The History and Scope of Tissue Engineering Joseph Vacanti and Charles A

Total Page:16

File Type:pdf, Size:1020Kb

The History and Scope of Tissue Engineering Joseph Vacanti and Charles A Chapter One The History and Scope of Tissue Engineering Joseph Vacanti and Charles A. Vacanti I. Introduction V. General Scientifi c Issues II. Scientifi c Challenges VI. Social Challenges III. Cells VII. References IV. Materials I. INTRODUCTION the mid-19th century enabled the rapid evolution of many The dream is as old as humankind. Injury, disease, and surgical techniques. With patients anesthetized, innovative congenital malformation have always been part of the and courageous surgeons could save lives by examining human experience. If only damaged bodies could be and treating internal areas of the body: the thorax, the restored, life could go on for loved ones as though tragedy abdomen, the brain, and the heart. Initially the surgical had not intervened. In recorded history, this possibility fi rst techniques were primarily extirpative, for example, removal was manifested through myth and magic, as in the Greek of tumors, bypass of the bowel in the case of intestinal legend of Prometheus and eternal liver regeneration. Then obstruction, and repair of life-threatening injuries. Main- legend produced miracles, as in the creation of Eve in tenance of life without regard to the crippling effects of Genesis or the miraculous transplantation of a limb by the tissue loss or the psychosocial impact of disfi gurement, saints Cosmos and Damien. With the introduction of the however, was not an acceptable end goal. Techniques that scientifi c method came new understanding of the natural resulted in the restoration of function through structural world. The methodical unraveling of the secrets of biology replacement became integral to the advancement of human was coupled with the scientifi c understanding of disease therapy. and trauma. Artifi cial or prosthetic materials for replacing Now whole fi elds of reconstructive surgery have limbs, teeth, and other tissues resulted in the partial restora- emerged to improve the quality of life by replacing missing tion of lost function. Also, the concept of using one tissue as function through rebuilding body structures. In our current a replacement for another was developed. In the 16th era, modern techniques of transplanting tissue and organs century, Tagliacozzi of Bologna, Italy, reported in his work from one individual into another have been revolutionary Decusorum Chirurgia per Insitionem a description of a and lifesaving. The molecular and cellular events of the nose replacement that he constructed from a forearm fl ap. immune response have been elucidated suffi ciently to sup- With the 19th-century scientifi c understanding of the germ press the response in the clinical setting of transplantation theory of disease and the introduction of sterile technique, and to produce prolonged graft survival and function in modern surgery emerged. The advent of anesthesia by patients. In a sense, transplantation can be viewed as the Principles of Tissue Engineering, 3rd Edition Copyright © 2007, Elsevier, Inc. ed. by Lanza, Langer, and Vacanti All rights reserved. 4 CHAPTER ONE • THE HISTORY AND SCOPE OF TISSUE ENGINEERING most extreme form of reconstructive surgery, transferring armamentarium of physicians and surgeons. Broadly speak- tissue from one individual into another. ing, the challenges are scientifi c and social. As with any successful undertaking, new problems have emerged. Techniques using implantable foreign body mate- II. SCIENTIFIC CHALLENGES rials have produced dislodgment, infection at the foreign As a fi eld, tissue engineering has been defi ned only body/tissue interface, fracture, and migration over time. since the mid-1980s. As in any new undertaking, its roots are Techniques moving tissue from one position to another fi rmly implanted in what went before. Any discussion of have produced biologic changes because of the abnormal when the fi eld began is inherently fuzzy. Much still needs to interaction of the tissue at its new location. For example, be learned and developed to provide a fi rm scientifi c basis diverting urine into the colon can produce fatal colon for therapeutic application. To date, much of the progress in cancers 20–30 years later. Making esophageal tubes from the this fi eld has been related to the development of model skin can result in skin tumors 30 years later. Using intestine systems, which have suggested a variety of approaches. for urinary tract replacement can result in severe scarring Also, certain principles of cell biology and tissue develop- and obstruction over time. ment have been delineated. The fi eld can draw heavily on Transplantation from one individual into another, the explosion of new knowledge from several interrelated, although very successful, has severe constraints. The major well-established disciplines and in turn may promote the problem is accessing enough tissue and organs for all of the coalescence of relatively new, related fi elds to achieve their patients who need them. Currently, 92,587 