Management of Acid Sulfate Soils by Groundwater Manipulation Bruce Geoffrey Blunden University of Wollongong

Total Page:16

File Type:pdf, Size:1020Kb

Management of Acid Sulfate Soils by Groundwater Manipulation Bruce Geoffrey Blunden University of Wollongong University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2000 Management of acid sulfate soils by groundwater manipulation Bruce Geoffrey Blunden University of Wollongong Recommended Citation Blunden, Bruce Geoffrey, Management of acid sulfate soils by groundwater manipulation, Doctor of Philosophy thesis, Faculty of Engineering, University of Wollongong, 2000. http://ro.uow.edu.au/theses/1834 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] MANAGEMENT OF ACID SULFATE SOILS BY GROUNDWATER MANIPULATION A thesis submitted in fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY from UNIVERSITY OF WOLLONGONG by BRUCE GEOFFREY BLUNDEN B.Nat Res. (Hons), M.Eng. Faculty of Engineering October 2000 AFFIRMATION I, Bruce Blunden, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution. Bruce Blunden. n PUBLICATIONS RELATED TO THIS RESEARCH Blunden, B. and Indraratna, B. (2000). Evaluation of Surface and Groundwater Management Strategies for Drained Sulfidic Soil using Numerical Models. Australian Journal of Soil Research 38, 569-590 Blunden, B. and Indraratna, B. (2000). Pyrite Oxidation Model for Assessing Groundwater management Strategies in Acid Sulphate Soils. Journal of Geotechnical and Geoenvironmental Engineering, (in press). Indraratna, B. and Blunden, B. (1999). Nature and Properties of Acid Sulphate Soils in Drained Coastal lowland in NSW, Australian Geomechanics Journal, 34(1), 61-78. Blunden, B., Indraratna, B. and Morrison, J. (2000) Change in groundwater chemistry due to water table fluctuations in pyritic sediments. Quarterly Journal of Engineering Geology and Hydrogeology, (in prep) Blunden, B., Indraratna, B. and Morrison, J. (2000) Management of acid generation in sulfidic soils by drain manipulation: a case study. Proceedings of ASSMAC Conference on the management of acid sulfate soils. ASSMAC, Wollongbar. Indraratna, B. and Blunden, B. (2000). Modeling of Acid Generation and Distribution in Pyritic Estuarine Soils. International Conference on Geotechnical and Geological Engineering, Melbourne, November 2000. in Blunden, B. and Indraratna, B. (1999). Estuarine Acidification caused by Drainage of Pyritic Sediments in Coastal Lowlands. ASCE-CSCE Environmental Engineering Conference, Norfolk, Virginia, USA, July, pp. 131-140. Blunden, B. and Indraratna, B. (1999). Management of Acid Sulfate Soils in Drained Coastal Lowlands in Australia. 27th Annual CSCE Conference, Regina, Sasakatchewan, Canada, June, Vol. 2, pp. 317-326. Blunden, B., Indraratna, B. and Morrison, J. (1998). Problems of Acid Sulphate Soils and their Remediation by Watertable Management. 2nd International Conference on Environmental Management, University of Wollongong, pp. 583-590. Indraratna, B. and Blunden, B. (1997). Remediation of Acid Sulphate Soils by Management of Groundwater Table. Contaminated and Derelict Land, 2nd International Symposium on Geotechnics & the Environment, Krakow, Poland, Thomas Telford, London, pp. 324-333. Blunden, B., Indraratna, B. and Nethery A. (1997). Effect of Groundwater Table on Acid Sulphate Soil Remediation, First ANZ Conference on Environmental Geotechnics, Melbourne (November), Balkema, pp. 549-554. IV DEDICATION My friend, colleague and supervisor Dr Andrew Nethery (NSW Environment Protection Authority, South Coast Region) was instrumental in the development, implementation and the success of this research project in collaboration with University of Wollongong researchers. His enthusiasm and support for this research and other projects related to improving the management of acid sulfate soils was the catalyst for much of the current work being carried out in the Shoalhaven River floodplain. During 1999 Andrew was stricken by a debilitating brain injury. The nature, severity and suddenness of his conditions has saddened everyone who enjoyed his friendly encouragement and professional support. He is keenly missed. This research and the ongoing