Kin Recognition in Social Insects and Other Animals-A Review of Recent Findings and a Consideration of Their Relevance for the Theory of Kin Selection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kin Recognition in Vertebrates: What Do We Really Know About Adaptive Value?
WellBeing International WBI Studies Repository 6-1991 Kin Recognition in Vertebrates: What Do We Really Know About Adaptive Value? Andrew R. Blaustein Oregon State University Marc Bekoff University of Colorado John A. Byers University of Idaho Thomas J. Daniels New York Medical College Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_asie Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Animal Sciences Commons Recommended Citation Blaustein, A. R., Bekoff, M., Byers, J. A., & Daniel, T. J. (1991). Kin recognition in vertebrates: what do we really know about adaptive value?. Animal Behaviour, 41(6), 1079-1083. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Kin Recognition in Vertebrates: What Do We Really Know About Adaptive Value? Andrew R. Blaustein1, Marc Bekoff2, John A. Byers3, and Thomas J. Daniels4 1 Oregon State University 2 University of Colorado 3 University of Idaho 4 New York Medical College ABSTRACT The ability of an animal to discriminate between kin and non-kin (kin recognition) has been the subject of numerous recent investigations. Grafen (Anim. Behav., 1990, 39, 42-54) recently reported that the evidence in support of kin recognition is weak and the data illustrating a preference for kin to associate in the laboratory may be more consistently explained as species recognition. It is suggested here, however, that in many cases it may be impossible to distinguish between species recognition and kin recognition, but in some cases, kin recognition seems apparent. -
Kin Recognition and the Evolution of Altruism Aneil F
doi 10.1098/rspb.2001.1611 Kin recognition and the evolution of altruism Aneil F. Agrawal Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405-3700, USA ([email protected]) In 1964, Hamilton formalized the idea of kin selection to explain the evolution of altruistic behaviours. Since then, numerous examples from a diverse array of taxa have shown that seemingly altruistic actions towards close relatives are a common phenomenon. Although many species use kin recognition to direct altruistic behaviours preferentially towards relatives, this important aspect of social biology is less well understood theoretically. I extend Hamilton’s classic work by de¢ning the conditions for the evolution of kin-directed altruism when recognizers are permitted to make acceptance (type I) and rejection (type II) errors in the identi¢cation of social partners with respect to kinship. The e¡ect of errors in recognition on the evolution of kin-directed altruism depends on whether the population initially consists of uncondi- tional altruists or non-altruists (i.e. alternative forms of non-recognizers). Factors a¡ecting the level of these error rates themselves, their evolution and their long-term stability are discussed. Keywords: altruism; kin recognition; Hamilton’s rule; recognition errors the null hypothesis is wrongly accepted. In kin recogni- 1. INTRODUCTION tion, an acceptance error (type I error) occurs when an Although various exceptions to Hamilton’s (1964a,b) rule individual identi¢es a social partner as kin when it is non- have been noted when the simplifying assumptions of the kin, whereas a rejection error (type II error) occurs when theory are violated (e.g. -
Honey Bee Presentation
Population Dynamics of Honeybees – Megan Asche and Kelly Sears Honeybees are eusocial insects that have huge economic importance to the agricultural industry. They are unique in that they have a sex-determination system know as haplodiploidy, which is further complicated through the complementary sex determination (csd) locus. The Csd locus induces a significant genetic load through the consequences of homozygosity in diploid males and heightens the effects of inbreeding. Queen bees are polyandrous, and mate with 10-20 drones. This mating behavior minimizes the likelihood of inbreeding in feral populations. However, within domesticate colonies multiple breeding techniques (closed population, artificial insemination, queen production) have been employed that have selected for economically important traits at the expensive of likely reducing many other traits that are important for colony health. Luckily, despite the breed tendencies of the industry, hybridization with Africanized honeybees has occurred in the Southern US and provided significant gene flow that will help slowly reduce some of the consequences of artificial selection and prohibition of honeybee importation. 1. Graham, Joe M. (editor). The Hive and the Honey Bee (ninth printing). Dadant & Sons. 2010. 2. Guzman-Novoa, Ernesto. Elemental genetics and breeding for the honeybee. 2011 3. Seeley, Thomas D. "Honeybee Ecology: a Study of Adaptation in Social Life 71–74." (1985). 4. Snodgrass, Robert Evans. Anatomy and Physiology of the Honeybee. 1925. 5. Winston, Mark L. The Biology of the Honey Bee. Harvard University Press. 1987. 6. P. R. Oxley. The genetic architecture of honeybee breeding. Advances in insect physiology. (2010) 39: 83-118. 7. Rinderer, Thomas R. Bee Genetics and Breeding. -
Apis Mellifera L.)
