Fungus-Farming Insects: Multiple Origins and Diverse Evolutionary Histories

Total Page:16

File Type:pdf, Size:1020Kb

Fungus-Farming Insects: Multiple Origins and Diverse Evolutionary Histories Commentary Fungus-farming insects: Multiple origins and diverse evolutionary histories Ulrich G. Mueller* and Nicole Gerardo* Section of Integrative Biology, Patterson Laboratories, University of Texas, Austin, TX 78712 bout 40–60 million years before the subterranean combs that the termites con- An even richer picture emerges when com- Aadvent of human agriculture, three in- struct within the heart of nest mounds (11). paring termite fungiculture to two other sect lineages, termites, ants, and beetles, Combs are supplied with feces of myriads of known fungus-farming insects, attine ants independently evolved the ability to grow workers that forage on wood, grass, or and ambrosia beetles, which show remark- fungi for food. Like humans, the insect leaves (Fig. 1d). Spores of consumed fungus able evolutionary parallels with fungus- farmers became dependent on cultivated are mixed with the plant forage in the ter- growing termites (Fig. 1 a–c). crops for food and developed task-parti- mite gut and survive the intestinal passage tioned societies cooperating in gigantic ag- (11–14). The addition of a fecal pellet to the Ant and Beetle Fungiculture. In ants, the ricultural enterprises. Agricultural life ulti- comb therefore is functionally equivalent to ability to cultivate fungi for food has arisen mately enabled all of these insect farmers to the sowing of a new fungal crop. This unique only once, dating back Ϸ50–60 million years rise to major ecological importance. Indeed, fungicultural practice enabled Aanen et al. ago (15) and giving rise to roughly 200 the fungus-growing termites of the Old to obtain genetic material of the cultivated known species of fungus-growing (attine) World, the fungus-growing ants of the New fungi directly from termite guts, circumvent- ants (4). Attine colonies typically are World, and the cosmopolitan, fungus- ing laborious nest excavation during collec- founded by a mated female who takes a growing beetles are not only dominant play- tion. Overall, 32 termite species and their fungal inoculum from her mother’s colony ers in natural ecosystems, but they are also cultivars were sampled, covering the diver- to start her new garden (5, 15) (Fig. 1e). major agriculture, forestry, and household sity of termites throughout their range in Attine ants grow their fungi in subterranean pests (1). Not surprising, much is known Africa and Asia. For the two-part historical chambers, manuring the gardens with dead about the extermination of these pest in- reconstruction mentioned above, Aanen et vegetable debris, or in the case of the leaf- sects, but only recently have genetic tech- al. generated DNA sequence information cutter ants, with leaf fragments cut from live niques been applied to elucidate the evolu- for, first, the Termitomyces cultivars and plants. Attine ants are obligately dependent COMMENTARY tionary histories of these unique nonhuman undomesticated, fungal relatives; and sec- on their fungi; their brood is raised on an agricultural systems. ond, the termite farmers and nonfarmer exclusively fungal diet. Nests of most attine In a recent issue of PNAS, Aanen et al. (2) relatives. These two evolutionary recon- species number only a few dozen workers, present such an evolutionary analysis for structions reveal a remarkably complex fab- but nest sizes can reach millions in leafcutter fungus-growing termites and their culti- ric of fungicultural evolution in termites ants. Leafcutter ants are prodigious con- vated fungal crops, complementing similar (Fig. 1a). sumers of leaves and are among the most analyses recently completed for fungus- Fungus-growing behavior originated only damaging agricultural pests in South and growing ants (3–6) and fungus-growing bee- once in termites, involving a single ancestral Central America. tles (7–9) (Fig. 1 a–c). Aanen et al.’s meth- Termitomyces lineage that diversified into Many, but not all of the weevils species in odology followed the same two-part analysis several defined cultivar groups, each asso- the subfamilies Scolytinae and Platypodinae anthropologists have taken to unravel the ciated almost exclusively with a similarly burrow extensive gallery systems into trees histories of human agricultural societies and defined group of termite farmers. Within as adults for feeding and oviposition. Some of these beetles, collectively called ambrosia their various crops. First, they assessed the each of these termite groups, however, cul- beetles (3,400 species), grow fungi on the patterns of relatedness between cultivated tivars are exchanged frequently between walls of their galleries for food (Fig. 1f). The crops and wild, undomesticated varieties; termite lineages. This is analogous to a largely clonal ambrosia fungi are only patterns