improvements to the management of coastal floodplains emanating from this work are dedicated to Andrew. V ACKNOWLEDGEMENTS The success of this research is in no small part attributed to the excellent collaboration and professionalism of all the team involved in this project. I would like to express my gratitude to my supervisors Professor Buddhima Indraratna and Professor John Morrison who have cheerfully guided me through the highs and lows of this PhD. Post­ graduate study was made to be a pleasure through their invaluable technical advice, diligent editorial assistance and consistent positive encouragement throughout my term at University. Mr John Downey (Shoalhaven City Council) has also provided excellent technical and practical supervision of this project, in addition to creating awareness of acid sulfate soils issues in the south coast community. This research would not have been possible without the generous support of the Morris, Stuart, Carolin and the Miller families. Having a research study performed on their working farms has been a trial in more ways than one. I thank you all for your good humour, persistence and observations throughout this work. Numerous people have provided technical assistance during field sampling and laboratory testing. Life in the field had always been educating and enjoyable with Roy Lawrie and Narwash Haddad (NSW Agriculture) who have contributed beyond the call of duty in drilling piezometers and taking so many soil samples. Similarly, Ian Laird (UOW) provided excellent technical assistance in the field and laboratory. Joanne George, Norm Gall and Matthew Clark (UOW) have given generous assistance in the chemistry laboratories. Thankyou to the staff led by Graham Lancaster of the laboratories at Southern Cross University for assistance with soil chemical testing. A fantastic effort by the maintenance staff at Shoalhaven City Council greatly assisted in repairing the weirs after the August 1998 floods. Roy Foley, Narayan Pradhan and others at the EPA Analytical Chemistry Laboratories performed much of the routine water quality testing. VI Special thanks goes to my father and unpaid technical sidekick Graham Blunden who has made all sorts of novel gadgets and walked hundreds of kilometres with me making routine field monitoring much more efficient and enjoyable. My mother, Gwen, has also encouraged and supported me through this project. Ongoing technical discussions with Dr Ric Morris, Mr Richard Bush (Southern Cross University) and fellow members of the ASSMAC Technical Coordinating Committee have provided valuable insight and information towards this research. I gratefully acknowledge the financial support provided through the Australian Postgraduate Award (Industry) scholarship administered by the DEETYA, the ASSPRO funding provided by the NSW Government through NSW Agriculture and the monitory contribution of Shoalhaven City Council. My loving and long suffering partner Jennifer Bean can now look forward to getting a life as we both move to the next stage in our lives together. Thankyou for your endless support, advice and encouragement through these years of study. vn ABSTRACT The effectiveness of manipulating drain water levels using weirs in flood mitigation drains to improve the groundwater and drain water quality was investigated for agricultural land affected by previously oxidised acid sulfate soil near Berry on the South Coast of New South Wales. Groundwater elevation data measured prior to the installation of the weirs showed that significant groundwater drawdown was caused by the low water level in the drains. Drawdown from the drains, in conjunction with high rates of evapotranspiration, caused the groundwater elevation to fall into the pyritic soil causing the oxidation of pyrite and the generation of acidic oxidation products. The high hydraulic gradient caused by the low water level in the drains facilitated the rapid transport of these acidic oxidation products into the drains for discharge into a nearby waterway. Installation of the weirs promoted higher groundwater elevations by reducing the influence of groundwater drawdown from the drain. The lower hydraulic