8 — Comparative Social Evolution Edited by Dustin R. Rubenstein , Patrick Abbot Index More Information Index 459 Cryptotermes spp., 127, 133, 139–140 E. stokesii, 395, 398, 400–405, 408, 410–413, C. secundus, 133 415 Ctenodactylus gundi, 290 E. striolata, 395, 398, 400, 405–406, 412 Ctenomys sociabilis, 290, 294–295, 303, 309 E. whitii, 391, 412 cuticular hydrocarbons, 34, 66, 98, 103, 136, 206 egg adoption, 356 Cyanoramphus saisseti, 334 egg cleaning, 356, 372–373 cyclical oligogyny, 104 egg fanning, 356, 372–373 Cyclodomorphus spp., 391, 395 Elaphrothrips tuberculatus, 175 Cyclosa spp., 193–194 entomopathogens, 163–164 Cynomys spp., 286 Epipona tatua, 100 C. gunnisoni, 290–291 Epiponini, 85–87, 93, 96–97, 101–102, 106 C. ludovicianus, 290, 294 Equus equus, 271 Cyprinidae, 363 Eresidae, 191 Cyrtophora spp., 193–194, 198, 200, 203–204 Eriophora spp. C. citricola, 203, 206–207, 209–210 E. bistriata. See Parawixia spp. Eriosoma spp., 160 Dascyllus spp., 370 Eriosomatinae, 155, 161, 166 D. aruanus, 362, 371–373 Euglossa hyancinthina,65 death grip, 59 Euglossini, 56, 65, 106 Decapoda, 229 Eulamprus quoyii, 403 delayed dispersal, 325, 340, 361, 370, 372, 377, 403, Eulemur spp., 262 405, 409–410, 413, 416 E. rufifrons, 267 Delena spp., 190, 198, 204 Eumeninae, 85–86, 89–90, 108 D. cancerides, 191, 209, 213 Euparagiinae, 85–86 dependent founding, 24–25, 27, 30, 36 eusociality continuum concept, 431 detritivores, 124, 134–135 eusociality, definition of, 2 Diaea spp., 190, 191, 198–199, 204, 210, 214 Eustenogaster spp., 86 D. socialis, 205 Eutheria, 284 diapause, 61, 67, 93, 101 Eutropis longicauda, 396 Dictyna spp., 193, 197, 201 eviction, 290, 340, 356, 370, 375 Dictynidae, 191, 193, 205 extra-group mating, 323, 327, 336, 340 dilution effect, 198, 292, 357, 361, 404 extra-pair mating, 254, 324, 372, 405, 411, 413 Diplodactylidae, 406 Diprotodontia, 284, 307 facial expressions, 265 direct development, 230, 233, 235–236, 238, 242, 244 Falconidae, 322 divorce (planned separation), 404, 412 false feeding, 328 Dolichovespula spp., 90, 93, 95, 97, 105 family conflux (fishes), 357 D. arenaria,99 Felidae, 286, 295, 297 D. maculata, 87, 99 fission-fusion dynamics, 257, 264, 289, 295, 307, D. sylvestris, 101 309, 355 Drosophila spp.,35 Formica spp.,27 duetting, 333 fortress defense, 143, 161, 179, 225, 232, 244, 429, Dufour’s gland, 66 434, 439, 443–444 Dunatothrips spp., 160 fortress nests, 60 Frankliniella spp., 159 early warning effects, 198 Fukomys damarensis, 290 Echinodermata, 225 Eclectus roratus, 328 galls, 162 ecosystem engineering, 32, 296 gambarelloides group, 