revealed which crops were derived situation where distinct human lineages known from the beetles and their galleries, from common ancestral stocks and thus the would be specialized on particular crops, for suggesting an obligate association with the number of independent domestication example corn, and corn farmers could beetle farmers (9). The fungi serve as the events. Second, they determined the rela- switch between cultivation of any kind of beetle’s primary food source and are essen- corn variety but could not easily switch to tionships between independent farmer so- tial for the completion of the beetle life cycle cieties to infer common origins of agricul- cultivation of wheat or potato. Termite (16). Like fungus-growing termites and ants, tural practices. Even in the absence of a farmers therefore appear to have evolved ambrosia beetles protect the fungal garden fossil (or archaeological) record, a juxtapo- adaptations to certain cultivar groups (e.g., from harmful contaminants and raise their sition of these two phylogenetic histories can specific fertilizing regimes), or cultivars brood on a fungal diet (16, 17). Fungus- reveal surprising details of agricultural evolved adaptations suitable only for certain growing beetles are major forestry pests, evolution. farmers (e.g., nutrients benefiting only cer- particularly those burrowing into live trees tain termites; ref. 12), or both. and infecting them with their fungi. Termite Fungiculture. About 330 of the The juxtaposition of termite and Termi- Ͼ2,600 known termite species are obligately tomyces evolution informed Aanen et al. dependent on the cultivation of a specialized about historical details that would have been See companion article on page 14887 in issue 23 of volume 99. fungus, Termitomyces, for food (10, 11). impossible to infer from the sparse fossil *To whom correspondence may be addressed. E-mail: Termitomyces is grown on termite feces in record of the fungus-growing termites (10). [email protected] or [email protected]. www.pnas.org͞cgi͞doi͞10.1073͞pnas.242594799 PNAS ͉ November 26, 2002 ͉ vol. 99 ͉ no. 24 ͉ 15247–15249 Downloaded by guest on September 30, 2021 Whereas ant and termite fungiculture originated only once in each group (Fig. 1 a and b), fungus-growing by ambrosia beetles has arisen at least seven times (Fig. 1c). Multiple origins of fungiculture in beetles is perhaps not surprising, given the sheer di- versity of beetle species and given the im- portance of feeding specializations in beetle diversification (19). Multiple origins, how- ever, do not preclude beetle-fungus coevo- lution within each independently derived system. Indeed, in each of the independently evolved farmer beetle lineages, entire groups of species are specialized on partic- ular groups of cultivars, paralleling not only the specializations already discussed above for termites, but also a series of special- izations known for different ant groups each associated with its own cultivar group (3, 5, 6). In general, switching of farmers to novel cultivars is possible, but limited almost exclusively to cultivars from within the same cultivar group as the farmers’ typical cultivar. Evolutionary reversal back to a non- fungus-farming lifestyle has apparently not occurred in any of the nine known, inde- pendently evolved farmer lineages (one ter- mite, one ant, and seven beetle lineages). This supports the view, formulated first for humans (ref. 20 and references therein), that the transition to agricultural existence is a drastic and possibly irreversible change that greatly constrains subsequent evolution. Fig. 1. Evolutionary histories of fungiculture in termites, ants, and beetles. (a–c) Comparison of the patterns of evolutionary diversification in the insect farmers (left cladograms) and their cultivated fungi Cultivar Exchange and Transmission Between (right cladograms). In the left cladograms, farmer lineages are shown in black; nonfarmer relatives are shown in gray. In the right cladograms, fungal cultivar lineages are shown in black; noncultivated feral Generations. Aanen et al.’s analyses indicate fungi are shown in gray. The number of independent origins of fungicultural behavior appears as that fungal cultivars are exchanged fre- independent farmer lineages in the left cladograms. The number of independently domesticated fungal quently between termite species. Fungal ex- lineages appears as separate cultivar lineages in the right cladograms. Cladograms synthesize pertinent change had been suspected for a long time information from published evolutionary reconstructions, but the number of lineages per group has been because most fungus-growing termites im- reduced because of space constraints. Similarly reduced is the number of nonfarmer lineages and port
Recommended publications
  • Genomic Signals of Adaptation Towards Mutualism and Sociality in Two Ambrosia Beetle Complexes