gradients established under the influence of the higher drain water level maintained by the weir reduced the rate of discharge of acidic oxidation products from the groundwater to the drain. In addition to the assessment of installing weirs in drains to manipulate the groundwater table, numerical simulations combining groundwater flow and pyrite oxidation models were used to predict the magnitude and distribution of pyrite oxidation for various boundary conditions that simulate potential groundwater management strategies. Application of these simulation models shows that substantial reductions in the volume of pyritic soil exposed to oxidising conditions can be achieved by maintaining a higher water level in the drains and/or applying regular irrigation. The rate of acid generation was also investigated in the laboratory by maintaining samples at a constant suction for a specific length of time. Simple multiple regression equations can predict the magnitude and rate of acid generation accurately
Recommended publications
  • Acid Sulfate Soil Materials
    Site contamination —acid sulfate soil materials Issued November 2007 EPA 638/07: This guideline has been prepared to provide information to those involved in activities that may disturb acid sulfate soil materials (including soil, sediment and rock), the identification of these materials and measures for environmental management. What are acid sulfate soil materials? Acid sulfate soil materials is the term applied to soils, sediment or rock in the environment that contain elevated concentrations of metal sulfides (principally pyriteFeS2 or monosulfides in the form of iron sulfideFeS), which generate acidic conditions when exposed to oxygen. Identified impacts from this acidity cause minerals in soils to dissolve and liberate soluble and colloidal aluminium and iron, which may potentially impact on human health and the environment, and may also result in damage to infrastructure constructed on acid sulfate soil materials. Drainage of peaty acid sulfate soil material also results in the substantial production of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The oxidation of metal sulfides is a function of natural weathering processes. This process is slow however, and, generally, weathering alone does not pose an environmental concern. The rate of acid generation is increased greatly through human activities which expose large amounts of soil to air (eg via excavation processes). This is most commonly associated with (but not necessarily confined to) mining activities. Soil horizons that contain sulfides are called ‘sulfidic materials’ (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite. This process transforms sulfidic material to sulfuric material when, on oxidation, the material develops a pH 4 or less (Isbell 1996; Soil Survey Staff 2003).
    [Show full text]
  • Understanding and Managing Irrigated Acid Sulfate and Salt-Affected Soils
    This handbook was part-funded by a grant from the South Australian River Murray Sustainability Program and delivered by Primary Industries and Regions South Australia between 2014 and 2016. We also acknowledge funding support and assistance from the Murray-Darling Basin Authority for field monitoring investigations between 2008 and 2011. Share this book Thehigh-quality paperback edition of this book is available for purchase online at https://shop. adelaide.edu.au/ Suggested citation: Fitzpatrick RW, Mosley LM, and Cook FJ. (2017). Understanding and managing irrigated acid sulfateand salt­ affectedsoils: A handbook for the Lower Murray Reclaimed Irrigation Area. Acid SulfateSoils Centre Report: ASSC_086. University of Adelaide Press, Adelaide. DO I: https:/ / doi.org/ 10.20851/ murray-soils. License: CC-BY-NC-ND 4.0 UNDERSTANDING AND MANAGING IRRIGATED ACID SULFATE AND SALT-AFFECTED SOILS A handbook for the Lower Murray Reclaimed Irrigation Area by Rob W Fitzpatrick • Luke M Mosley • Freeman J Cook Acid Sulfate Soils Centre (ASSC), The University of Adelaide Published in Adelaide by University of Adelaide Press Barr Smith Library The University of Adelaide South Australia 5005 [email protected] www.adelaide.edu.au/press The University of Adelaide Press publishes peer reviewed scholarly books. It aims to maximise access to the best research by publishing works through the internet as free downloads and for sale as high quality printed volumes. © 2017 Rob W Fitzpatrick, Luke M Mosley, Freeman J Cook This work is licenced under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0 or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
