Interactive Effects of Ocean Acidification and Multiple Stressors on Physiology of Marine Bivalves

Total Page:16

File Type:pdf, Size:1020Kb

Interactive Effects of Ocean Acidification and Multiple Stressors on Physiology of Marine Bivalves INTERACTIVE EFFECTS OF OCEAN ACIDIFICATION AND MULTIPLE STRESSORS ON PHYSIOLOGY OF MARINE BIVALVES by Omera Bashir Matoo A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Charlotte 2013 Approved by: ______________________________ Dr. Inna M. Sokolova ______________________________ Dr. Matthew W. Parrow ______________________________ Dr. Mark G. Clemens ______________________________ Dr. Stanley S. Schneider ______________________________ Dr. Andy Bobyarchick ii ©2013 Omera Bashir Matoo ALL RIGHTS RESERVED iii ABSTRACT OMERA BASHIR MATOO.Interactive effects of ocean acidification and multiple stressors on the physiology of marine bivalves (Under direction of Dr. INNA M. SOKOLOVA) The continuing increase of carbon dioxide (CO2) levels in the atmosphere leads to increase in sea-surface temperature and causes ocean acidification altering seawater carbonate chemistry. Estuarine and shallow coastal areas, which are hotspots for biological productivity, are especially prone to these changes, because of low buffering capacity of brackish waters, biological CO2 production, and large fluctuations of temperature and salinity in these habitats. These additional stressors may exacerbate the acidification trend and significantly affect the physiology of marine calcifiers. Bivalves are a key group of marine calcifiers that serve as ecosystem engineers and key foundation species in estuarine and coastal environments. However, the interactive effects of elevated CO2 and other stressors, including elevated temperature and reduced salinity, are not yet fully understood in bivalves and require further investigation. This study focused on the physiological responses in two ecologically and economically important bivalve species - the eastern oyster (Crassostrea virginica) and hard shell clam (Mercenaria mercenaria). Juveniles and adults were exposed to environmentally relevant salinities at either ~32 or ~16 with different PCO2 levels (~400, 800 and 1500 µatm) and temperature (22°C and 27°C), as predicted by future global climate change scenarios, for 11-21 weeks (in juveniles) and 15 weeks (in adults). Survival, metabolism and calcification were iv assessed. Elevated PCO2 alone and in combination with either reduced salinity or elevated temperature led to reduced survival and growth, and altered the shell mechanical properties (microhardness and fracture resistance) in juvenile and adult bivalves. Tissue energy reserves (lipid and glycogen) were reduced in juveniles under elevated PCO2 and low salinity. Standard energy metabolism (SMR) increased under the conditions of elevated PCO2 and temperature indicating higher costs of basal maintenance. In adult bivalves, elevated temperature led to the depletion of tissue energy reserves in both species indicating energy deficiency, and resulted in higher mortality in oysters but not in clams. In adult clams and oysters, elevated PCO2 alone had a small effect on the metabolism. No persistent oxidative stress (measured by total antioxidant capacity as well as oxidative markers of proteins and lipids) was seen in the bivalves after prolonged exposure to elevated temperature and PCO2. The results of this study indicate that the interactions between common abiotic stressors (salinity and temperature) and elevated PCO2 are complex, non-linear, and species-specific. Our study shows that elevated temperature and reduced salinity are predominant stressors that affect survival, metabolism, and biomineralization response of the studied bivalves. Furthermore, these stressors modulate the responses of these bivalves to ocean acidification while elevated CO2 levels have a modest impact in the absence of these stressors. v DEDICATION To the courage of all those who survive in the land without post offices. vi ACKNOWLEDGMENTS The author would like to express her appreciation and gratitude to all those who made this dissertation possible: Her advisors, Dr. Inna M. Sokolova for making this work possible from idea to publication, Dr. Mark G. Clemens for advice on experimental design, Dr. Matthew W. Parrow, Dr. Stanley S. Schneider and Dr. Andy