    life Article Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes Jazmín Blaz 1, Josué Barrera-Redondo 2, Mirna Vázquez-Rosas-Landa 1, Anahí Canedo-Téxon 1, Eneas Aguirre von Wobeser 3 , Daniel Carrillo 4, Richard Stouthamer 5, Akif Eskalen 6, Emanuel Villafán 1, Alexandro Alonso-Sánchez 1, Araceli Lamelas 1 , Luis Arturo Ibarra-Juarez 1,7 , Claudia Anahí Pérez-Torres 1,7 and Enrique Ibarra-Laclette 1,* 1 Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico; [email protected] (J.B.); [email protected] (M.V.-R.-L.); [email protected] (A.C.-T.); [email protected] (E.V.); [email protected] (A.A.-S.); [email protected] (A.L.); [email protected] (L.A.I.-J.); [email protected] (C.A.P.-T.) 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico; [email protected] 3 Cátedras CONACyT/Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; [email protected] 4 Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA; dancar@ufl.edu 5 Department of Plant Pathology, University of California–Riverside, Riverside, CA 92521, USA; [email protected] 6 Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA; [email protected] 7 Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico * Correspondence: [email protected]; Tel.: +52-(228)-842-18-00 Received: 14 October 2018; Accepted: 20 December 2018; Published: 22 December 2018 Abstract: Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages.
    [Show full text]
  • Continued Eastward Spread of the Invasive Ambrosia Beetle Cyclorhipidion Bodoanum (Reitter, 1913) in Europe and Its Distribution in the World
    BioInvasions Records (2021) Volume 10, Issue 1: 65–73 CORRECTED PROOF Rapid Communication Continued eastward spread of the invasive ambrosia beetle Cyclorhipidion bodoanum (Reitter, 1913) in Europe and its distribution in the world Tomáš Fiala1,*, Miloš Knížek2 and Jaroslav Holuša1 1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic 2Forestry and Game Management Research Institute, Prague, Czech Republic *Corresponding author E-mail: [email protected] Citation: Fiala T, Knížek M, Holuša J (2021) Continued eastward spread of the Abstract invasive ambrosia beetle Cyclorhipidion bodoanum (Reitter, 1913) in Europe and its Ambrosia beetles, including Cyclorhipidion bodoanum, are frequently introduced into distribution in the world. BioInvasions new areas through the international trade of wood and wood products. Cyclorhipidion Records 10(1): 65–73, https://doi.org/10. bodoanum is native to eastern Siberia, the Korean Peninsula, Northeast China, 3391/bir.2021.10.1.08 Southeast Asia, and Japan but has been introduced into North America, and Europe. Received: 4 August 2020 In Europe, it was first discovered in 1960 in Alsace, France, from where it has slowly Accepted: 19 October 2020 spread to the north, southeast, and east. In 2020, C. bodoanum was captured in an Published: 5 January 2021 ethanol-baited insect trap in the Bohemian Massif in the western Czech Republic. The locality is covered by a forest of well-spaced oak trees of various ages, a typical Handling editor: Laura Garzoli habitat for this beetle. The capture of C. bodoanum in the Bohemian Massif, which Thematic editor: Angeliki Martinou is geographically isolated from the rest of Central Europe, confirms that the species Copyright: © Fiala et al.
    [Show full text]
  • Holocene Palaeoenvironmental Reconstruction Based on Fossil Beetle Faunas from the Altai-Xinjiang Region, China
    Holocene palaeoenvironmental reconstruction based on fossil beetle faunas from the Altai-Xinjiang region, China Thesis submitted for the degree of Doctor of Philosophy at the University of London By Tianshu Zhang February 2018 Department of Geography, Royal Holloway, University of London Declaration of Authorship I Tianshu Zhang hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: Date: 25/02/2018 1 Abstract This project presents the results of the analysis of fossil beetle assemblages extracted from 71 samples from two peat profiles from the Halashazi Wetland in the southern Altai region of northwest China. The fossil assemblages allowed the reconstruction of local environments of the early (10,424 to 9500 cal. yr BP) and middle Holocene (6374 to 4378 cal. yr BP). In total, 54 Coleoptera taxa representing 44 genera and 14 families have been found, and 37 species have been identified, including a new species, Helophorus sinoglacialis. The majority of the fossil beetle species identified are today part of the Siberian fauna, and indicate cold steppe or tundra ecosystems. Based on the biogeographic affinities of the fossil faunas, it appears that the Altai Mountains served as dispersal corridor for cold-adapted (northern) beetle species during the Holocene. Quantified temperature estimates were made using the Mutual Climate Range (MCR) method. In addition, indicator beetle species (cold adapted species and bark beetles) have helped to identify both cold and warm intervals, and moisture conditions have been estimated on the basis of water associated species.
