PARROT NESTING in SOUTHEASTERN PERU: SEASONAL PATTERNS and KEYSTONE TREES Author(S): DONALD J

Total Page:16

File Type:pdf, Size:1020Kb

PARROT NESTING in SOUTHEASTERN PERU: SEASONAL PATTERNS and KEYSTONE TREES Author(S): DONALD J PARROT NESTING IN SOUTHEASTERN PERU: SEASONAL PATTERNS AND KEYSTONE TREES Author(s): DONALD J. BRIGHTSMITH Source: The Wilson Bulletin, 117(3):296-305. 2005. Published By: The Wilson Ornithological Society DOI: http://dx.doi.org/10.1676/03-087A.1 URL: http://www.bioone.org/doi/full/10.1676/03-087A.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Wilson Bulletin 117(3):296±305, 2005 PARROT NESTING IN SOUTHEASTERN PERU: SEASONAL PATTERNS AND KEYSTONE TREES DONALD J. BRIGHTSMITH1 ABSTRACT.ÐParrots that inhabit tropical lowland forests are dif®cult to study, are poorly known, and little information is available on their nesting habits, making analysis of community-wide nesting patterns dif®cult. I present nesting records for 15 species of psittacids that co-occur in southeastern Peru. The psittacid breeding season in this area lasted from June to April, with smaller species nesting earlier than larger species. Why smaller species bred earlier is uncertain, though it may be related to interspeci®c competition for nest sites or variations in food availability. This study identi®ed two keystone plant resources used by nesting parrots: Dip- teryx micrantha (Fabaceae) and Mauritia ¯exuosa (Arecaceae). Local threats to these plant species are discussed. Received 25 August 2003, accepted 14 April 2005. Nesting is a critically important stage in the est areas shrink, conservationists must priori- natural history of all bird species. Reproduc- tize their conservation efforts. Large, old trees tive failure has caused numerous conservation and the cavities they contain are vital for the crises, so knowledge of nesting habits is crit- persistence of many cavity-nesting birds ical (Ratcliffe 1967, Herkert et al. 2003). The (Mawson and Long 1994, Poulsen 2002). nesting ecology of many tropical species re- However, cavity nesters usually do not use mains poorly documented, especially for can- trees in proportion to their abundance, sug- opy nesters in dense, lowland tropical forests. gesting that some tree species are more im- The family Psittacidae is the most endangered portant than others to these birds (Martin and large avian family in the world, making its Eadie 1999, Monterrubio and Enkerlin 2004). study a conservation priority (Bennett and In this study, I compiled nesting records for Owens 1997, Collar 1997). Most of our 15 species to determine which trees were most knowledge of parrot nesting comes from an- important to the nesting parrot community in ecdotal accounts by early collectors (Huber southeastern Peru. 1933), regional avifaunal compendia (Cherrie 1916, Havershmidt 1968), detailed studies of METHODS individual taxa (reviewed in Masello and Study area.ÐI studied parrot nesting in the Quillfeldt 2002), and the monumental com- Departamento de Madre de Dios in south- pendium of Forshaw (1989). eastern Peru. The primary site was the Tam- New World parrot diversity is highest in the bopata Research Center (138 079 S, 698 369 W; western Amazon Basin, where communities 250 m in elevation) on the border between the commonly include more than 15 species (Roth Tambopata National Reserve (275,000 ha) and 1984, Montambault 2002). This diversity Bahuaja-Sonene National Park (537,000 ha). peaks in southeastern Peru, where 18 to 20 The center is located in a small (,1 ha) clear- species have been reported at various sites ing surrounded by a mix of mature ¯oodplain (Terborgh et al. 1984, Foster et al. 1994). forest, riparian successional forest, Mauritia However, the nesting season for all but ®ve ¯exuosa (Arecaceae) palm swamps, upland species in the region remains undocumented, forest, and bamboo (Foster et al. 1994, Gris- making community-level analyses impossible. com and Ashton 2003; DJB pers. obs.). The Here, I report on the nesting season for 15 forest is classi®ed as tropical moist forest species of sympatric parrots inhabiting low- (Holdridge 1967). The site is adjacent to a lands of the western Amazon Basin in south- 500-m-long, 30-m-high riverbank clay lick, eastern Peru. where up to 1,000 macaws and parrots gather Land clearing and pressures on global for- daily, resulting in high parrot densities in the est resources are constantly increasing. As