224–225, 227–228, 231, Egernia group, 390–418 233–234, 236–237, 242–244 Egernia spp., 391, 393, 402 Gaviiformes, 330 E. cunninghami, 391, 395, 399, 401, 405, Geomyidae, 286, 297 408–409, 411–413 Gerrhosauridae, 393, 407 E. kingii, 395, 399 Glis glis, 290 E. mcpheei, 412 Gnypetoscincus spp. E. saxatilis, 391, 395, 398–399, 404–405, G. queenslandiae, 395, 400 411–413, 416 Gobiidae, 237, 355, 358 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-04339-8 — Comparative Social Evolution Edited by Dustin R. Rubenstein , Patrick Abbot Index More Information 460 Index Gobiodon spp., 360, 368 individual recognition, 99, 253–254, 265, 298, 367, G. histrio, 368 392 Gorilla spp. infanticide, 259–260, 262, 290, 403, 414–416 G. gorilla berengei, 257 innovations, behavioral, 265 G. gorilla gorilla, 267 insulin-like signaling pathway, 35 granaries (birds), 325 Intellagama lesueurii, 394 grooming, 257, 264–265, 294 invasive species, 31, 38 group recognition, 136, 237 irregular webs, 188, 190, 193–194, 200, 202, 204, Gymnorhina tibicen, 327 211 gynes, 63, 93 Jacobsen’s organ, 401 habitat saturation hypothesis, 329 joint-nesting, 324 Halictidae, 52, 55–56, 64–65, 73 Julidochromis spp., 374 Halictinae, 65 J. marlieri, 357, 373, 375 Halictini, 56, 61, 64 J. ornatus, 357, 373, 375 Halictus spp., 63 J. transcriptus, 375 H. rubicundus, 55, 72 Hamilton’s Rule, definition of, 7 Kalotermitidae, 126, 128, 132, 134, 137 Hapalemur spp., 263 kin discrimination, 37, 227, 265, 294, 299, 333 Haplorhini, 264–266, 269 kin recognition, 66, 98, 171, 271, 299, 367, 373, 392, Helogale parvula, 294, 302, 309 397, 408, 410–411, 416 helpers, definition of, 5 mother–offspring recognition, 299, 410 helpers-at-the-nest, 324, 329, 337 kin selection theory. See inclusive fitness theory hemimetabolism, 107, 125, 131, 155, 165, 166, 177, Kladothrips spp., 156, 161, 176 440, 443 K. habrus, 158, 163, 167 hemolymph, 88, 90,96 K. hamiltoni, 166, 176 hermaphroditism, 227, 233, 369, 374–375, 377 K. intermedius, 158, 163, 166, 174 bidirectional, 375 K. rodwayi, 168 protandrous, 233, 375 K. waterhousei, 163 protogynous, 233, 369, 375 kleptoparasitism, 207 Herpestidae, 286, 290, 296–297, 342 Koptothrips spp., 164, 168, 172 Heterocephalus glaber, 290, 292, 294, 304, K-selection, 162, 408, 436 306 heterochrony, 90, 107 Labridae, 355, 370 Hodotermitidae, 126, 129, 137 Lagomorpha, 284, 308 holometabolism, 68, 107, 440, 443 Lagothrix poeppigii, 267 homeothermy, 320 Lamprologini, 365–366 Hominidae, 264, 266 Lamprotornis superbus, 332 Hoplodactylus spp., 406 Lasioglossum spp., 54, 63, 67, 71 Hormaphidinae, 155, 161, 166 L.