    [Show full text]
  • Ocean Acidification Habitat Committee, It Is My Pleasure to Present the 2014 Habitat Effects on Atlantic Coral Reefs
    HABITATHABITAT HOTLINEHOTLINE Atlantic 2014 Annual Issue HEALTHY FISHERIES NEED HEALTHY HABITAT In This Issue Climate Change Impacts How Climate Change Affects Species Range and Habitats ..................... 2 on Fish Habitats Climate Data Collection Efforts Supporting Fisheries Management in the Northeast ......................................... 3 As the Chair of the Atlantic States Marine Fisheries Commission’s Ocean Acidification Habitat Committee, it is my pleasure to present the 2014 Habitat Effects on Atlantic Coral Reefs ..........................4 Hotline Atlantic. This year’s issue explores some of the processes Slowly Dissolving Shellfish .................................5 Effects on Planktonic Resources .......................5 and impacts of climate change on marine and estuarine fish habitats along the United States’ East Coast. According to EPA’s Climate Sea Level Rise and Its Effects Change Indicators in the United States, 2014, climate change refers to Coastal Salt Marshes ...............................................6 Oyster Reefs ................................................................7 “any substantial change in measure of climate lasting for an extended Salt Marshes and Mangroves ................................8 period (decades or longer) that may result from natural factors and Habitat Management ................................ 8 process from human activities.” Some of these changes consist of Considerations and Tools for Adaptation increased ocean and sea surface temperatures, sea level rise, and to
    [Show full text]
  • Management Options for Acid Sulfate Soils in the Lower Murray Lakes, South Australia
    MANAGEMENT OPTIONS FOR ACID SULFATE SOILS IN THE LOWER MURRAY LAKES, SOUTH AUSTRALIA Stage 2 - Preliminary Assessment of Prevention, Control and Treatment Options prepared for PRIMARY INDUSTRIES AND RESOURCES SOUTH AUSTRALIA RURAL SOLUTIONS SA & THE DEPARTMENT FOR ENVIRONMENT AND HERITAGE, SOUTH AUSTRALIA by EARTH SYSTEMS Environment – Water – Sustainability December, 2008 MANAGEMENT OPTIONS FOR ACID SULFATE SOILS IN THE LOWER MURRAY LAKES STAGE 2 – PRELIMINARY ASSESSMENT OF PREVENTION, CONTROL AND TREATMENT OPTIONS Earth Systems DECEMBER, 2008 EARTH SYSTEMS DISTRIBUTION RECORD Copy No. Company / Position Name 1 Primary Industries and Resources South Australia, Martin Carter Rural Solutions SA 2 Department for Environment and Heritage Russell Seaman 3 Primary Industries and Resources South Australia Jason Higham 4 Environment Protection Authority SA Luke Mosley 5 Earth Systems Library RSSA082305_Report_Rev1 Page 2 MANAGEMENT OPTIONS FOR ACID SULFATE SOILS IN THE LOWER MURRAY LAKES STAGE 2 – PRELIMINARY ASSESSMENT OF PREVENTION, CONTROL AND TREATMENT OPTIONS Earth Systems DECEMBER, 2008 EARTH SYSTEMS DOCUMENT REVISION LIST Revision Revision Date Description of Approved By Status/Number Revision 0 December 2008 Draft Report Jeff Taylor 1 December 2008 Final Report Jeff Taylor This report is not to be used for purposes other than that for which it was intended. Environmental conditions change with time. The site conditions described in this report are based on observations made during the site visit and on subsequent monitoring results. Earth Systems Pty Ltd does not imply that the site conditions described in this report are representative of past or future conditions. Where this report is to be made available, either in part or in its entirety, to a third party, Earth Systems Pty Ltd reserves the right to review the information and documentation contained in the report and revisit and update findings, conclusions and recommendations.