Bobyarchick for academic support; To Dr. Elia Beniash and Dr.Gary H. Dickinson for productive collaboration on ideas, experimental support and publication of this study; To the Department of Biology, UNCC for the opportunity for study; To colleagues Dr. Anna V. Ivanina, Dr. Rita Bagwe, Ilya Kurochkin, Ryan Rutledge and Chelsea Hawkins for support and making a great learning atomosphere in laboratory possible; To Valerie Williams, Ashley Dickinson, Claus Ullstad, Allen Baheri and many undergraduate reserachers for technical support in the laboratory; To friends Sandra Goetze and Maria Mugica-Fernandez for discussion of ideas and the many fun trips together; To friends Kamalika,Vandana and Harpreet for their faith in me and keeping me focused in my goals; To her parents, Dr.Bashir Matoo and Shamshad Matoo, for their continued support, patience and guidance; And to her schoolteacher and friend Mr.Muzaffar for all his advice and love through the years. vii TABLE OF CONTENTS LIST OF FIGURES ix LIST OF TABLES x LIST OF ABBREVIATIONS xiii CHAPTER 1: INTRODUCTION 1 CHAPTER 2: ENVIRONMENTAL SALINITY MODULATES THE EFFECTS 28 OF ELEVATED CO2 LEVELS ON JUVENILE HARD-SHELL CLAMS, MERCENARIA MERCENARIA Introduction 29 Materials and Methods 32 Results 42 Discussion 49 Figures 56 Supplementary Materials 65 CHAPTER 3: INTERACTIVE EFFECTS OF SALINITY AND ELEVATED 70 CO2 ON JUVENILE EASTERN OYSTERS, CRASSOSTREA VIRGINICA Introduction 71 Materials and Methods 75 Results 90 Discussion 94 Conclusions 104 Figures 106 viii CHAPTER 4: INTERACTIVE EFFECTS OF ELEVATED TEMPERATURE 115 AND CO2 LEVELS ON METABOLISM AND OXIDATIVE STRESS IN TWO COMMON MARINE BIVALVES Introduction 116 Materials and Methods 120 Results 127 Discussion 130 Figures 137 CHAPTER 5: INTERACTIVE EFFECTS OF ELEVATED TEMPERATUE 141 AND CO2 ON THE ENERGY METABOLISM AND BIOMINERALIZATION OF MARINE BIVALVES CROSSOSTREA VIRGINICA AND MERCENARIA MERCENARIA Introduction 143 Materials and Methods 146 Results 156 Discussion 161 Figures 168 Supplementary Materials 175 CHAPTER 6: SUMMARY 181 REFERENCES 194 ix LIST OF TABLES TABLE 2.1: Summary of water chemistry parameters during experimental 63 exposures. TABLE 2.2: Effects of exposure PCO2, salinity and their interaction on shell 64 and physiological properties in juvenile Mercenaria mercenaria. TABLE 3.1: Summary of water chemistry parameters during experimental 112 exposures of juvenile eastern oysters, Crassostrea virginica. TABLE 3.2: ANOVA results of the effects of exposure salinity, PCO2 and their 113 interaction on shell and soft tissue mass, mechanical shell properties, enzyme activities and energy-related indices in juvenile Crassostrea virginica. TABLE 3.3: Summary of the effects of salinity and PCO2 levels on the studied 114 physiological and biomineralization traits in C. virginica juveniles. TABLE 4.1: Summary of water chemistry parameters during experimental 139 exposures. TABLE 4.2: ANOVA for the effects of temperature, CO2 levels and exposure 140 time on the studied physiological and biochemical traits of C. virginica. TABLE 4.3: ANOVA for the effects of temperature, CO2 levels and exposure 141 time on the studied physiological and biochemical traits of M.mercenaria. TABLE 5.1: Summary of water chemistry parameters during experimental 173 exposures. TABLE 5.2: Activity, activation energy and Arrhenius breakpoint temperature 174 (ABT) for carbonic anhydrase (CA) in different tissues of clams and oysters. x LIST OF FIGURES FIGURE 1.1: Gobal annual emissions of anthropogenic CO2 and other 2 greenhouse gases in 1970-2004. FIGURE 1.2: Global averages of surface warming for SRES scenarios using 3 Atmosphere-Ocean General Circulation Models (AOGCMs). FIGURE 1.3: Ecosystem impacts associated with global average temperature 4 change. FIGURE 1.4: CO2 emissions and concentration for a range of SRES (Special 5 Report on Emission Scenarios) scenarios. FIGURE 1.5: Schematic representation of ocean acidification and CaCO3 7 counter pump. 2- FIGURE 1.6: Time series of surface-ocean PCO2, pHT and [CO3 ], as well as for 11 the atmospheric mole fraction of CO2 at Mauna Loa (Black), ocean time- series stations ALOHA (green), BATS (red), and ESTOC (blue). FIGURE 1.7: Carbonate parameters changes in the Kennebec Estuary, Maine. 