people are on potential. The rate of new understanding of complex living transplant waiting lists in the United States, and many will systems has been explosive since the 1970s. Tissue engi- die waiting for available organs. Also, problems with the neering can draw on the knowledge gained in the fi elds of immune system produce chronic rejection and destruction cell and stem cell biology, biochemistry, and molecular over time. Creating an imbalance of immune surveillance biology and apply it to the engineering of new tissues. Like- from immunosuppression can cause new tumor formation. wise, advances in materials science, chemical engineering, The constraints have produced a need for new solutions to and bioengineering allow the rational application of engi- provide needed tissue. neering principles to living systems. Yet another branch of It is within this context that the fi eld of tissue engineering related knowledge is the area of human therapy as applied has emerged. In essence, new and functional living tissue is by surgeons and physicians. In addition, the fi elds of genetic fabricated using living cells, which are usually associated, in engineering, cloning, and stem cell biology may ultimately one way or another, with a matrix or scaffolding to guide develop hand in hand with the fi eld of tissue engineering in tissue development. New sources of cells, including many the treatment of human disease, each discipline depending types of stem cells, have been identifi ed in the past several on developments in the others. years, igniting new interest in the fi eld. In fact, the emergence We are in the midst of a biologic renaissance. Interac- of stem cell biology has led to a new term, regenerative medi- tions of the various scientifi c disciplines can elucidate not cine. Scaffolds can be natural, man-made, or a composite of only the potential direction of each fi eld of study, but also both. Living cells can migrate into the implant after implan- the right questions to address. The scientifi c challenge in tation or can be associated with the matrix in cell culture tissue engineering lies both in understanding cells and their before implantation. Such cells can be isolated as fully dif- mass transfer requirements and the fabrication of materials ferentiated cells of the tissue they are hoped to recreate, or to provide scaffolding and templates. they can be manipulated to produce the desired function when isolated from other tissues or stem cell sources. Con- ceptually, the application of this new discipline to human III. CELLS health care can be thought of as a refi nement of previously If we postulate that living cells are required to fabricate defi ned principles of medicine. The physician has historically new tissue substitutes, much needs to be learned with treated certain disease processes by supporting nutrition, regard to their behavior in two normal circumstances: minimizing hostile factors, and optimizing the environment normal development in morphogenesis and normal wound so that the body can heal itself. In the fi eld of tissue engineer- healing. In both of these circumstances, cells create or recre- ing, the same thing is accomplished on a cellular level. The ate functional structures using preprogrammed informa- harmful tissue is eliminated; the cells necessary for repair tion and signaling. Some approaches to tissue engineering are then introduced in a confi guration optimizing survival rely on guided regeneration of tissue using materials that of the cells in an environment that will permit the body to serve as templates for ingrowth of host cells and tissue. heal itself. Tissue engineering offers an advantage over cell Other approaches rely on cells that have been implanted as transplantation alone in that organized three-dimensional part of an engineered device. As we gain understanding of functional tissue is designed and developed. This chapter normal developmental and wound-healing gene programs summarizes some of the challenges that must be resolved and cell behavior, we can use them to our advantage in the before tissue engineering can become part of the therapeutic rational design of living tissues. V. GENERAL SCIENTIFIC ISSUES • 5 Acquiring cells for creation of body structures is a major developed to be compatible with living systems or with challenge, the solution of which continues to evolve. The living cells in vitro and in vivo. Their interface with the cells ultimate goal in this regard — the large-scale fabrication of and the implant site must be clearly understood so that the structures — may be to create large cell banks composed of interface can be optimized. Their design characteristics are universal cells that would be immunologically transparent major challenges for the fi eld and should be considered at to an individual. These universal cells could be differenti- a molecular chemical level. Systems can be closed, semiper- ated cell types that could be accepted by an individual or meable, or open. Each design should factor into the specifi c could be stem cell reservoirs, which could respond to signals replacement therapy considered.