    [Show full text]
  • Effects of Estuarine Acidification on an Oyster-Associated Community in New South Wales, Australia
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 Effects Of Estuarine Acidification On An Oyster-Associated Community In New South Wales, Australia Cassandra N. Glaspie Virginia Institute of Marine Science SR Jenkinson RD Seitz Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Glaspie, Cassandra N.; Jenkinson, SR; and Seitz, RD, "Effects Of Estuarine Acidification On An Oyster- Associated Community In New South Wales, Australia" (2018). VIMS Articles. 298. https://scholarworks.wm.edu/vimsarticles/298 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 37, No. 1, 63–72, 2018. EFFECTS OF ESTUARINE ACIDIFICATION ON AN OYSTER-ASSOCIATED COMMUNITY IN NEW SOUTH WALES, AUSTRALIA CASSANDRA N. GLASPIE,1*† SARAH R. JENKINSON2 AND ROCHELLE D. SEITZ1 1Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia 23062; 2Department of Biological Sciences, Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia ABSTRACT Many of the features that make estuaries among the most productive natural systems on earth also make them prone to acidification. Understanding the effects of estuarine acidification on different components of an ecological community is an important step in identifying indicators of ecosystem degradation. This study examined the impact of estuarine acidification, as a result of acid sulfate soil runoff, on wild Sydney rock oysters Saccostrea glomerata and their associated epifaunal communities in estuaries experiencing acid sulfate soil runoff in New South Wales, Australia.
    [Show full text]
  • Effects of Estuarine Acidification on Survival and Growth of the Sydney Rock Oyster Saccostrea Glomerata
    EFFECTS OF ESTUARINE ACIDIFICATION ON SURVIVAL AND GROWTH OF THE SYDNEY ROCK OYSTER SACCOSTREA GLOMERATA Michael Colin Dove Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy in The University of New South Wales Geography Program Faculty of the Built Environment The University of New South Wales Sydney, NSW, 2052 April 2003 ACKNOWLEDGEMENTS I would like to thank my supervisor Dr Jes Sammut for his ideas, guidance and encouragement throughout my candidature. I am indebted to Jes for his help with all stages of this thesis, for providing me with opportunities to present this research at conferences and for his friendship. I thank Dr Richard Callinan for his assistance with the histopathology and reviewing chapters of this thesis. I am also very grateful to Laurie Lardner and Ian and Rose Crisp for their invaluable advice, generosity and particular interest in this work. Hastings and Manning River oyster growers were supportive of this research. In particular, I would like to acknowledge the following oyster growers: Laurie and Fay Lardner; Ian and Rose Crisp; Robert Herbert; Nathan Herbert; Stuart Bale; Gary Ruprecht; Peter Clift; Mark Bulley; Chris Bulley; Bruce Fairhall; Neil Ellis; and, Paul Wilson. I am very grateful to Holiday Coast Oysters and Manning River Rock Oysters for providing: the Sydney rock oysters for field and laboratory experiments; storage facilities; equipment; materials; fuel; and, access to resources without reservation. Bruce Fairhall, Paul Wilson, Mark Bulley, Laurie Lardner and Robert Herbert also supplied Sydney rock oysters for this work. I would also like to thank the researchers who gave helpful advice during this study.
    [Show full text]
  • Coastal Acidification Impacts on Shell Mineral Structure of Bivalve Mollusks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Received: 24 January 2018 | Revised: 3 May 2018 | Accepted: 4 July 2018 DOI: 10.1002/ece3.4416 ORIGINAL RESEARCH Coastal acidification impacts on shell mineral structure of bivalve mollusks Susan C. Fitzer1 | Sergio Torres Gabarda2 | Luke Daly3 | Brian Hughes4 | Michael Dove5 | Wayne O’Connor5 | Jaimie Potts6 | Peter Scanes6 | Maria Byrne2,7 1Institute of Aquaculture, University of Stirling, Stirling, UK Abstract 2 School of Medical Sciences, University of Ocean acidification is occurring globally through increasing CO2 absorption into the Sydney, Sydney, New South Wales, Australia oceans creating particular concern for calcifying species. In addition to ocean acidifi- 3School of Geographical and Earth Sciences, cation, near shore marine habitats are exposed to the deleterious effects of runoff University of Glasgow, Glasgow, UK 4Hunter Local Land Services, Taree, New from acid sulfate soils which also decreases environmental pH. This coastal acidifica- South Wales, Australia tion is being exacerbated by climate change- driven sea- level rise and catchment- 5 New South Wales Department of Primary driven flooding. In response to reduction in habitat pH by ocean and coastal Industries, Fisheries NSW, Port Stephens Fisheries Institute, Taylors Beach, New acidification, mollusks are predicted to produce thinner shells of lower structural in- South Wales, Australia tegrity and reduced mechanical properties threatening mollusk aquaculture. Here, 6 Estuaries and Catchments Science, NSW we present the first study to examine oyster biomineralization under acid sulfate soil Office of Environment and Heritage, Sydney South, New South Wales, Australia acidification in a region where growth of commercial bivalve species has declined in 7School of Life and Environmental recent decades.