15 FIGURE 1.8: (a).World aquaculture production by composition and types of 20 different farmed species. (b).Production of major mollusk species from aquaculture in 2010. FIGURE 1.9: Schematic of the shell formation (excluding the hemocyte-related 21 calcification mechanisms) of a mollusk. FIGURE 2.1: Mortality and standard metabolic rate (SMR) in juvenile clam 56 (Mercenaria mercenaria) exposed to different PCO2 and salinity treatments. FIGURE 2.2: Changes in M. mercenaria shell and tissue mass in response to 57 salinity, PCO2 and aragonite saturation (ΩArg). FIGURE 2.3: Mechanical properties of the shells of M. mercenaria exposed to 58 different PCO2 and salinity levels. FIGURE 2.4: SEM micrographs of the exterior of M. mercenaria shells after 16 59 weeks exposure to experimental conditions. FIGURE 2.5: SEM micrographs of the interior of M. mercenaria shells after 16 60 weeks exposure to experimental conditions. xi FIGURE 2.6: SEM micrographs of the interior of the hinge region of 61 M. mercenaria shells after 16 weeks exposure to experimental
Recommended publications
  • Management of Acid Sulfate Soils by Groundwater Manipulation Bruce Geoffrey Blunden University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2000 Management of acid sulfate soils by groundwater manipulation Bruce Geoffrey Blunden University of Wollongong Recommended Citation Blunden, Bruce Geoffrey, Management of acid sulfate soils by groundwater manipulation, Doctor of Philosophy thesis, Faculty of Engineering, University of Wollongong, 2000. http://ro.uow.edu.au/theses/1834 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] MANAGEMENT OF ACID SULFATE SOILS BY GROUNDWATER MANIPULATION A thesis submitted in fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY from UNIVERSITY OF WOLLONGONG by BRUCE GEOFFREY BLUNDEN B.Nat Res. (Hons), M.Eng. Faculty of Engineering October 2000 AFFIRMATION I, Bruce Blunden, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution. Bruce Blunden. n PUBLICATIONS RELATED TO THIS RESEARCH Blunden, B. and Indraratna, B. (2000). Evaluation of Surface and Groundwater Management Strategies for Drained Sulfidic Soil using Numerical Models. Australian Journal of Soil Research 38, 569-590 Blunden, B. and Indraratna, B. (2000). Pyrite Oxidation Model for Assessing Groundwater management Strategies in Acid Sulphate Soils. Journal of Geotechnical and Geoenvironmental Engineering, (in press). Indraratna, B. and Blunden, B. (1999). Nature and Properties of Acid Sulphate Soils in Drained Coastal lowland in NSW, Australian Geomechanics Journal, 34(1), 61-78.
    [Show full text]
  • Ocean Acidification Habitat Committee, It Is My Pleasure to Present the 2014 Habitat Effects on Atlantic Coral Reefs
    HABITATHABITAT HOTLINEHOTLINE Atlantic 2014 Annual Issue HEALTHY FISHERIES NEED HEALTHY HABITAT In This Issue Climate Change Impacts How Climate Change Affects Species Range and Habitats ..................... 2 on Fish Habitats Climate Data Collection Efforts Supporting Fisheries Management in the Northeast ......................................... 3 As the Chair of the Atlantic States Marine Fisheries Commission’s Ocean Acidification Habitat Committee, it is my pleasure to present the 2014 Habitat Effects on Atlantic Coral Reefs ..........................4 Hotline Atlantic. This year’s issue explores some of the processes Slowly Dissolving Shellfish .................................5 Effects on Planktonic Resources .......................5 and impacts of climate change on marine and estuarine fish habitats along the United States’ East Coast. According to EPA’s Climate Sea Level Rise and Its Effects Change Indicators in the United States, 2014, climate change refers to Coastal Salt Marshes ...............................................6 Oyster Reefs ................................................................7 “any substantial change in measure of climate lasting for an extended Salt Marshes and Mangroves ................................8 period (decades or longer) that may result from natural factors and Habitat Management ................................ 8 process from human activities.” Some of these changes consist of Considerations and Tools for Adaptation increased ocean and sea surface temperatures, sea level rise, and to
    [Show full text]
  • Effects of Estuarine Acidification on an Oyster-Associated Community in New South Wales, Australia