The development of tools for network analysis in the honey bee (Apis mellifera L.) Antoine Lecocq Department of Ecology Uppsala, 2011 Antoine Lecocq Title: The development of tools for network analysis in the honey bee (Apis mellifera L.) Supervisor: Olle Terenius, Assistant Professor Swedish University of Agricultural Sciences Department of Ecology Co Supervisors: Barbara Locke, PhD candidate SLU Department of Ecology Annette Bruun Jensen MSc, Associate Professor University of Copenhagen, Faculty of Life Sciences External mentor: Cris Luengo SLU and Uppsala University Examiner: Ingemar Fries, Professor SLU Department of Ecology Credits: 30 ECTS Level: E Course title: Independent Project in Biology - Master´s thesis Course code: EX0565 Programme/education: EnvEuro Environmental Science in Europe Place of publication: SLU, Swedish University of Agricultural Sciences, Faculty of Natural Resources and Agricultural Sciences, Department of Ecology, Uppsala Year of publication: 2011 Project number: 2011:15 Online publication: http://stud.epsilon.slu.se Key Words: Honey bee, transmission, network, disease, light 2 ABSTRACT The honey bee (Apis mellifera) has accompanied Man for thousands of years, and yet somehow, some aspects of this most studied of insects remain uncertain. To this day, details of the physiology, disease transmission, social organisation and behaviour of this animal are still unclear. The development of technology and computing and the use of tagging and automatic monitoring have already contributed in shedding light on some of the intricacies of sociality amongst insects. In this project, we hoped to develop further tools for the study of disease transmission though social networks in the honeybee, and shed some light on factors which might affect the behaviour of the bees in an experimental setting. -
Kin-Biased Social Behaviour in Wild Adult Female White-Faced Capuchins, Cebus Capucinus
ANIMAL BEHAVIOUR, 2008, 76, 187e199 doi:10.1016/j.anbehav.2008.01.020 Available online at www.sciencedirect.com Kin-biased social behaviour in wild adult female white-faced capuchins, Cebus capucinus SUSAN PERRY*†,JOSEPHH.MANSON*†,LAURAMUNIZ†, JULIE GROS-LOUIS‡ &LINDAVIGILANT† *Department of Anthropology and Center for Behavior, Evolution and Culture, University of California, Los Angeles yMax Planck Institute for Evolutionary Anthropology zDepartment of Psychology, Indiana University (Received 16 October 2007; initial acceptance 30 October 2007; final acceptance 4 January 2008; published online 27 May 2008; MS. number: A10889R) Studies of kin bias in the distribution of social behaviour in group-living matrifocal species generally underline the importance of bonds among female kin. However, few studies examine either how kin bias may be affected by variation in the availability of kin or the relevance of paternal kin. In this study, we used genetic and behavioural data to analyse correlates of coalition formation, proximity, grooming and dominance relations among female white-faced capuchins over a 10-year period during which the number of adult females in the group varied from 6 to 10. Females sided with the most closely related of two opponents when joining coalitions. Both dominance rank and kinship influenced proximity and grooming patterns. In particular, when group size was small, mean relatedness high and interdyadic var- iation in relatedness low, rank distance was a better predictor of proximity and grooming than was kinship distance. However, when group size was large, mean relatedness lower and interdyadic variation in relat- edness higher, females significantly biased their grooming and spatial proximity towards kin. -
Larval Helpers and Age Polyethism in Ambrosia Beetles
Larval helpers and age polyethism in ambrosia beetles Peter H. W. Biedermann1 and Michael Taborsky Department of Behavioral Ecology, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland Edited by Bert Hölldobler, Arizona State University, Tempe, AZ, and approved September 1, 2011 (received for review May 14, 2011) Division of labor among the workers of insect societies is a the role of division of labor is unknown. Ambrosia beetles live conspicuous feature of their biology. Social tasks are commonly inside trees, which is a habitat extraordinarily favoring social shared among age groups but not between larvae and adults with evolution (12), apparently having fostered at least seven in- completely different morphologies, as in bees, wasps, ants, and dependent origins of fungiculture in beetles (13). Hence, they beetles (i.e., Holometabola). A unique yet hardly studied holome- represent a unique model system to study the evolution of so- tabolous group of insects is the ambrosia beetles. Along with ciality in relation to fungiculture. Interestingly, ambrosia beetles one tribe of ants and one subfamily of termites, wood-dwelling vary in their mating system (inbreeding vs. outbreeding species) ambrosia beetles are the only insect lineage culturing fungi, a trait and ploidy level (haplodiploid vs. diploid species), which are predicted to favor cooperation and division of labor. Their sociality factors that have been assumed to contribute to social evolution, has not been fully demonstrated, because behavioral observations although their respective roles in social evolution are contro- have been missing. Here we present behavioral data and experi- versial (1). The ambrosia beetle subtribe Xyleborini is charac- ments from within nests of an ambrosia beetle, Xyleborinus sax- terized by regular inbreeding, haplodiploidy, and fungiculture (8, esenii. -