Recommended publications
  • Tissue Tregs and Maintenance of Tissue Homeostasis
    fcell-09-717903 August 12, 2021 Time: 13:32 # 1 REVIEW published: 18 August 2021 doi: 10.3389/fcell.2021.717903 Tissue Tregs and Maintenance of Tissue Homeostasis Qing Shao1,2,3,4†, Jian Gu1,2,3,4†, Jinren Zhou1,2,3,4†, Qi Wang1,2,3,4, Xiangyu Li1,2,3,4, Zhenhua Deng1,2,3,4 and Ling Lu1,2,3,4* 1 Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2 Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China, 3 Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China, 4 Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China Regulatory T cells (Tregs) specifically expressing Forkhead box P3 (Foxp3) play roles in suppressing the immune response and maintaining immune homeostasis. Edited by: After maturation in the thymus, Tregs leave the thymus and migrate to lymphoid Ivan Dzhagalov, tissues or non-lymphoid tissues. Increasing evidence indicates that Tregs with unique National Yang-Ming University, Taiwan characteristics also have significant effects on non-lymphoid peripheral tissues. Tissue- Reviewed by: resident Tregs, also called tissue Tregs, do not recirculate in the blood or lymphatics Dipayan Rudra, ImmunoBiome Inc., South Korea and attain a unique phenotype distinct from common Tregs in circulation. This review Ying Shao, first summarizes the phenotype, function, and cytokine expression of these Tregs in Temple University, United States visceral adipose tissue, skin, muscle, and other tissues. Then, how Tregs are generated, *Correspondence: Ling Lu home, and are attracted to and remain resident in the tissue are discussed.
    [Show full text]
  • On Normal Tissue Homeostasis Maintenance of Immune Tolerance
    Maintenance of Immune Tolerance Depends on Normal Tissue Homeostasis Zita F. H. M. Boonman, Geertje J. D. van Mierlo, Marieke F. Fransen, Rob J. W. de Keizer, Martine J. Jager, Cornelis J. This information is current as M. Melief and René E. M. Toes of September 27, 2021. J Immunol 2005; 175:4247-4254; ; doi: 10.4049/jimmunol.175.7.4247 http://www.jimmunol.org/content/175/7/4247 Downloaded from References This article cites 48 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/175/7/4247.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Maintenance of Immune Tolerance Depends on Normal Tissue Homeostasis Zita F. H. M. Boonman,* Geertje J. D. van Mierlo,† Marieke F. Fransen,† Rob J.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Tissue Engineering: from Cell Biology to Artificial Organs
    干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering Essentials for Daily Laboratory Work W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 Further Titles of Interest Novartis Foundation Symposium Kay C. Dee, David A. Puleo, Rena Bizios Tissue Engineering An Introduction to Tissue- of Cartilage and Bone – Biomaterial Interactions No. 249 2002 ISBN 0-471-25394-4 2003 ISBN 0-470-84481-7 Alan Doyle, J. Bryan Griffiths (Eds.) Rolf D. Schmid, Ruth Hammelehle Cell and Tissue Culture Pocket Guide to Biotechnology for Medical Research and Genetic Engineering 2000 2003 ISBN 0-471-85213-9 ISBN 3-527-30895-4 R. Ian Freshney Michael Hoppert Culture of Animal Cells: Microscopic Techniques A Manual of Basic Technique, in Biotechnology 4th Edition 2003 ISBN 3-527-30198-4 2000 ISBN 0-471-34889-9 R. Ian Freshney, Mary G. Freshney Oliver Kayser, Rainer H. Mu¨ller (Eds.) (Eds.) Pharmaceutical Biotechnology: Culture of Epithelial Cells, Drug Discovery and Clinical 2nd Edition Applications 2002 2004 ISBN 0-471-40121-8 ISBN 3-527-30554-8 干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering Essentials for Daily Laboratory Work W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 Authors This book was carefully produced. Nevertheless, editors, authors and publisher do not warrant the Dr. Will W. Minuth, PhD information contained therein to be free of errors. Raimund Strehl, PhD Readers are advised to keep in mind that state- Karl Schumacher, M.D. ments, data, illustrations, procedural details or other items may inadvertently be inaccurate.
