entropy Article Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions Donald M. Nicholson 1,∗, C. Y. Gao 2, Marshall T. McDonnell 2, Clifton C. Sluss 3 and David J. Keffer 3 1 Department of Physics and Astronomy, University of North Carolina, Asheville, NC 28803, USA 2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
[email protected] (C.Y.G.);
[email protected] (M.T.M.) 3 Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, USA;
[email protected] (C.C.S.);
[email protected] (D.J.K.) * Correspondence:
[email protected] Abstract: We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson’s theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs–Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles Citation: Nicholson, D.; Gao, C.; calculation of free energies from Born–Oppenheimer molecular dynamics performed at a single McDonnell, M.; Sluss, C.; Keffer, D.