Recommended publications
  • Xhaie'ican%Mllsllm
    XhAie'ican1ox4tate%Mllsllm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 244 MAY I9, I 966 The Larvae of the Anthophoridae (Hymenoptera, Apoidea) Part 2. The Nomadinae BY JEROME G. ROZEN, JR.1 The present paper is the second of a series that treats the phylogeny and taxonomy of the larvae belonging to the bee family Anthophoridae. The first (Rozen, 1965a) dealt with the pollen-collecting tribes Eucerini and Centridini of the Anthophorinae. The present study encompasses the following tribes, all of which consist solely of cuckoo bees: Protepeolini, Epeolini, Nomadini, Ammobatini, Holcopasitini, Biastini, and Neolarrini. For reasons presented below, these tribes are believed to represent a monophyletic group, and consequently all are placed in the Nomadinae. It seems likely that the cleptoparasitic tribes Caenoprosopini, Ammoba- toidini, Townsendiellini, Epeoloidini, and Osirini are also members of the subfamily, although their larvae have not as yet been collected. Although the interrelationships of the numerous taxa within the Nomadinae need to be re-evaluated, the tribal concepts used by Michener (1944) are employed here. Adjustments in the classifications will certainly have to be made in the future, however, for Michener (1954) has already indicated, for example, that characters of the adults in the Osirini, the Epeolini, and the Nomadini intergrade. The affinities of the Nomadinae with the other subfamilies of the Antho- phoridae will be discussed in the last paper of the series. Because of char- 1 Curator, Department of Entomology, the American Museum of Natural History. 2 AMERICAN MUSEUM NOVITATES NO.
    [Show full text]
  • Thysanoptera, Phlaeothripinae)
    Zootaxa 4759 (3): 421–426 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4759.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:F725F128-FCF3-4182-8E88-ECC01F881515 Two new monobasic thrips genera for a gall-inducing species and its kleptoparasite (Thysanoptera, Phlaeothripinae) LAURENCE A. MOUND & ALICE WELLS Australian National Insect Collection CSIRO, PO Box 1700, Canberra, ACT 2601 [email protected] Abstract Drypetothrips korykis gen. et sp.n. is described as inducing leaf-margin galls on a small tree in Australia, Drypetes deplanchei [Putranjivaceae]. This thrips is similar in appearance to the smaller species of the genus Kladothrips that induce galls on Acacia species. The galls are invaded by a phytophagous kleptoparasitic thrips, Pharothrips hynnis gen. et sp.n., females of which have a forked plough-like structure protruding ventrally on the frons that is unique amongst Thysanoptera. Key words: autapomorphy, systematic relationships, leaf-margin galls, Australia Introduction The small tree, Drypetes deplanchei [Putranjivaceae], is widespread across northern Australia as far south as New- castle on the east coast. This tree is sometimes referred to as native holly, because the leaf margins can be sharply dentate, but these margins may also be almost smooth, and a species of thrips has been found inducing rolled margin galls on both leaf forms (Fig. 1). These galls and their thrips have been found at sites near Taree in coastal New South Wales, and also at Mt. Nebo near Brisbane in south-eastern Queensland.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Towards Simultaneous Analysis of Morphological and Molecular Data in Hymenoptera
    Towards simultaneous analysis of morphological and molecular data in Hymenoptera JAMES M. CARPENTER &WARD C. WHEELER Accepted 5 January 1999 Carpenter, J. M. & W. C. Wheeler. (1999). Towards simultaneous analysis of molecular and morphological data in Hymenoptera. Ð Zoologica Scripta 28, 251±260. Principles and methods of simultaneous analysis in cladistics are reviewed, and the first, preliminary, analysis of combined molecular and morphological data on higher level relationships in Hymenoptera is presented to exemplify these principles. The morphological data from Ronquist et al. (in press) matrix, derived from the character diagnoses of the phylogenetic tree of Rasnitsyn (1988), are combined with new molecular data for representatives of 10 superfamilies of Hymenoptera by means of optimization alignment. The resulting cladogram supports Apocrita and Aculeata as groups, and the superfamly Chrysidoidea, but not Chalcidoidea, Evanioidea, Vespoidea and Apoidea. James M. Carpenter, Department of Entomology, and Ward C. Wheeler, Department of Invertebrates, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, U SA. E-mail: [email protected] Introduction of consensus techniques to the results of independent Investigation of the higher-level phylogeny of Hymenoptera analysis of multiple data sets, as for example in so-called is at a very early stage. Although cladistic analysis was ®rst `phylogenetic supertrees' (Sanderson et al. 1998), does not applied more than 30 years ago, in an investigation of the measure the strength of evidence supporting results from ovipositor by Oeser (1961), a comprehensive analysis of all the different data sources Ð in addition to other draw- the major lineages remains to be done.