    [Show full text]
  • Psychology of Pain KENNETH D
    Postgrad Med J: first published as 10.1136/pgmj.60.710.835 on 1 December 1984. Downloaded from Postgraduate Medical Journal (December 1984) 60, 835-840 Psychology of pain KENNETH D. CRAIG M.A., Ph.D. Department of Psychology, University of British Columbia, Vancouver, B.C. Canada V6T 1 Y7 Introduction Many chronic pain syndromes, as well as some reactions to acute pain, can only be understood by To the sufferer, pain is a vital reality. While fully incorporating psychological variables into explana- aware of this, the scientist and practitioner must also tory models. Exclusively sensory and predominantly recognize that efforts to understand and manage pain biophysical explanatory models, that emphasize can be only as good as the available theoretical treatment of underlying pathophysiological pro- models. Recent decades have seen concepts of pain cesses, have proved inadequate, with large numbers increasingly embrace psychological models (Merskey of patients who do not benefit from care based on this and Spear, 1967; Stembach, 1978; Melzack and Wall, model. While the majority of painful injuries heal 1983). The definition of pain adopted by the Interna- through spontaneous recovery and medical interven- tional Association for the Study of Pain (1979) tion, Bonica (1983) has estimated that one-third of describes pain as 'An unpleasant sensory and emo- the population suffers some form of recurrent or tional experience associated with actual or potential persistent pain. tissue damage, or described in terms ofsuch damage'. by copyright.
    [Show full text]
  • Tissue Homeostasis
    Chapter 3 Tissue homeostasis Anders Lindahl Chapter contents 3.5 Tissues where regeneration was not considered – the paradigm shift in 3.1 Introduction 74 tissue regeneration 79 3.2 Tissues with no potential of 3.6 Consequence of regeneration potential regeneration 76 for the tissue engineering concept 81 3.3 Tissues with slow regeneration time 76 3.7 Cell migration of TA cells 85 3.4 Tissues with a high capacity of 3.8 Future developments 86 regeneration 77 3.9 Summary 86 Chapter objectives: ● To know the definition of the terms ● To recognize a stem cell niche regeneration and homeostasis ● To understand that stem cell niches ● To recognize that different tissues have share common regulatory systems different regeneration capacity ● To understand that tissue regeneration ● To acknowledge that the brain and heart has consequences and offer are regenerating organs opportunities in the development of ● To understand how tissue regeneration tissue engineering products can be analyzed by labeling experiments CCH003.inddH003.indd 7733 11/29/2008/29/2008 33:18:21:18:21 PPMM 74 Chapter 3 Tissue homeostasis I ’ d give my right arm to know the secret of regeneration Oscar E Schotte, quoted in Goss (1991) . 3.1 Introduction Distal amputation The ability to regenerate larger parts of an organism Original is connected to the complexity of that organism. The limp lower developed the animal, the better the regen- eration ability. In most vertebrates, the regeneration potential is limited to the musculoskeletal system and Amputation liver. In the hydras (a 0.5 cm long fresh-water cnidar- ian) the regeneration is made through morphollaxis, a process that does not require any cell division.
    [Show full text]
  • Mechanistic Ideas of Life: the Cell Theory
    Mechanistic Ideas of Life: The Cell Theory Robert Hooke-1665 • Examined thin slices of cork and discovered: "Yet it was not unlike a Honey-comb in these particulars...these pores, or cells, ... consisted of a great many little Boxes.... Nor is this kind of texture peculiar to Cork onely; for upon examination with my Microscope, I have found that the pith of an Elder, or almost any other Tree, the inner pulp or pith of ... several other Vegetables ... have much such a kind of Schematisme, as I have lately shown [in] that of Cork." • Hooke called them “cellulae” (Latin word for “little rooms” ). • Cells defined by their walls Antony van Leeuwenhoek • Developed his own single-lens microscopes for use on fabrics (operated a drapery business in Delft) • First to observe details of animal structure (muscle banding) as well as single-celled organisms (bacteria, sperm) – Sent results to the new Royal Society 1 Jan Swammerdam: (1637-1680) Describes the appearance of blood under microscope: “If we begin the dissection in the upper part of the abdomen, and cautiously split the skin there, blood immediately escapes from that place. The blood, when received into a glass tube and examined with a very good microscope, is observed to consist of transparent globules (globulis), in no way differing from cow's milk, a fact that was discovered a few years ago in human blood also; for this is seen to consist of slightly reddish globules, floating in a clear fluid.” Marie François Xavier Bichat (1800): doing without microscopes Rejected the value of observing with microscopes, but nonetheless made very astute observations: • Two different sets of organs – Those under volitional control and serving locomotion – Those serving vital processes: digestion, assimilation, etc.