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 Effects Of Estuarine Acidification On An Oyster-Associated Community In New South Wales, Australia Cassandra N. Glaspie Virginia Institute of Marine Science SR Jenkinson RD Seitz Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Glaspie, Cassandra N.; Jenkinson, SR; and Seitz, RD, "Effects Of Estuarine Acidification On An Oyster- Associated Community In New South Wales, Australia" (2018). VIMS Articles. 298. https://scholarworks.wm.edu/vimsarticles/298 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 37, No. 1, 63–72, 2018. EFFECTS OF ESTUARINE ACIDIFICATION ON AN OYSTER-ASSOCIATED COMMUNITY IN NEW SOUTH WALES, AUSTRALIA CASSANDRA N. GLASPIE,1*† SARAH R. JENKINSON2 AND ROCHELLE D. SEITZ1 1Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia 23062; 2Department of Biological Sciences, Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia ABSTRACT Many of the features that make estuaries among the most productive natural systems on earth also make them prone to acidification. Understanding the effects of estuarine acidification on different components of an ecological community is an important step in identifying indicators of ecosystem degradation. This study examined the impact of estuarine acidification, as a result of acid sulfate soil runoff, on wild Sydney rock oysters Saccostrea glomerata and their associated epifaunal communities in estuaries experiencing acid sulfate soil runoff in New South Wales, Australia.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?
    Mar. Drugs 2015, 13, 5237-5275; doi:10.3390/md13085237 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Kirsten Benkendorff 1,*, David Rudd 2, Bijayalakshmi Devi Nongmaithem 1, Lei Liu 3, Fiona Young 4,5, Vicki Edwards 4,5, Cathy Avila 6 and Catherine A. Abbott 2,5 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 2 School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (D.R.); [email protected] (C.A.A.) 3 Southern Cross Plant Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 4 Medical Biotechnology, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (F.Y.); [email protected] (V.E.) 5 Flinders Centre for Innovation in Cancer, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia 6 School of Health Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-8201-3577. Academic Editor: Peer B. Jacobson Received: 2 July 2015 / Accepted: 7 August 2015 / Published: 18 August 2015 Abstract: Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds.
    [Show full text]
  • Annelids, Arthropods, Molluscs 2. Very Diverse, Mostly Marine B. Characteristics 1
    Molluscs A. Introduction 1. Three big Protostome Phyla - Annelids, Arthropods, Molluscs 2. Very diverse, mostly marine B. Characteristics 1. Bilateral symmetrical, unsegmented with definite head 2. Muscular foot 3. Mantle - mantle cavity a. Secretes shell - Calcium carbonate 4. Ciliated epithelium 5. Coelom reduced - around heart 6. Open circulatory system 7. Gaseous exchange by gills, lung, or just body surface 8. Metanephridia - empty into mantle cavity C. Body Plan 1. Generalized mollusc a. Mantle - secreted shell b. Mantle - cavity has gills - posterior - location important 2. Head-foot a. Head - 1. Radula - rasping tongue a. Mostly for scraping - snails b. Some (Cone shells) modified to a dart and poison b. Foot - Variously modified 1. Ventral sole-like structure - movement 2. May be shaped for burrowing 3. Shell 1. Made of Calcium Carbonate Molluscs 2. Three layers a. Periostracum - organic layer - not always visible b. Prismatic layer - prim-shaped crystals of calcium carbonate 1. Secreted by gladular margin of mantle 2. Grows as animal grows c. Nacreous layer 1. Continuously secreted by mantle on interior of shell 2. Pearls 4. Reproduction a. Larval stages 1. Trochophore - first stage to hatch from egg 2. Veliger - planktonic larva of most marine snails and bivalves a. Beginnings of foot, shell and mantle D. Classes - problem of segmentation - is it the original body plan - have molluscs lost segementation? 1. Monoplacophora - genus Neopilina a. Serial repetition in body form b. Single shell c. Interesting story of discovery 2. Polyplacophora - chitons a. Segmented shell - plates b. Multiple gills down side of body - not like generalized plan c. Rock dwellers that use radula to scrape algae off rocks 3.