    [Show full text]
  • Ocean and Coastal Acidification in Maine Waters
    Ocean and Coastal Acidification in Maine waters … and what’s happened since the 2015 Maine Ocean Acidification Commission Joe Salisbury (UNH) Outline a) Ocean Acidification - Background - Maine’s unique setting b) Acidification processes near to shore c) What’s happened since the report? - Progress - Items still pending The Earth’s CO2 budget 8.30.4 PgC/yr 90% 4.30.1 PgC/yr 46% 2.60.8 PgC/yr 1.00.5 PgC/yr 10% = 28% Calculated as the residual of all other flux components 26% 2.50.5 PgC/yr Source: Le Quéré et al. 2015 Causing global warming? Probably, but not 100% agreement Causing your ocean to acidify? Definitely Changing Seawater carbon dioxide Chemistry pH IPCC 2014 WG1, Chapter 3 Doney et al. Ann. Rev. Mar. Sci. 2009 Dore et al. PNAS 2009 How it works: Carbonic acid reduces CO2 + H2O H2CO3 carbonic acid ocean pH. 2- – CO2 + CO3 + H2O 2HCO3 The carbonate ions bicarbonate ions concentration Shelled animals need of carbonate carbonate ion from seawater ions decreases. Index of carbonate ion availability = Ω 8 Ω > 1.6 necessary for optimal growth in some shellfish cmore.soest.hawaii.edu Our back yard may be particularly sensitive to acidification! Gulf of Maine Baythmetry Fresher water can be more sensitive to acidification than saltier water DFO, Canada Colder water tends to be more acidic and lower omega than warmer DFO, Canada Ω data from the ECOA cruise, summer 2015. Ω Preliminary data from Cai’s U Delaware group Two more drivers: 1) an unprecedented warming In the last decade the Gulf of Maine has warmed faster than 99.9% of the world’s ocean.
    [Show full text]
  • New Approaches to Agricultural Land Drainage
    ge Syst Gurovich and Oyarce, Irrigat Drainage Sys Eng 2015, 4:2 ina em a s r D E DOI: 10.4172/2168-9768.1000135 n & g i n n o e i t e a r i g n i r g r Irrigation & Drainage Systems Engineering I ISSN: 2168-9768 Research Article Open Access New Approaches to Agricultural Land Drainage: A Review Luis Gurovich* and Patricio Oyarce Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile. Santiago, Chile Abstract A review on agricultural effects of restricted soil drainage conditions is presented, related to soil physical, chemical and biological properties, soil water availability to crops and its effects on crop development and yield, soil salinization hazards, and the differences on drainage design main objectives in soils under tropical and semi-arid water regime conditions. The extent and relative importance of restricted drainage conditions in Agriculture, due to poor irrigation management is discussed, and comprehensive studies for efficient drainage design and operation required are outlined, as related to data gathering, revision and analysis about geology, soil science, topography, wells, underground water dynamics under field conditions, the amount, intensity and frequency of precipitations, superficial flow over the area to be drained, climatic characteristics, irrigation management and the phenology of crop productive development stages. These studies enable determining areas affected by drainage restrictions, as well as defining the optimal drainage net design and performance, in order to sustain soil conditions suitable to crops development. Keywords: Restricted drainage; Drainage studies; Drainage design As a result of plant metabolic disorders, caused by conditions of parameters total or partial anoxia near the roots, resulting from deficient drainage conditions, a decrease in crop production often occurs [8,15,16,18].