    [Show full text]
  • Wisconsin Bee Identification Guide
    WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows.
    [Show full text]
  • Redalyc.CLEPTOPARASITE BEES, with EMPHASIS on THE
    Acta Biológica Colombiana ISSN: 0120-548X [email protected] Universidad Nacional de Colombia Sede Bogotá Colombia ALVES-DOS-SANTOS, ISABEL CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Acta Biológica Colombiana, vol. 14, núm. 2, 2009, pp. 107-113 Universidad Nacional de Colombia Sede Bogotá Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=319027883009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta biol. Colomb., Vol. 14 No. 2, 2009 107 - 114 CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Abejas cleptoparásitas, con énfasis en las abejas hospederas coletoras de aceite ISABEL ALVES-DOS-SANTOS1, Ph. D. 1Departamento de Ecologia, IBUSP. Universidade de São Paulo, Rua do Matão 321, trav 14. São Paulo 05508-900 Brazil. [email protected] Presentado 1 de noviembre de 2008, aceptado 1 de febrero de 2009, correcciones 7 de julio de 2009. ABSTRACT Cleptoparasite bees lay their eggs inside nests constructed by other bee species and the larvae feed on pollen provided by the host, in this case, solitary bees. The cleptoparasite (adult and larvae) show many morphological and behavior adaptations to this life style. In this paper I present some data on the cleptoparasite bees whose hosts are bees specialized to collect floral oil. Key words: solitary bee, interspecific interaction, parasitic strategies, hospicidal larvae. RESUMEN Las abejas Cleptoparásitas depositan sus huevos en nidos construídos por otras especies de abejas y las larvas se alimentan del polen que proveen las hospederas, en este caso, abejas solitarias.
    [Show full text]
  • Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3029, 36 pp., 67 figures, 3 tables November 27, 1991 Evolution of Cleptoparasitism in Anthophorid Bees as Revealed by Their Mode of Parasitism and First Instars (Hymenoptera: Apoidea) JEROME G. ROZEN, JR.1 CONTENTS Abstract .............................................. 2 Introduction .............................................. 2 Acknowledgments ............... ............................... 3 Historical Background ................ .............................. 4 Evolution of Cleptoparasitism in the Anthophoridae ............. ................... 6 Systematics of Cleptoparasitic First-Instar Anthophoridae ......... ................. 12 Methods .............................................. 12 Description of the Nomadinae Based on First Instars .......... .................. 13 Description of the Protepeolini Based on the First Instar ......... ................ 13 Description of the Melectini Based on First Instars ............ .................. 17 Xeromelecta (Melectomorpha) californica (Cresson) ........... ................. 17 Melecta separata callura (Cockerell) ......................................... 20 Melecta pacifica fulvida Cresson ............................................. 20 Thyreus lieftincki Rozen .............................................. 22 Zacosmia maculata (Cresson) ............................................. 22 Description of the Rhathymini Based on First Instars .........
    [Show full text]
  • Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2640, pp. 1-24, figs. 1-36, tables 1-3 January 3, 1978 The Bionomics and Immature Stages of the Cleptoparasitic Bee Genus Protepeolus (Anthophoridae, Nomadinae) JEROME G. ROZEN, JR.,' KATHLEEN R. EICKWORT,2 AND GEORGE C. EICKWORT3 ABSTRACT Protepeolus singularis was found attacking cells numerous biological dissimilarities. The first in- in nests of Diadasia olivacea in southeastern Ari- star Protepeolus attacks and kills the pharate last zona. The following biological information is pre- larval instar of the host before consuming the sented: behavior of adult females while searching provisions, a unique feature for nomadine bees. for host nests; intraspecific interactions of fe- First and last larval instars and the pupa are males at the host nesting site; interactions with described taxonomically and illustrated. Brief host adults; oviposition; and such larval activities comparative descriptions of the other larval in- as crawling, killing the host, feeding, defecation, stars are also given. Larval features attest to the and cocoon spinning. In general, adult female be- common origin of Protepeolus and the other havior corresponds to that of other Nomadinae. Nomadinae. Cladistic analysis using 27 characters Females perch for extended periods near nest of mature larvae of the Nomadinae demonstrates entrances and avoid host females, which attack that Isepeolus is a sister group to all the other parasites when encountered. Females apparently Nomadinae known from larvae, including Pro- learn the locations of host nests and return to tepeolus, and that Protepeolus is a sister group to them frequently.