for- area (Brightsmith 2004a). Annual rainfall is 3,200 mm. The dry season extends from April 1 Duke Univ., Dept. of Biology, Durham, NC 27708, to October, during which monthly rainfall av- USA; e-mail: [email protected] erages 90±250 mm (Brightsmith 2004a). Ad- 296 Brightsmith x COMMUNITY-WIDE PARROT NESTING IN PERU 297 ditional nesting records come from Posada tree. One pair, consisting of a wild bird and a Amazonas Lodge in the Native Community of hand-raised bird released to the wild, nested In®erno (128 489 S, 698 189 W; 195 m in ele- in wooden nest boxes in 2 years (see Nycan- vation; 2,800 mm annual rainfall; Pearson and der et al. 1995 for a description of the nest Derr 1986, Brightsmith and Aramburu 2004) boxes). Three nests were in ¯oodplain forest and Cocha Cashu Biological Station in Manu (one ,10 m from the river edge) and nine National Park (118 549 S, 718 189 W;400min were in terra ®rme forest. elevation; 2,000 mm annual rainfall; Terborgh Blue-and-yellow Macaw (Ara ararauna).Ð 1983, Terborgh et al. 1984). These two sites Seventy-two nests in at least 50 different cav- are characterized by similar vegetation and ities were recorded. Most cavities (47 of 50) dry seasons, and they are located 50 km north- were in dead Mauritia ¯exuosa palms. Be- northeast and 250 km northwest of Tambopata cause it is dif®cult to climb dead palms, only Research Center, respectively. 21 nest trees were climbed, and nest contents Nesting records.ÐNesting records consist- were checked infrequently. I estimated that ed of two types: con®rmed nests and birds at egg laying occurred in November (n 5 9), De- cavities. Con®rmed nests were locations cember (n 5 2), and January (n 5 2). I con- where I observed eggs or chicks. Observa- ®rmed ¯edging in late February (n 5 1), tions of birds at cavities, where contents were March (n 5 4), and May (n 5 1). Fifty of not checked, were included only when birds these nests were in a 3-ha section of naturally were observed repeatedly at the cavity and dying Mauritia ¯exuosa palm swamp, where where behavioral cues suggested incubation or dead palms occurred at a density of .200 per feeding of young. Single observations of birds ha (A. Bravo and DJB unpubl. data). Sixteen at cavities were not included, as parrots may nests were in a small (,0.25 ha) section of a visit cavities when not breeding. swamp being managed to encourage nesting Most of the nesting records were from July of Blue-and-yellow Macaws (Nycander et al. to August (1998) and November to April 1995). Three other nests were in tall, dead (1999 to 2003) in Tambopata and September palms that rose above the surrounding vege- to November (1993, 1995, 1996, and 1997) in tation in an otherwise healthy palm swamp. Manu. I collected additional unpublished nest- Two nests were in ¯oodplain forest in dead ing records from researchers and guides with Iriartea palms ,10 m from the river edge. experience working in southeastern Peru. One additional nest was in an unidenti®ed These other observers were stationed at Tam- dead, hollow tree in terra ®rme forest, 10 m bopata year-round. from the edge of a cliff that overlooked the Data analysis.ÐI tested the relationship be- Tambopata River. The cavity was a deep, tween body size and the onset of breeding us- open-topped tube, similar in structure to a hol- ing a rank correlation of body mass versus low palm. month of ®rst breeding and a t-test (a50.05) Scarlet Macaw (Ara macao).ÐI studied 55 of month of ®rst breeding for large (.250 g) clutches at 26 different nest sites. I was certain versus small (,250 g) psittacids (Gibbons of ®rst-clutch initiation for 40 nests: late Oc- 1985). Body-mass data are from Dunning tober (n 5 1), November (n 5 32), and De- (1993). cember (n 5 7). When the ®rst clutch was lost or did not hatch, 35% (7 of 20) of the birds RESULTS re-laid in the same nest. Second clutches were Red-and-green Macaw (Ara chlorop- initiated in late December (n 5 4) or early tera).ÐTwelve nests of this species were January (n 5 3). Fledging took place in Feb- monitored in Tambopata between 1993 and ruary (n 5 4), March (n 5 14), and April (n 2003. I determined laying date for nine nests: 5 2). No eggs from second clutches hatched. September (n 5 1), November (n 5 7), and Nests were found in natural cavities of live December (n 5 1). Fledging was con®rmed in Dipteryx micrantha (n 5 6), live Hymenaea January (n 5 1) and March (n 5 5; Table 1).