    [Show full text]
  • Redbay Ambrosia Beetle-Laurel Wilt Pathogen: a Potential Major Problem for the Florida Avocado Industry1
    HS1136 Redbay Ambrosia Beetle-Laurel Wilt Pathogen: A Potential Major Problem for the Florida Avocado Industry1 Jonathan H. Crane, Jorgé Peña, and J.L. Osborne2 Descriptions the redbay ambrosia beetle adults and larvae feed on the fungus. Of the many ambrosia beetle species in Ambrosia Beetles Florida, several Xylosandrus species attack avocado trees, but their boring and their associated fungi do not Ambrosia beetles are members of the insect tribe generally cause the entire tree to die (Atkinson and Xyleborini and are known for attacking various Peck, 1994; Bryant, 2007; Mayfield, 2007; Mayfield woody plants, causing some limb and stem dieback and Thomas, 2006). In contrast, the redbay ambrosia and sometimes plant death (Rabaglia et al., 2006; beetle and its associated fungus (which causes laurel Atkinson and Peck, 1994). There are at least 30 wilt; Raffaelea lauricola) can cause whole tree death species of ambrosia beetles in Florida, several of (Fraedrich et al., 2008). which are non-native (Thomas, 2007). Typically ambrosia beetles have a symbiotic relationship with a Most ambrosia beetles attack trees and shrubs fungus, and the beetles carry fungal spores on their that are stressed, dying, or dead. Plant stress may be bodies. the result of drought, flooding, freezing temperature damage, wind damage, or very poor cultural When the beetles bore into the sapwood of the practices. In contrast, some ambrosia beetles -- the host tree, the galleries formed from the beetle boring redbay ambrosia beetle included -- attack healthy are inoculated with the fungal spores, which then trees. More importantly, the fungus that causes laurel germinate and infect the host tissue (Atkinson and wilt, which accompanies this beetle, often causes tree Peck, 1994; Thomas, 2007).
    [Show full text]
  • Bark and Ambrosia Beetles and Their Associated Fungi Colonizing
    Walnut Council Bulletin Promoting Walnut and Other Fine Hardwoods Volume 40, Number 2 ISSN 1041-5769 June 2013 Walnut Council State Chapter Reports Bark and Ambrosia Beetles and Their Associated Fungi Colonizing Stressed Walnut in Missouri and Indiana Missouri Chapter Indiana Chapter Report The Missouri Chapter of the Walnut Council had its spring The Indiana Chapter met on April 20th at the Bill By Dr. Sharon Reed and Dr. James English, post-doctoral fellow In addition to walnut twig beetles, there are many other types meeting on Friday and Saturday, May 10 & 11 at member’s Rodecker property in central Indiana with 34 in and professor of the University of Missouri Plant Sciences of bark- and wood-boring beetles that create egg galleries in properties in central Missouri. On Friday, the 32 attendees attendance. The sessions were led by Lenny Farlee Division, Dr. Jennifer Juzwik, forest pathologist of the Forest black walnut trees. Most of these beetles carry fungi on their carpooled to the Fred Crouse property. Management of (Purdue University extension), and Phil O’Connor Service Northern Research Station, and Dr. Matt Ginzel, bodies, some of which can be pathogenic to trees. Researchers mainly white and red oak was discussed along with the past (Indiana Division of Forestry). The 10 year old planting associate professor of the Purdue Department of Entomology at the University of Missouri, Purdue University and the Forest management history and plans for the future. featured over 2,000 walnut trees with some single and Service have teamed up to investigate which bark and ambrosia Thousand cankers disease (TCD) is a growing threat to black double row white pine borders.