    [Show full text]
  • An Introduction to Stem Cell Biology
    An Introduction to Stem Cell Biology Michael L. Shelanski, MD,PhD Professor of Pathology and Cell Biology Columbia University Figures adapted from ISSCR. Presentations of Drs. Martin Pera (Monash University), Dr.Susan Kadereit, Children’s Hospital, Boston and Dr. Catherine Verfaillie, University of Minnesota Science 1999, 283: 534-537 PNAS 1999, 96: 14482-14486 Turning Blood into Brain: Cells Bearing Neuronal Antigens Generated in Vitro from Bone Marrow Science 2000, 290:1779-1782 From Marrow to Brain: Expression of Neuronal Phenotypes in Adult Mice Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., McKercher, S.R. Science 2000, 290:1775-1779 Brazelton, T.R., Rossi, F.M., Keshet, G.I., Blau, H.M. Nature 2001, 410:701-705 Nat Med 2000, 11: 1229-1234 Stem Cell FAQs Do you need to get one from an egg? Must you sacrifice an Embryo? What is an ES cell? What about adult stem cells or cord blood stem cells Why can’t this work be done in animals? Are “cures” on the horizon? Will this lead to human cloning – human spare parts factories? Are we going to make a Frankenstein? What is a stem cell? A primitive cell which can either self renew (reproduce itself) or give rise to more specialised cell types The stem cell is the ancestor at the top of the family tree of related cell types. One blood stem cell gives rise to red cells, white cells and platelets Stem Cells Vary in their Developmental capacity A multipotent cell can give rise to several types of mature cell A pluripotent cell can give rise to all types of adult tissue cells plus extraembryonic tissue: cells which support embryonic development A totipotent cell can give rise to a new individual given appropriate maternal support The Fertilized Egg The “Ultimate” Stem Cell – the Newly Fertilized Egg (one Cell) will give rise to all the cells and tissues of the adult animal.
    [Show full text]
  • A Short History of Imuregen – an Original Tissue Extract
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2019, 88(3), 115-120 ISSN 0372-7025 (Print) ISSN 2571-113X (Online) DOI: 10.31482/mmsl.2019.008 Since 1925 REVIEW ARTICLE A SHORT HISTORY OF IMUREGEN – AN ORIGINAL TISSUE EXTRACT Klara Kubelkova and Ales Macela Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic Received 14th March 2019. Accepted 29th April 2019. Published 6th September 2019. Summary Imuregen is a unique dietary supplement that was developed by leading Czech immunologists, made and distributed from the Czech Republic, and first came out in the 1950s. Imuregen boasts of decades of research and clinical exposure. It was created for the immune system sourced only from all natural ingredients that support cellular immunity and energy, tissue regeneration, wound healing, endocrine gland repair, intestinal integrity, memory enhancement, and has antitumor effects. Key words: tissue extract; biological response modulator; Imuregen; Retisin Introduction Natural biological products in the forms of teas or extracts were the first drugs for improving the fitness of human beings in ancient times. Over the course of the millennia, an immense amount of empirical experience has been ac- cumulated. As passed from generation to generation, this has given rise to numerous innovative therapies. Their usage continues up to the present day, especially in the forms of prebiotics, probiotics, and/or nutritional supplements to support regeneration or innate immune responsiveness during unspecific sicknesses or during convalescence from infection or cancerous illnesses. The U.S. National Library of Medicine defines the term “tissue extracts” as: “Preparations made from animal tissues or organs (animal structures).
    [Show full text]
  • IB Biology Syllabus – Definitions
    IB Biology – Definitions required by the syllabus IB Biology syllabus – definitions. * Definition given in IB Biology syllabus Summer homework directions: Study all the words for topics 1 through 6 (create a Quizlet, notecards, Kahoot…?). Share this with me via email. The first week of school we will have a vocabulary quiz. TOPIC WORD DEFINITION Topic 1: Cells Organelle A discrete structure within a cell, with a specific function.* biology Tissue A group of cells similar to each other, along with their associated intercellular substances, which perform the same function within a multicellular organism. Organ A group of tissues which work together as a single unit to perform a particular function within a multicellular organism. Organ system A group of organs, vessels, glands, other tissues, and/or pathways which work together to perform a body function within a multicellular organism. Diffusion The passive movement of molecules from a region of high concentration to a region of low concentration. Osmosis The passive movement of water molecules, across a partially permeable membrane, from a region of lower solute concentration to a region of higher solute concentration.* Topic 2: Organic Compounds containing carbon that are found in living Molecular organisms (except hydrogencarbonates, carbonates and oxides biology of carbon).* Enzyme Proteins that act as biological catalysts, speeding the rate at which biochemical reactions proceed but not altering the direction or nature of the reactions. Active site A specific region of an enzyme where a substrate binds and catalysis takes place. Denaturation A structural change in a protein that results in a loss (usually permanent) of its biological properties.