Recommended publications
  • TAG Operational Structure
    PARROT TAXON ADVISORY GROUP (TAG) Regional Collection Plan 5th Edition 2020-2025 Sustainability of Parrot Populations in AZA Facilities ...................................................................... 1 Mission/Objectives/Strategies......................................................................................................... 2 TAG Operational Structure .............................................................................................................. 3 Steering Committee .................................................................................................................... 3 TAG Advisors ............................................................................................................................... 4 SSP Coordinators ......................................................................................................................... 5 Hot Topics: TAG Recommendations ................................................................................................ 8 Parrots as Ambassador Animals .................................................................................................. 9 Interactive Aviaries Housing Psittaciformes .............................................................................. 10 Private Aviculture ...................................................................................................................... 13 Communication ........................................................................................................................
    [Show full text]
  • Population Size, Provisioning Frequency, Flock Size and Foraging
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Naturalis Population size, provisioning frequency, flock size and foraging range at the largest known colony of Psittaciformes: the Burrowing Parrots of the north-eastern Patagonian coastal cliffs Juan F. MaselloA,B,C,G, María Luján PagnossinD, Christina SommerE and Petra QuillfeldtF AInstitut für Ökologie, Friedrich-Schiller-Universität Jena, Germany. BEcology of Vision Group, School of Biological Sciences, University of Bristol, UK. CMax Planck Institute for Ornithology, Vogelwarte Radolfzell, Schlossallee 2, D-78315 Radolfzell, Germany. DFacultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. EInstitut für Biologie/Verhaltensbiologie, Freie Universität Berlin, Berlin, Germany. FSchool of Biosciences, Cardiff University, UK. GCorresponding author. Email: [email protected] Abstract.We here describe the largest colony of Burrowing Parrots (Cyanoliseus patagonus), located in Patagonia, Argentina. Counts during the 2001–02 breeding season showed that the colony extended along 9 km of a sandstone cliff facing the Altantic Ocean, in the province of Río Negro, Patagonia, Argentina, and contained 51412 burrows, an estimated 37527 of which were active. To our knowledge, this is largest known colony of Psittaciformes. Additionally, 6500 Parrots not attending nestlings were found to be associated with the colony during the 2003–04 breeding season. We monitored activities at nests and movements between nesting and feeding areas. Nestlings were fed 3–6 times daily. Adults travelled in flocks of up to 263 Parrots to the feeding grounds in early mornings; later in the day, they flew in smaller flocks, making 1–4 trips to the feeding grounds.