The Development of Tools for Network Analysis in the Honey Bee (Apis Mellifera L.)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Archive for Student Projects The development of tools for network analysis in the honey bee (Apis mellifera L.) Antoine Lecocq Department of Ecology Uppsala, 2011 Antoine Lecocq Title: The development of tools for network analysis in the honey bee (Apis mellifera L.) Supervisor: Olle Terenius, Assistant Professor Swedish University of Agricultural Sciences Department of Ecology Co Supervisors: Barbara Locke, PhD candidate SLU Department of Ecology Annette Bruun Jensen MSc, Associate Professor University of Copenhagen, Faculty of Life Sciences External mentor: Cris Luengo SLU and Uppsala University Examiner: Ingemar Fries, Professor SLU Department of Ecology Credits: 30 ECTS Level: E Course title: Independent Project in Biology - Master´s thesis Course code: EX0565 Programme/education: EnvEuro Environmental Science in Europe Place of publication: SLU, Swedish University of Agricultural Sciences, Faculty of Natural Resources and Agricultural Sciences, Department of Ecology, Uppsala Year of publication: 2011 Project number: 2011:15 Online publication: http://stud.epsilon.slu.se Key Words: Honey bee, transmission, network, disease, light 2 ABSTRACT The honey bee (Apis mellifera) has accompanied Man for thousands of years, and yet somehow, some aspects of this most studied of insects remain uncertain. To this day, details of the physiology, disease transmission, social organisation and behaviour of this animal are still unclear. The development of technology and computing and the use of tagging and automatic monitoring have already contributed in shedding light on some of the intricacies of sociality amongst insects. In this project, we hoped to develop further tools for the study of disease transmission though social networks in the honeybee, and shed some light on factors which might affect the behaviour of the bees in an experimental setting. -
Diploid Males Support a Two-Step Mechanism of Endosymbiont-Induced Thelytoky in a Parasitoid Wasp Wen-Juan Ma1,2*, Bart A
Ma et al. BMC Evolutionary Biology (2015) 15:84 DOI 10.1186/s12862-015-0370-9 RESEARCH ARTICLE Open Access Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp Wen-Juan Ma1,2*, Bart A. Pannebakker3, Louis van de Zande1, Tanja Schwander1,2, Bregje Wertheim1 and Leo W. Beukeboom1 Abstract Background: Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. Results: We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7–1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutationsinthehostgenomebutthatdiploidmalesaremost likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. -
Lecture 16 Kin Selection Challenges to Natural Selection
Lecture 16 Kin selection Challenges to Natural selection: Sexual Selection Kin Selection Types of social interactions Types of social interactions “Actor” → “Recipient” Actor benefits Actor harmed Types of social interactions “Actor” → “Recipient” Actor benefits Actor harmed Recipient benefits Recipient harmed Types of social interactions “Actor” → “Recipient” Actor benefits Actor harmed Recipient Cooperative benefits Recipient harmed Types of social interactions “Actor” → “Recipient” Actor benefits Actor harmed Recipient Cooperative Altruistic benefits Recipient harmed Types of social interactions “Actor” → “Recipient” Actor benefits Actor harmed Recipient Cooperative Altruistic benefits Recipient Selfish harmed Types of social interactions “Actor” → “Recipient” Actor benefits Actor harmed Recipient Cooperative Altruistic benefits Recipient Selfish Spiteful harmed The evolution of altruism The evolution of altruism • an altruistic act benefits a recipient at a cost to the actor The evolution of altruism • an altruistic act benefits a recipient at a cost to the actor • how can altruistic behaviors evolve? The evolution of altruism • an altruistic act benefits a recipient at a cost to the actor • how can altruistic behaviors evolve? let B = benefit to recipient (surviving offspring) The evolution of altruism • an altruistic act benefits a recipient at a cost to the actor • how can altruistic behaviors evolve? let B = benefit to recipient let C = cost to actor The evolution of altruism • an altruistic act benefits a recipient at a cost -
Organ-Specific Transcriptome Analysis Reveals Differential Gene Expression