    [Show full text]
  • Fungal Pathogens in Thrips Societies
    Primordial Enemies: Fungal Pathogens in Thrips Societies Christine Turnbull1, Peter D. Wilson1, Stephen Hoggard1, Michael Gillings1, Chris Palmer2, Shannon Smith1, Doug Beattie1, Sam Hussey1, Adam Stow1, Andrew Beattie1* 1 Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia, 2 Department of Natural Resources, Northern Territory Government, Alice Springs, Northern Territory, Australia Abstract Microbial pathogens are ancient selective agents that have driven many aspects of multicellular evolution, including genetic, behavioural, chemical and immune defence systems. It appears that fungi specialised to attack insects were already present in the environments in which social insects first evolved and we hypothesise that if the early stages of social evolution required antifungal defences, then covariance between levels of sociality and antifungal defences might be evident in extant lineages, the defences becoming stronger with group size and increasing social organisation. Thus, we compared the activity of cuticular antifungal compounds in thrips species (Insecta: Thysanoptera) representing a gradient of increasing group size and sociality: solitary, communal, social and eusocial, against the entomopathogen Cordyceps bassiana. Solitary and communal species showed little or no activity. In contrast, the social and eusocial species killed this fungus, suggesting that the evolution of sociality has been accompanied by sharp increases in the effectiveness of antifungal compounds. The antiquity of fungal
    [Show full text]
  • Phylogeny and Classification of the Parasitic Bee Tribe Epeolini (Hymenoptera: Apidae, Nomadinae)^
    Ac Scientific Papers Natural History Museum The University of Kansas 06 October 2004 Number 33:1-51 Phylogeny and classification of the parasitic bee tribe Epeolini (Hymenoptera: Apidae, Nomadinae)^ By Molly G. Rightmyer y\CZ Division of E)itoiiiologi/, Nntuinl History Museiiui mid Biodizvrsity Rcsenrch Center, jV^Ar^^ and Eiitomology Progrniii, Department of Ecology nnd Evolutionary Biology, The Unii>ersity of Kansas, Lawrence, Kansas, 66045-7523 CONTENTS ^AB'"^^?Sy ABSTRACT 2 lJHIVE^^^ ' INTRODUCTION 2 Acknowledgments 2 HISTORICAL REVIEW 3 METHODS AND MATERIALS 5 MORPHOLOGY 7 PsEUDOPYGiDiAL Area 7 Sting Apparatus 7 Male Internal Sclerites 11 PHYLOGENETIC RESULTS 11 SYSTEMATICS 13 Tribe Epeolini Robertson 13 Subtribe Odyneropsina Handlirsch new status 14 Genus Odyneropsis Schrottky 14 Subgenus Odyneropsis Schrottky new status 15 Subgenus Parammobates Friese new status 15 Rhogepeolina new subtribe 15 Genus Rhogepeolus Moure 15 Rhogepeolina + (Epeolina + Thalestriina) 16 Epeolina + Thalestriina 16 Subtribe Epeolina Robertson new status 16 Genus Epeolus Latreille 16 'Contribution No. 3397 of the Division of Entomology, Natural History Museum and Biodiversity Research Center, University of Kansas. Natural ISSN No. 1094-0782 © History Museum, The University of Kansas _ . «i„,, I <*»ro»V Ernst K'ayr Li^^rary Zoology Museum of Comparawe Harvard University Ac Scientific Papers Natural History Museum The University of Kansas 06 October 2004 NumLx-r 33:1-51 Phylogeny and classification of the parasitic bee tribe Epeolini (Hymenoptera: Apidae, Nomadinae)'
    [Show full text]
  • A Revision of the Bee Genus Nomada in Argentina (Hymenoptera, Apidae, Nomadinae)