    [Show full text]
  • Supplementary Information For
    Supplementary Information for Indigenous knowledge networks in the face of global change Rodrigo Cámara-Leret, Miguel A. Fortuna & Jordi Bascompte Rodrigo Cámara-Leret Email: [email protected] This PDF file includes: Supplementary text Figs. S1 to S5 Tables S1 to S4 1 www . pnas.org/cgi/doi/10.1073/pnas.1821843116 Fig. S1. Geographic distribution of the communities studied. Map of northwestern South America showing the geographic location and the names of the 57 communities. 2 a 3 R=0.003 NuevoProgreso ● 2 ●Pacuya Munaypata ● ●Zabalo Sanandita ● SantaAna Angostura Mayo Kusutkau Kapawi● Dureno ● Illipanayuyo● ● ● ● 1 PuertoYaminahua Wayusentsa CorreoSanIsidro● SanMartin SantaRosaDeMaravillaSanSilvestre● ● ● ● ● TresArroyos ● ● Secejsama ●BuenaVista Curare SanAntonioPucasucho● UnionProgreso Yucuna ● ●SantaRosa● Motacuzal● ' OS PuertoQuito ● Sibundoy● ● ● ● ● b 0 Santiago ● ●ElChino ● Camaritagua Juisanoy● ● SantoDomingoBoliviaSanBenito ● OctubreVillaSantiago● ● ● SantaMaria NuevaSamariaAviacion● ● ● Nanegalito PeripaCusuChico● ● −1 Mindo● Irimo● ● CentroProvidenciaSanMartinDeAmacayacu Yamayakat ● ● LamasWayku Chiguilpe ● ● Villanueva AltoIvon● ● ● PalmaReal Aguacate −2 ● PuertoPervel −2 −1 0 1 2 3 4 FractionFraction of of all all species species b 3 R=−0.41** NuevoProgreso ● 2 Pacuya● Munaypata Zabalo● ● SananditaAngostura● SantaAna Kusutkau ● Mayo Kapawi Dureno ● ● Illipanayuyo● ● ● 1 PuertoYaminahuaWayusentsa SanIsidro ● Correo SanMartin SantaRosaDeMaravilla ● ● SanSilvestre ● ● TresArroyos● ● Secejsama●Curare BuenaVista UnionProgresoSanAntonio
    [Show full text]
  • Factors Influencing Density of the Northern Mealy Amazon in Three Forest Types of a Modified Rainforest Landscape in Mesoamerica
    VOLUME 12, ISSUE 1, ARTICLE 5 De Labra-Hernández, M. Á., and K. Renton. 2017. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica. Avian Conservation and Ecology 12(1):5. https://doi.org/10.5751/ACE-00957-120105 Copyright © 2017 by the author(s). Published here under license by the Resilience Alliance. Research Paper Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica Miguel Ángel De Labra-Hernández 1 and Katherine Renton 2 1Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México, 2Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Jalisco, México ABSTRACT. The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae) is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013) and breeding (March 2014) seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest.
    [Show full text]
  • TRAFFIC Bird’S-Eye View: REPORT Lessons from 50 Years of Bird Trade Regulation & Conservation in Amazon Countries
    TRAFFIC Bird’s-eye view: REPORT Lessons from 50 years of bird trade regulation & conservation in Amazon countries DECEMBER 2018 Bernardo Ortiz-von Halle About the author and this study: Bernardo Ortiz-von Halle, a biologist and TRAFFIC REPORT zoologist from the Universidad del Valle, Cali, Colombia, has more than 30 years of experience in numerous aspects of conservation and its links to development. His decades of work for IUCN - International Union for Conservation of Nature and TRAFFIC TRAFFIC, the wildlife trade monitoring in South America have allowed him to network, is a leading non-governmental organization working globally on trade acquire a unique outlook on the mechanisms, in wild animals and plants in the context institutions, stakeholders and challenges facing of both biodiversity conservation and the conservation and sustainable use of species sustainable development. and ecosystems. Developing a critical perspective The views of the authors expressed in this of what works and what doesn’t to achieve lasting conservation goals, publication do not necessarily reflect those Bernardo has put this expertise within an historic framework to interpret of TRAFFIC, WWF, or IUCN. the outcomes of different wildlife policies and actions in South America, Reproduction of material appearing in offering guidance towards solutions that require new ways of looking at this report requires written permission wildlife trade-related problems. Always framing analysis and interpretation from the publisher. in the midst of the socioeconomic and political frameworks of each South The designations of geographical entities in American country and in the region as a whole, this work puts forward this publication, and the presentation of the conclusions and possible solutions to bird trade-related issues that are material, do not imply the expression of any linked to global dynamics, especially those related to wildlife trade.