    [Show full text]
  • Effects of Estuarine Acidification on Survival and Growth of the Sydney Rock Oyster Saccostrea Glomerata
    EFFECTS OF ESTUARINE ACIDIFICATION ON SURVIVAL AND GROWTH OF THE SYDNEY ROCK OYSTER SACCOSTREA GLOMERATA Michael Colin Dove Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy in The University of New South Wales Geography Program Faculty of the Built Environment The University of New South Wales Sydney, NSW, 2052 April 2003 ACKNOWLEDGEMENTS I would like to thank my supervisor Dr Jes Sammut for his ideas, guidance and encouragement throughout my candidature. I am indebted to Jes for his help with all stages of this thesis, for providing me with opportunities to present this research at conferences and for his friendship. I thank Dr Richard Callinan for his assistance with the histopathology and reviewing chapters of this thesis. I am also very grateful to Laurie Lardner and Ian and Rose Crisp for their invaluable advice, generosity and particular interest in this work. Hastings and Manning River oyster growers were supportive of this research. In particular, I would like to acknowledge the following oyster growers: Laurie and Fay Lardner; Ian and Rose Crisp; Robert Herbert; Nathan Herbert; Stuart Bale; Gary Ruprecht; Peter Clift; Mark Bulley; Chris Bulley; Bruce Fairhall; Neil Ellis; and, Paul Wilson. I am very grateful to Holiday Coast Oysters and Manning River Rock Oysters for providing: the Sydney rock oysters for field and laboratory experiments; storage facilities; equipment; materials; fuel; and, access to resources without reservation. Bruce Fairhall, Paul Wilson, Mark Bulley, Laurie Lardner and Robert Herbert also supplied Sydney rock oysters for this work. I would also like to thank the researchers who gave helpful advice during this study.
    [Show full text]
  • Coastal Acidification Impacts on Shell Mineral Structure of Bivalve Mollusks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Received: 24 January 2018 | Revised: 3 May 2018 | Accepted: 4 July 2018 DOI: 10.1002/ece3.4416 ORIGINAL RESEARCH Coastal acidification impacts on shell mineral structure of bivalve mollusks Susan C. Fitzer1 | Sergio Torres Gabarda2 | Luke Daly3 | Brian Hughes4 | Michael Dove5 | Wayne O’Connor5 | Jaimie Potts6 | Peter Scanes6 | Maria Byrne2,7 1Institute of Aquaculture, University of Stirling, Stirling, UK Abstract 2 School of Medical Sciences, University of Ocean acidification is occurring globally through increasing CO2 absorption into the Sydney, Sydney, New South Wales, Australia oceans creating particular concern for calcifying species. In addition to ocean acidifi- 3School of Geographical and Earth Sciences, cation, near shore marine habitats are exposed to the deleterious effects of runoff University of Glasgow, Glasgow, UK 4Hunter Local Land Services, Taree, New from acid sulfate soils which also decreases environmental pH. This coastal acidifica- South Wales, Australia tion is being exacerbated by climate change- driven sea- level rise and catchment- 5 New South Wales Department of Primary driven flooding. In response to reduction in habitat pH by ocean and coastal Industries, Fisheries NSW, Port Stephens Fisheries Institute, Taylors Beach, New acidification, mollusks are predicted to produce thinner shells of lower structural in- South Wales, Australia tegrity and reduced mechanical properties threatening mollusk aquaculture. Here, 6 Estuaries and Catchments Science, NSW we present the first study to examine oyster biomineralization under acid sulfate soil Office of Environment and Heritage, Sydney South, New South Wales, Australia acidification in a region where growth of commercial bivalve species has declined in 7School of Life and Environmental recent decades.
    [Show full text]
  • Ocean and Coastal Acidification in Maine Waters
    Ocean and Coastal Acidification in Maine waters … and what’s happened since the 2015 Maine Ocean Acidification Commission Joe Salisbury (UNH) Outline a) Ocean Acidification - Background - Maine’s unique setting b) Acidification processes near to shore c) What’s happened since the report? - Progress - Items still pending The Earth’s CO2 budget 8.30.4 PgC/yr 90% 4.30.1 PgC/yr 46% 2.60.8 PgC/yr 1.00.5 PgC/yr 10% = 28% Calculated as the residual of all other flux components 26% 2.50.5 PgC/yr Source: Le Quéré et al. 2015 Causing global warming? Probably, but not 100% agreement Causing your ocean to acidify? Definitely Changing Seawater carbon dioxide Chemistry pH IPCC 2014 WG1, Chapter 3 Doney et al. Ann. Rev. Mar. Sci. 2009 Dore et al. PNAS 2009 How it works: Carbonic acid reduces CO2 + H2O H2CO3 carbonic acid ocean pH. 2- – CO2 + CO3 + H2O 2HCO3 The carbonate ions bicarbonate ions concentration Shelled animals need of carbonate carbonate ion from seawater ions decreases. Index of carbonate ion availability = Ω 8 Ω > 1.6 necessary for optimal growth in some shellfish cmore.soest.hawaii.edu Our back yard may be particularly sensitive to acidification! Gulf of Maine Baythmetry Fresher water can be more sensitive to acidification than saltier water DFO, Canada Colder water tends to be more acidic and lower omega than warmer DFO, Canada Ω data from the ECOA cruise, summer 2015. Ω Preliminary data from Cai’s U Delaware group Two more drivers: 1) an unprecedented warming In the last decade the Gulf of Maine has warmed faster than 99.9% of the world’s ocean.