www.nature.com/scientificreports OPEN Organ‑specifc transcriptome analysis reveals diferential gene expression in diferent castes under natural conditions in Apis cerana Igojo Kang1, Woojin Kim2, Jae Yun Lim1, Yun Lee3 & Chanseok Shin1,4,5* Honeybees are one of the most environmentally important insects, as their pollination of various plant species contributes to the balance among diferent ecosystems. It has been studied extensively for their unique attribute of forming a caste society. Unlike other insects, honeybees communicate socially by secreting pheromones or by exhibiting specifc patterns of motion. In the honeybee industry, the Asian honeybees (Apis cerana) and the Western honeybees (Apis mellifera) are dominant species. However, molecular research on the transcriptomes of A. cerana has not been studied as extensively as those of A. mellifera. Therefore, in this study, caste‑specifc transcriptional diferences were analyzed, which provides a comprehensive analysis of A. cerana. In our dataset, we analyzed gene expression profles using organs from worker, drone, and queen bees. This gene‑expression profle helped us obtain more detailed information related to organ‑specifc genes, immune response, detoxifcation mechanisms, venom‑specifc genes, and ovary development. From our result, we found 4096 transcripts representing diferent gene‑expression pattern in each organ. Our results suggest that caste‑specifc transcripts of each organ were expressed diferently even under natural conditions. These transcriptome‑wide analyses provide new insights into A. cerana and that promote honeybee research and conservation. Considering the vital role of honeybees in supporting ecosystems and thus sustaining lifeforms, including human life, honeybees are irreplaceable by other insects1,2, because they are the largest group crop pollinators3,4 and provide honey5,6, beeswax, propolis7, royal jelly 8, and many other benefts9–11. -
The Scent of the Waggle Dance
PLoS BIOLOGY The Scent of the Waggle Dance Corinna Thom1*¤, David C. Gilley2¤, Judith Hooper1, Harald E. Esch3 1 Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona, United States of America, 2 Carl-Hayden Bee Laboratory, United States Department of Agriculture, Tucson, Arizona, United States of America, 3 Department of Biology, University of Notre Dame, Notre Dame, Indiana, United States of America The waggle dance of honey bee (Apis mellifera L.) foragers communicates to nest mates the location of a profitable food source. We used solid-phase microextraction and gas chromatography coupled with mass spectrometry to show that waggle-dancing bees produce and release two alkanes, tricosane and pentacosane, and two alkenes, Z-(9)- tricosene and Z-(9)-pentacosene, onto their abdomens and into the air. Nondancing foragers returning from the same food source produce these substances in only minute quantities. Injection of the scent significantly affects worker behavior by increasing the number of bees that exit the hive. The results of this study suggest that these compounds are semiochemicals involved in worker recruitment. By showing that honey bee waggle dancers produce and release behaviorally active chemicals, this study reveals a new dimension in the organization of honey bee foraging. Citation: Thom C, Gilley DC, Hooper J, Esch HE (2007) The scent of the waggle dance. PLoS Biol 5(9): e228. doi:10.1371/journal.pbio.0050228 Introduction coordinate the activities of colony members [10,11] and hence may be expected to help organize the vital task of More than fifty years ago, Karl von Frisch demonstrated foraging. -
The Evolution of Kin Recognition
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-8-2015 12:00 AM The evolution of kin recognition Timothy JA Hain The University of Western Ontario Supervisor Bryan Neff The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Timothy JA Hain 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Hain, Timothy JA, "The evolution of kin recognition" (2015). Electronic Thesis and Dissertation Repository. 3431. https://ir.lib.uwo.ca/etd/3431 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. THE EVOLUTION OF KIN RECOGNITION (Thesis format: Integrated Article) by Timothy John Alexander Hain Graduate Program in Biology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Timothy Hain 2015 ii Abstract The discovery that many animals are promiscuous has challenged the importance of Hamilton’s Rule because it reduces the net benefits of helping nestmates. To resolve this challenge, biologists have investigated animals’ abilities to determine degrees of relatedness among individuals using kin recognition mechanisms. I conducted a literature review and found that most animals use one of two mechanisms: “familiarity” whereby kin are remembered from interactions early in life, such as in a nest, or “phenotype matching” whereby putative kin are compared to a template of what kin should look, smell, or sound like based on relatives encountered during early life or on one’s own phenotype (called “self-referent phenotype matching”).