    [Show full text]
  • TOUR REPORT Southwestern Amazonia 2017 Final
    For the first time on a Birdquest tour, the Holy Grail from the Brazilian Amazon, Rondonia Bushbird – male (Eduardo Patrial) BRAZIL’S SOUTHWESTERN AMAZONIA 7 / 11 - 24 JUNE 2017 LEADER: EDUARDO PATRIAL What an impressive and rewarding tour it was this inaugural Brazil’s Southwestern Amazonia. Sixteen days of fine Amazonian birding, exploring some of the most fascinating forests and campina habitats in three different Brazilian states: Rondonia, Amazonas and Acre. We recorded over five hundred species (536) with the exquisite taste of specialties from the Rondonia and Inambari endemism centres, respectively east bank and west bank of Rio Madeira. At least eight Birdquest lifer birds were acquired on this tour: the rare Rondonia Bushbird; Brazilian endemics White-breasted Antbird, Manicore Warbling Antbird, Aripuana Antwren and Chico’s Tyrannulet; also Buff-cheeked Tody-Flycatcher, Acre Tody-Tyrant and the amazing Rufous Twistwing. Our itinerary definitely put together one of the finest selections of Amazonian avifauna, though for a next trip there are probably few adjustments to be done. The pre-tour extension campsite brings you to very basic camping conditions, with company of some mosquitoes and relentless heat, but certainly a remarkable site for birding, the Igarapé São João really provided an amazing experience. All other sites 1 BirdQuest Tour Report: Brazil’s Southwestern Amazonia 2017 www.birdquest-tours.com visited on main tour provided considerably easy and very good birding. From the rich east part of Rondonia, the fascinating savannas and endless forests around Humaitá in Amazonas, and finally the impressive bamboo forest at Rio Branco in Acre, this tour focused the endemics from both sides of the medium Rio Madeira.
    [Show full text]
  • Genetic Diversity and Population Structure of Two Endangered Neotropical Parrots Inform in Situ and Ex Situ Conservation Strategies
    diversity Article Genetic Diversity and Population Structure of Two Endangered Neotropical Parrots Inform In Situ and Ex Situ Conservation Strategies Carlos I. Campos 1 , Melinda A. Martinez 1, Daniel Acosta 1, Jose A. Diaz-Luque 2, Igor Berkunsky 3 , Nadine L. Lamberski 4, Javier Cruz-Nieto 5 , Michael A. Russello 6 and Timothy F. Wright 1,* 1 Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] (C.I.C.); [email protected] (M.A.M.); [email protected] (D.A.) 2 Fundación CLB (FPCILB), Estación Argentina, Calle Fermín Rivero 3460, Santa Cruz de la Sierra, Bolivia; [email protected] 3 Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustenable, CONICET-Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil 7000, Argentina; [email protected] 4 San Diego Zoo Wildlife Alliance, San Diego, CA 92027, USA; [email protected] 5 Organización Vida Silvestre A.C. (OVIS), San Pedro Garza Garciá 66260, Mexico; [email protected] 6 Department of Biology, University of British Columbia, Kelowna, BC V1V 1V7, Canada; [email protected] * Correspondence: [email protected] Abstract: A key aspect in the conservation of endangered populations is understanding patterns of Citation: Campos, C.I.; Martinez, genetic variation and structure, which can provide managers with critical information to support M.A.; Acosta, D.; Diaz-Luque, J.A.; evidence-based status assessments and management strategies. This is especially important for Berkunsky, I.; Lamberski, N.L.; species with small wild and larger captive populations, as found in many endangered parrots. We Cruz-Nieto, J.; Russello, M.A.; Wright, used genotypic data to assess genetic variation and structure in wild and captive populations of T.F.
    [Show full text]
  • Ultimate Bolivia Tour Report 2019
    Titicaca Flightless Grebe. Swimming in what exactly? Not the reed-fringed azure lake, that’s for sure (Eustace Barnes) BOLIVIA 8 – 29 SEPTEMBER / 4 OCTOBER 2019 LEADER: EUSTACE BARNES Bolivia, indeed, THE land of parrots as no other, but Cotingas as well and an astonishing variety of those much-loved subfusc and generally elusive denizens of complex uneven surfaces. Over 700 on this tour now! 1 BirdQuest Tour Report: Ultimate Bolivia 2019 www.birdquest-tours.com Blue-throated Macaws hoping we would clear off and leave them alone (Eustace Barnes) Hopefully, now we hear of colourful endemic macaws, raucous prolific birdlife and innumerable elusive endemic denizens of verdant bromeliad festooned cloud-forests, vast expanses of rainforest, endless marshlands and Chaco woodlands, each ringing to the chorus of a diverse endemic avifauna instead of bleak, freezing landscapes occupied by impoverished unhappy peasants. 2 BirdQuest Tour Report: Ultimate Bolivia 2019 www.birdquest-tours.com That is the flowery prose, but Bolivia IS that great destination. The tour is no longer a series of endless dusty journeys punctuated with miserable truck-stop hotels where you are presented with greasy deep-fried chicken and a sticky pile of glutinous rice every day. The roads are generally good, the hotels are either good or at least characterful (in a good way) and the food rather better than you might find in the UK. The latter perhaps not saying very much. Palkachupe Cotinga in the early morning light brooding young near Apolo (Eustace Barnes). That said, Bolivia has work to do too, as its association with that hapless loser, Che Guevara, corruption, dust and drug smuggling still leaves the country struggling to sell itself.