    [Show full text]
  • Groundwater Interactions with Acid Sulfate Soil: a Case Study in Torbay
    Government of Western Australia Department of Water Groundwater interactions with acid sulfate soil: a case study in Torbay, Western Australia A technical report for the project Tackling acid sulfate soils on the WA coast Looking after all our water needs technical series Report no. WST 17 October 2009 Groundwater interactions with acid sulfate soil: a case study in Torbay, Western Australia A technical report for the project: Tackling acid sulfate soils on the WA coast Looking after all our water needs KL Kilminster Department of Water Water Science Technical series Report no. 17 October 2009 Groundwater interactions with acid sulfate soil: a case study in Torbay, Western Australia Department of Water 168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 www.water.wa.gov.au © Government of Western Australia 2009 October 2009 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water. ISSN 1836-2869 (print) ISSN 1836-2877 (online) ISBN 978-1-921675-65-2 (print) ISBN 978-1-921675-33-1 (online) Acknowledgements This project was funded by the Australian Federal and Western Australian governments. The Department of Water would like to thank the following people for their contribution to this publication. This report was written by Dr Kieryn Kilminster.
    [Show full text]
  • Redox Reactions and Weak Buffering Capacity Lead to Acidification in the Chesapeake Bay
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2017 Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay Wei-Jun Cai Wei-Jen Huang George W. Luther III Denis Pierrot Ming Li See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Cai, Wei-Jun; Huang, Wei-Jen; Luther, George W. III; Pierrot, Denis; Li, Ming; Testa, Jeremy; Xue, Ming; Joesoef, Andrew; Mann, Roger L.; Brodeur, Jean; Xu, Yuan-Yuan; Chen, Baoshan; Hussain, Najid; Waldbusser, George G.; Cornwell, Jeffery; and Kemp, W. Michael, Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay (2017). NATURE COMMUNICATIONS, 8. 10.1038/s41467-017-00417-7 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors Wei-Jun Cai, Wei-Jen Huang, George W. Luther III, Denis Pierrot, Ming Li, Jeremy Testa, Ming Xue, Andrew Joesoef, Roger L. Mann, Jean Brodeur, Yuan-Yuan Xu, Baoshan Chen, Najid Hussain, George G. Waldbusser, Jeffery Cornwell, and W. Michael Kemp This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/7 ARTICLE DOI: 10.1038/s41467-017-00417-7 OPEN Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay Wei-Jun Cai 1, Wei-Jen Huang1,2, George W.
    [Show full text]
  • Decadal-Scale Acidification Trends in Adjacent
    Florida International University FIU Digital Commons Department of Biological Sciences College of Arts, Sciences & Education 3-22-2019 Decadal-Scale Acidification rT ends in Adjacent North Carolina Estuaries: Competing Role of Anthropogenic CO2 and Riverine Alkalinity Loads Bryce R. Van Dam Hingjie Wang Follow this and additional works at: https://digitalcommons.fiu.edu/cas_bio Part of the Life Sciences Commons This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Biological Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. fmars-06-00136 March 21, 2019 Time: 17:19 # 1 ORIGINAL RESEARCH published: 22 March 2019 doi: 10.3389/fmars.2019.00136 Decadal-Scale Acidification Trends in Adjacent North Carolina Estuaries: Competing Role of Anthropogenic CO2 and Riverine Alkalinity Loads Bryce R. Van Dam1,2* and Hongjie Wang3,4 1 Institute of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, 2 Department of Biological Sciences, Florida International University, Miami, FL, United States, 3 School of Marine Science and Policy, University of Delaware, Newark, DE, United States, 4 Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, TX, United States Decadal-scale pH trends for the open ocean are largely monotonic and controlled by anthropogenic CO2 invasion. In estuaries, though, such long-term pH trends are often obscured by a variety of other factors, including changes in net metabolism, Edited by: temperature, estuarine mixing, and riverine hydrogeochemistry.
    [Show full text]