    [Show full text]
  • Transmission of Fungal Partners to Incipient Cecropia-Tree Ant Colonies
    RESEARCH ARTICLE Transmission of fungal partners to incipient Cecropia-tree ant colonies Veronika E. Mayer1*, Maximilian Nepel1,2, Rumsais Blatrix3, Felix B. Oberhauser4, Konrad Fiedler1, JuÈ rg SchoÈnenberger1, Hermann Voglmayr1 1 Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria, 2 Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraûe 14, Vienna, Austria, 3 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS UMR 5175, France, 4 Department of Zoology, University of Regensburg, UniversitaÈtsstraûe 31, Regensburg, Germany a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Ascomycete fungi in the nests of ants inhabiting plants (= myrmecophytes) are very often cultivated by the ants in small patches and used as food source. Where these fungi come from is not known yet. Two scenarios of fungus recruitment are possible: (1) random infec- OPEN ACCESS tion through spores or hyphal fragments from the environment, or (2) transmission from Citation: Mayer VE, Nepel M, Blatrix R, Oberhauser mother to daughter colonies by the foundress queen. It is also not known at which stage of FB, Fiedler K, SchoÈnenberger J, et al. (2018) Transmission of fungal partners to incipient the colony life cycle fungiculture is initiated, and whether the- symbiont fungi serve as food Cecropia-tree ant colonies. PLoS ONE 13(2): for the ant queen. To clarify these questions, we investigated four Azteca ant species inhab- e0192207. https://doi.org/10.1371/journal. iting three different Cecropia species (C. insignis, C. obtusifolia, and C. peltata). We ana- pone.0192207 lysed an rRNA gene fragment from 52 fungal patches produced by founding queens and Editor: Renee M.
    [Show full text]
  • Granulate Ambrosia Beetle (Xylosandrus Crassiusculus)
    Granulate Ambrosia Beetle ( Xylosandrus crassiusculus) History The granulate ambrosia beetle (formally the Asian ambrosia beetle) was first found in the United States on peach trees in 1974 near Charleston, South Carolina. Additional populations were found in 1983 as far south as Florida and as far west as Alabama. The beetle was first detected in Indiana in 1992 by the USDA. Adult beetles were captured with Lindgren funnel traps in Johnson County, southeast of Indianapolis. Granulate ambrosia beetle populations were discovered on Weeping Higan Cherry in Oregon in 1992. The beetle was also discovered in Virginia the same year. In August 2002, granulate ambrosia beetles were found in Indiana nursery stock for the first time. Currently, new populations of this beetle continue to be detected throughout the United States. Distribution: The granulate ambrosia beetle is a subtropical species found in eastern Africa, India, Sri Lanka, China, Japan and SE Asia. In the past, U. S. populations were found mostly from Zone 7 southward from Missouri to Texas and eastward towards Florida and north to Virginia. However, more recently adults have been captured in zone 5 as far north as northern Indiana. This species has also been reported as far west as Oklahoma, Missouri and Kansas. Description: Adults: Adults are small and have a reddish brown appearance with a downward facing head. Most individuals have a reddish head region and a dark brown to black elytra. Light colored forms that appear almost yellow have been trapped in Perry County, Indiana. A granulated (rough) region is located on the front portion of the head and long setae (hairs) can be observed on the back end of the elytra (wing covers).