    [Show full text]
  • Universidad De San Carlos De Guatemala Facultad De Ciencias
    0 Universidad de San Carlos de Guatemala Facultad de Ciencias Químicas y Farmacia Modelado de nicho ecológico actual de dos especies de psitácidos en peligro de extinción (Ara macao cyanoptera y Amazona auropalliata), en Guatemala Informe de Tesis Presentado por Ana Rocío Silva Rivera Para optar por el título de Bióloga Guatemala, noviembre de 2019 Universidad de San Carlos de Guatemala Facultad de Ciencias Químicas y Farmacia Modelado de nicho ecológico actual de dos especies de psitácidos en peligro de extinción (Ara macao cyanoptera y Amazona auropalliata), en Guatemala Ana Rocío Silva Rivera Bióloga Guatemala, noviembre de 2019 JUNTA DIRECTIVA M.A. Pablo Ernesto Oliva Soto Decano Licda. Miriam Roxana Marroquín Leiva Secretaria Dr. Juan Francisco Pérez Sabino Vocal I Dr. Roberto Enrique Flores Arzú Vocal II Lic. Carlos Manuel Maldonado Aguilera Vocal III Br. Giovani Rafael Funes Tobar Vocal IV Br. Carol Merarí Caceros Castañeda Vocal V DEDICATORIA A mis padres, César Silva y Jeannette Rivera, por su apoyo y amor incondicional. Por siempre motivarme a seguir adelante y creen en mí. A mi hermano por las risas, travesuras y apoyo a lo largo de mi vida. Gracias por siempre estar para mí. A Erick López por su amor incondicional. Gracias por todas las aventuras y abrirme la mente a cosas nuevas. A mi bisabuela Josefina Méndez por siempre apoyarme en mis decisiones y creer en mí. Por último dedico esta tesis a mis amigos y profesores quienes me han acompañado a lo largo de mi vida y carrera profesional. AGRADECIMIENTOS A mis amigos y asesores, Rony García y Michelle Catalán, por su guía y apoyo incondicional siempre.
    [Show full text]
  • Provisional List of Birds of the Rio Tahuauyo Areas, Loreto, Peru
    Provisional List of Birds of the Rio Tahuauyo areas, Loreto, Peru Compiled by Carol R. Foss, Ph.D. and Josias Tello Huanaquiri, Guide Status based on expeditions from Tahuayo Logde and Amazonia Research Center TINAMIFORMES: Tinamidae 1. Great Tinamou Tinamus major 2. White- throated Tinamou Tinamus guttatus 3. Cinereous Tinamou Crypturellus cinereus 4. Little Tinamou Crypturellus soui 5. Undulated Tinamou Crypturellus undulates 6. Variegated Tinamou Crypturellus variegatus 7. Bartlett’s Tinamou Crypturellus bartletti ANSERIFORMES: Anhimidae 8. Horned Screamer Anhima cornuta ANSERIFORMES: Anatidae 9. Muscovy Duck Cairina moschata 10. Blue-winged Teal Anas discors 11. Masked Duck Nomonyx dominicus GALLIFORMES: Cracidae 12. Spix’s Guan Penelope jacquacu 13. Blue-throated Piping-Guan Pipile cumanensis 14. Speckled Chachalaca Ortalis guttata 15. Wattled Curassow Crax globulosa 16. Razor-billed Curassow Mitu tuberosum GALLIFORMES: Odontophoridae 17. Marbled Wood-Quall Odontophorus gujanensis 18. Starred Wood-Quall Odontophorus stellatus PELECANIFORMES: Phalacrocoracidae 19. Neotropic Cormorant Phalacrocorax brasilianus PELECANIFORMES: Anhingidae 20. Anhinga Anhinga anhinga CICONIIFORMES: Ardeidae 21. Rufescent Tiger-Heron Tigrisoma lineatum 22. Agami Heron Agamia agami 23. Boat-billed Heron Cochlearius cochlearius 24. Zigzag Heron Zebrilus undulatus 25. Black-crowned Night-Heron Nycticorax nycticorax 26. Striated Heron Butorides striata 27. Cattle Egret Bubulcus ibis 28. Cocoi Heron Ardea cocoi 29. Great Egret Ardea alba 30. Cappet Heron Pilherodius pileatus 31. Snowy Egret Egretta thula 32. Little Blue Heron Egretta caerulea CICONIIFORMES: Threskiornithidae 33. Green Ibis Mesembrinibis cayennensis 34. Roseate Spoonbill Platalea ajaja CICONIIFORMES: Ciconiidae 35. Jabiru Jabiru mycteria 36. Wood Stork Mycteria Americana CICONIIFORMES: Cathartidae 37. Turkey Vulture Cathartes aura 38. Lesser Yellow-headed Vulture Cathartes burrovianus 39.