    [Show full text]
  • CELL CULTURE BASICS Handbook
    CELL CULTURE BASICS Cell Culture Basics Culture Cell www.invitrogen.com/cellculturebasics Handbook B-087243 0110 Contents Introduction . .1 Purpose of the Handbook . 1. Introduction to Cell Culture . 2. What is Cell Culture? . 2 Finite vs Continuous Cell Line . .2 Culture Conditions . .2 Cryopreservation . .2 Morphology of Cells in Culture . 3 Applications of Cell Culture . .3 Cell Culture Laboratory . .4 Safety . 4. Biosafety Levels . 4 SDS . 5 Safety Equipment . 5 Personal Protective Equipment (PPE) . 5 Safe Laboratory Practices . .5 Cell Culture Equipment . 6. Basic Equipment . 6 Expanded Equipment . .6 Additional Supplies . .6 Cell Culture Laboratory . 7. Aseptic Work Area . 7 Cell Culture Hood . .7 Cell Culture Hood Layout . .8 Incubator . 9 Storage . 9 Cryogenic Storage . .10 Cell Counter . .10 Cell Culture Basics | i Contents Aseptic Technique . .11 Introduction . .11 Sterile Work Area . .11 Good Personal Hygiene . .11 Sterile Reagents and Media . .12 Sterile Handling . .12 Aseptic Technique Checklist . .13 Biological Contamination . .14 Introduction . .14 Bacteria . .14 Yeasts . .15 Molds . .15 Viruses . .16 Mycoplasma . 16 Cross-Contamination . .17 Using Antibiotics . .17 Cell Culture Basics . .18 Cell Lines . .18 Selecting the Appropriate Cell Line . .18 Acquiring Cell Lines . 18 Culture Environment . .19 Adherent vs Suspension Culture . .19 Media . .20 pH . .21 CO2 . .21 Temperature . .21 Cell Morphology . .22 Mammalian Cells . .22 Variations in Mammalian Cell Morphology . .22 Morphology of 293 Cells . .23 Insect Cells . .24 Morphology of Sf21 Cells . .24 Morphology of Sf9 Cells . .25 ii | Cell Culture Basics Contents Methods . .26 Guidelines for Maintaining Cultured Cells . .26 What is Subculture? . .26 When to Subculture? . .27 Media Recommendations for Common Cell Lines .
    [Show full text]
  • What Is Tissue? Why Is It Important?
    What is Tissue? Why is it Important? What is Tissue? Why is it Important? A concept paper to increase your understanding When you give permission to have some kind of medical procedure like a blood draw, a biopsy, or surgery you also give permission for your doctor to use your tissue or specimen to help make a diagnosis or check how you are progressing. Most people don’t think about the tissue or specimens that remain after they have analyzed for diagnosis and treatment. You may be asked to donate some of your tissue that is not needed for your medical care. Before you make your decision it may be helpful for you to learn more about tissue and why it is so important. The use of tissue or specimens in research is vital for medical science to advance. We are now in the age of understanding how normal cells and cancerous cells actually work. Much of what we know to date has come from researchers’ ability to study tissue. This is especially true in the last 10 years. What is Tissue? Tissue used for research can be called many different things: specimen, biological samples or human biological material. All of these terms refer to a small piece or sample of tissue or fluid and are used interchangeably. When researchers say tissue they can mean blood, urine, saliva, feces, fluid from the spine and brain, organ tissue, bone marrow, tumor tissue, lymph nodes, lymphatic fluid, and many others. Tissue is a group of cells or fluid that work together to perform a specific job in the body like cells in an organ like the kidney or heart or blood cells that carry oxygen to and waste materials from the cells in the body.
    [Show full text]