    [Show full text]
  • Larval Helpers and Age Polyethism in Ambrosia Beetles
    Larval helpers and age polyethism in ambrosia beetles Peter H. W. Biedermann1 and Michael Taborsky Department of Behavioral Ecology, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland Edited by Bert Hölldobler, Arizona State University, Tempe, AZ, and approved September 1, 2011 (received for review May 14, 2011) Division of labor among the workers of insect societies is a the role of division of labor is unknown. Ambrosia beetles live conspicuous feature of their biology. Social tasks are commonly inside trees, which is a habitat extraordinarily favoring social shared among age groups but not between larvae and adults with evolution (12), apparently having fostered at least seven in- completely different morphologies, as in bees, wasps, ants, and dependent origins of fungiculture in beetles (13). Hence, they beetles (i.e., Holometabola). A unique yet hardly studied holome- represent a unique model system to study the evolution of so- tabolous group of insects is the ambrosia beetles. Along with ciality in relation to fungiculture. Interestingly, ambrosia beetles one tribe of ants and one subfamily of termites, wood-dwelling vary in their mating system (inbreeding vs. outbreeding species) ambrosia beetles are the only insect lineage culturing fungi, a trait and ploidy level (haplodiploid vs. diploid species), which are predicted to favor cooperation and division of labor. Their sociality factors that have been assumed to contribute to social evolution, has not been fully demonstrated, because behavioral observations although their respective roles in social evolution are contro- have been missing. Here we present behavioral data and experi- versial (1). The ambrosia beetle subtribe Xyleborini is charac- ments from within nests of an ambrosia beetle, Xyleborinus sax- terized by regular inbreeding, haplodiploidy, and fungiculture (8, esenii.
    [Show full text]
  • Introduction
    INTRODUCTION Mushrooms and Humans: Past, Present, and Future Mushrooms as we know them today evolved at least 120 million Gathering mushrooms is an age-old years ago—well before the time of the dinosaurs—and they have practice. Ja Schindler been part of our lives for as long as humans have existed. One of our closest living relatives, the mountain gorilla, is a passionate mush- room eater. The earliest record of humans eating mushrooms comes from a burial site in Europe from about 18,700 years ago, and the oldest record of mushroom cultivation by humans dates from about 600 CE in China. In Europe, button mushrooms (Agaricus bispo- rus) were first propagated in quarries and caves in France around 1650, on composted horse manure. The practice of fungiculture has developed rapidly since pure culture laboratory techniques were developed around the turn of the 20th century; these lab techniques require a high level of sanitary measures that are not easily achieved at home on a low budget. But things have changed, and it is now easier than ever to grow your own mushrooms. The proliferation of information-sharing via online forums has decomposed many of the barriers to DIY mushroom cultivation. Widely dispersed communi- ties of home-scale cultivators have developed simple technologies (aka teks) to facilitate growing mushrooms at home. • 1 This extract provided by New Society Publishers. All rights reserved. Uma Echo Kirouac Arevalo enjoys Certainly, people grow mushrooms for many different reasons. the aroma of her harvest of pink They are well loved as food, and most cultivated mushrooms are oysters.
    [Show full text]
  • Entomology I
    MZO-08 Vardhman Mahaveer Open University, Kota Entomology I MZO-08 Vardhman Mahaveer Open University, Kota Entomology I Course Development Committee Chair Person Prof. Ashok Sharma Prof. L.R.Gurjar Vice-Chancellor Director (Academic) Vardhman Mahaveer Open University, Kota Vardhman Mahaveer Open University, Kota Coordinator and Members Convener SANDEEP HOODA Assistant Professor of Zoology School of Science & Technology Vardhman Mahaveer Open University, Kota Members Prof . (Rtd.) Dr. D.P. Jaroli Prof. (Rtd.) Dr. Reena Mathur Professor Emeritus Former Head Department of Zoology Department of Zoology University of Rajasthan, Jaipur University of Rajasthan, Jaipur Prof. (Rtd.) Dr. S.C. Joshi Prof. (Rtd.) Dr. Maheep Bhatnagar Department of Zoology Mohan Lal Sukhadiya University University of Rajasthan, Jaipur Udaipur Prof. (Rtd.) Dr. K.K. Sharma Prof. M.M. Ranga Mahrishi Dayanand Saraswati University, Ajmer Ajmer Dr. Anuradha Singh Dr. Prahlad Dubey Rtd. Lecturer Government College Head Department of Zoology Kota Government College , Kota Dr. Subrat Sharma Dr. Anuradha Dubey Lecturer Deputy Director Government College , Kota School of Science and Technology Vardhman Mahaveer Open University, Kota Dr. Subhash Chandra Director (Regional Center) VMOU, Kota Editing and Course Writing Editors Dr. Subhash Chandra SANDEEP HOODA Director ,Regional Center Assistant Professor of Zoology Vardhman Mahaveer Open University ,Kota Vardhman Mahaveer Open University ,Kota Writers: Writer Name Unit No. Writer Name Unit No Ms. Asha Kumari Verma 3,5,8 Dr. Abhishek Rajpurohit 11,13 UGC-NET JRF Department of Assistant Professor Zoology, JNVU, Lachoo Memorial College Jodhpur of Science & Technology,Jodhpur Dr. Neetu Kachhawaha 1,2,4,6,7,12 Dr. Subhash Chandra 14,15 Assistant Professor, Director ,Regional Center Department of Zoology, Vardhman Mahaveer University of Rajasthan ,Jaipur.