    [Show full text]
  • Evolution of Agroforestry As a Modern Science
    Chapter 2 Evolution of Agroforestry as a Modern Science Jagdish C. Dagar and Vindhya P. Tewari Abstract Agroforestry is as old as agriculture itself. Many of the anecdotal agro- forestry practices, which are time tested and evolved through traditional indigenous knowledge, are still being followed in different agroecological zones. The tradi- tional knowledge and the underlying ecological principles concerning indigenous agroforestry systems around the world have been successfully used in designing the improved systems. Many of them such as improved fallows, homegardens, and park systems have evolved as modern agroforestry systems. During past four decades, agroforestry has come of age and begun to attract the attention of the international scientific community, primarily as a means for sustaining agricultural productivity in marginal lands and solving the second-generation problems such as secondary salinization due to waterlogging and contamination of water resources due to the use of excess nitrogen fertilizers and pesticides. Research efforts have shown that most of the degraded areas including saline, waterlogged, and perturbation ecolo- gies like mine spoils and coastal degraded mangrove areas can be made productive by adopting suitable agroforestry techniques involving highly remunerative compo- nents such as plantation-based farming systems, high-value medicinal and aromatic plants, livestock, fishery, poultry, forest and fruit trees, and vegetables. New con- cepts such as integrated farming systems and urban and peri-urban agroforestry have emerged. Consequently, the knowledge base of agroforestry is being expanded at a rapid pace as illustrated by the increasing number and quality of scientific pub- lications of various forms on different aspects of agroforestry. It is both a challenge and an opportunity to scientific community working in this interdisciplinary field.
    [Show full text]
  • The Nanday Conure
    The Nanday Conure wM it NY Ti at at It It it It 1K tt Conures have been known to Those birds are in contrast with The bird has red thighs brownish attack and eat smaller bird species their behavior in the wild not suit pink feet reddishbrown eyes and during migration in the fall Thus it able for keeping in community blackishgray bill The birds length follows that should will fellow 12 its logically they not type aviary they peck at is 12 to 30 to 32 cm be placed with smaller birds in the species and any other species that wings are to 18 to 19 same housing comes too close to them and their cm and its tail 17 loud almost constant screeching can Providing that the birds Aratinga he very disturbing to other birds accommodations are roomy they Many ornithologists consider especially those breeding will breed quite quickly The nesting the Nanday Conure member of the This screeching also makes boxes should not be placed too genus Aratinga these birds indeed them poor candidates for keeping high because the birds like to sit on come in many different plumages indoors though we have seen sever top of them and watch the world go their the is the and even size and origin are al hand reared Aratingas sitting on by When female sitting on not common denominators They all their perches and talking great deal eggs the male may sit for hours on come from the New World from They can indeed he tamed quite top of the nest box The female lays both the male Mexico south to most parts of South quickly and will then be very affec two to four eggs and America
    [Show full text]