    Roig Alsina: Revision of the bee genusRev. Mus. Nomada Argentino Cienc. Nat., n.s.221 11(2): 221-241, 2009 Buenos Aires, ISSN 1514-5158 A revision of the bee genus Nomada in Argentina (Hymenoptera, Apidae, Nomadinae) Arturo ROIG ALSINA Museo Argentino de Ciencias Naturales «Bernardino Rivadavia,» Av. Angel Gallardo 470, 1405 Buenos Aires, Argentina. Abstract: A revision of the bee genus Nomada Scopoli in Argentina is presented. Nine species are recognized in this region, five of which are described as new: N. mesopotamica, N. longula, N. chacoana, N. missionica, and N. turrigera. Lectotypes are designated for N. pampicola Holmberg, 1886, and N. costalis Brèthes, 1909. A new name, N. holmbergiana, is proposed for Hypochrotaenia parvula Holmberg, 1886, preoccupied in Nomada, and a neotype is designated for H. parvula Holmberg. A key to the species, descriptions, distributional data, and illustrations are provided. Key words: Cleptoparasitic bees, Nomadini, Argentina, new species. Resumen: Revisión de las abejas del género Nomada en la Argentina (Hymenoptera, Apidae, Nomadinae). Se presenta una revisión de las abejas del género Nomada Scopoli en la Argentina. Se reconocen nueve especies en esta región, de las cuales cinco se describen como nuevas: N. mesopotamica, N. longula, N. chacoana, N. missionica y N. turrigera. Se designan lectotipos para N. pampicola Holmberg, 1886, y N. costalis Brèthes, 1909. Se propone un nuevo nombre, N. holmbergiana, para Hypochrotaenia parvula Holmberg, 1886, preocupado en Nomada, y se designa un neotipo para H. parvula Holmberg. Se presenta una clave para las especies, descipciones, datos de distribución e ilustraciones. Palabras clave: Abejas cleptoparásitas, Nomadini, Argentina, nuevas especies.
    [Show full text]
  • The Evolution of Parasitism Among Bees
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1970 The Evolution of Parasitism Among Bees George E. Bohart Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Entomology Commons Recommended Citation Bohart, George E. 1970. The evolution and parasitism among bees. Faculty Honor Lecture, Utah State University, April 22, 1970. 41st 30 p. This Presentation is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 41st FACULTY HONOR LECTURE - APRIL• 22, 1970 than State Un/ve/S/ty THE EVOLUTION OF PARASITISM AMONG BEES George E. Bohart Entomology Research Division, Agricultural Research Service, United States Department of Agriculture FORTY -FIRST HONOR LECTURE SPRING 1970 THE FACUL TV ASSOCIATION FORTY-FIRST ANNUAL HONOR LECTURE DELIVERED AT THE UNIVERSITY A basic ob jective of The Faculty As ociation of tah State University, in the words of its con titution. is: to encourage intellectual growth and development of its mem­ bers by pon oring and arranging for the publication of two an­ nual facult_ research lectures in the fi elds of ( I ) the biological and exact cience , including engi neering. called the Annual Faculty Honor Lecture in the Natural Sciences; and (2) the humanities and ocial ciences. incl uding education and busi­ ness administration, called the Annual Faculty Honor Lecture in the Humanities. The administration of the University i ympatheric wi th the e aims and shares, through the Scholarly Publications Committee, the costs of publishing and distributing the e lectures.
    [Show full text]