    [Show full text]
  • Materials Required for Infrastructure of Mushroom Cultivation
    Materials Required For Infrastructure Of Mushroom Cultivation Enunciative Clem sometimes refrigerating any bullheads overstudies clamantly. Daemonic Piotr conferring unashamedly, he verbified his clouding very embarrassingly. Serge never decoy any eschewals nitrogenize steadily, is Oral degraded and oneirocritical enough? Assessment of markets because spores started as stuffing for cultivation materials for of infrastructure and processed mushroom From the substrate is the amount of production rooms for materials required infrastructure of mushroom cultivation houses as food. This phase ii, bacteria and of materials infrastructure mushroom for cultivation on wetting the production yields were almost universally accepted by! Sweet spices grown. This document is best viewed in temporary single page format. Organic nitrogenous material may be unsatisfactory sometimes enlarge to the presence of toxic substances. Final compost should be used to buy back with mushroom cultivation are going through filter. Associations should erect a mass media marketing campaign to increase popularity of mushroom war the country. Infrastructure Mushroom Machines Mushroom Machinery. Workshop Mycelium Cultivation Texas Architecture UTSOA. Bhk duplex in the external funding of a fourth layer of intracellular protein in organic crops a required for materials mushroom cultivation of infrastructure, because mushrooms in size of! There is no outlook of consuming fresh mushrooms, as happens in other countries. Introduction to find that differs from hefei sada medical
    [Show full text]
  • Cultivo Integrado Do Cogumelo Pleurotus Ostreatus E Tomate (Solanum Lycopersicum)
    Universidade Federal do Tocantins Campus Universitário de Gurupi Programa de Pós-Graduação em Biotecnologia ANTONY ENIS VIRGÍNIO MACHADO Cultivo integrado do cogumelo Pleurotus ostreatus e tomate (Solanum lycopersicum) GURUPI – TO 2019 Universidade Federal do Tocantins Campus Universitário de Gurupi Programa de Pós-Graduação em Biotecnologia ANTONY ENIS VIRGÍNIO MACHADO Cultivo integrado do cogumelo Pleurotus ostreatus e tomate (Solanum lycopersicum) Dissertação apresentada ao Programa de Pós- graduação em Biotecnologia da Universidade Federal do Tocantins como parte dos requisitos para a obtenção do título de Mestre em Biotecnologia. Orientador: Prof. Dr. Félix Gonçalves de Siqueira, Embrapa Agroenergia Co-orientadora: Profa. Dra. Simone Mendonça, Embrapa Agroenergia. GURUPI – TO 2019 AGRADECIMENTOS Em primeiro lugar, não posso deixar de agradecer a Deus, pelas inúmeras oportunidades que Ele vem me concedendo, para sempre continuar acreditando no meu potencial. A presente dissertação de mestrado não poderia chegar a bom ponto, sem o precioso apoio de várias pessoas: Agradeço imensamente o meu orientador, Professor Doutor Félix Gonçalves de Siqueira, por toda a paciência, empenho e sentido prático com que sempre me orientou neste trabalho e no trabalho de TCC da graduação. Agradeço ainda, pelas palavras sinceras e diretas que foi nos dirigidas, contribuiu e muito para o meu crescimento profissional e pessoal. Agradeço aos colegas de trabalho de pesquisa e de sala de aula, que foram muitos no decorrer deste curso. De maneira especial, agradeço ao Aparecido, Ana Paula, Vandinelma, Taísa, Joice, Rubén e todos que contribuíram de alguma forma para que este trabalho chegasse até aqui. Agradeço ainda, a família da Sra. Iolanda e Sr. Dionísio, na pessoa de seus filhos Rodrigo, Gustavo e Lucas, que sempre me acolheram de braços abertos durante as semanas de aula, que fiquei em Gurupi.
    [Show full text]