    [Show full text]
  • Four New Pseudococculinid Limpets Collected by the Deep-Submersible Alvin in the Eastern Pacific By
    THE VELIGER © CMS, Inc., 1991 The Veliger 34(l):38-47 (January 2, 1991) Four New Pseudococculinid Limpets Collected by the Deep-Submersible Alvin in the Eastern Pacific by JAMES H. McLEAN Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Abstract. Four new species of Pseudococculinidae collected with the deep-submersible Alvin are described. One species represents a new monotypic genus, Punctabyssia, and two represent new sub­ genera: Dictyabyssia (of Caymanabyssia Moskalev, 1976) and Gordabyssia (of Amphiplica Haszprunar 1988). New species are: Punctabyssia tibbettsi and Caymanabyssia (Dictyabyssia) fosteri, both from the same piece of wood at abyssal depths on the East Pacific Rise Axis near 12°N, and two from abyssal depths on the Gorda Ridge off northern California, Caymanabyssia (Caymanabyssia) vandoverae and Amphiplica (Gordabyssia) gordensis. The latter is the first member of the family to be recovered from sulfide crust in the hydrothermal-vent habitat. New character states for the radula and protoconch are defined for the new genus Punctabyssia. INTRODUCTION of hydrothermal vents, and another from sulfide crust pro­ duced by hydrothermal vents. The latter species represents The cocculiniform limpets include a number of deep-sea a new monotypic subgenus and is the first member of the families in which there is an association with biogenic family restricted to the hydrothermal-vent habitat. substrates (for review see HASZPRUNAR, 1988b). Until re­ cently the only method by which these limpets have been Recent work on the systematics and anatomy of the recovered has been by chance trawling of pieces of wood pseudococculinid limpets (MOSKALEV, 1976; HICKMAN, or other biogenic substrates.
    [Show full text]
  • Studies on Molluscan Shells: Contributions from Microscopic and Analytical Methods
    Micron 40 (2009) 669–690 Contents lists available at ScienceDirect Micron journal homepage: www.elsevier.com/locate/micron Review Studies on molluscan shells: Contributions from microscopic and analytical methods Silvia Maria de Paula, Marina Silveira * Instituto de Fı´sica, Universidade de Sa˜o Paulo, 05508-090 Sa˜o Paulo, SP, Brazil ARTICLE INFO ABSTRACT Article history: Molluscan shells have always attracted the interest of researchers, from biologists to physicists, from Received 25 April 2007 paleontologists to materials scientists. Much information is available at present, on the elaborate Received in revised form 7 May 2009 architecture of the shell, regarding the various Mollusc classes. The crystallographic characterization of Accepted 10 May 2009 the different shell layers, as well as their physical and chemical properties have been the subject of several investigations. In addition, many researches have addressed the characterization of the biological Keywords: component of the shell and the role it plays in the hard exoskeleton assembly, that is, the Mollusca biomineralization process. All these topics have seen great advances in the last two or three decades, Shell microstructures expanding our knowledge on the shell properties, in terms of structure, functions and composition. This Electron microscopy Infrared spectroscopy involved the use of a range of specialized and modern techniques, integrating microscopic methods with X-ray diffraction biochemistry, molecular biology procedures and spectroscopy. However, the factors governing synthesis Electron diffraction of a specific crystalline carbonate phase in any particular layer of the shell and the interplay between organic and inorganic components during the biomineral assembly are still not widely known. This present survey deals with microstructural aspects of molluscan shells, as disclosed through use of scanning electron microscopy and related analytical methods (microanalysis, X-ray diffraction, electron diffraction and infrared spectroscopy).
    [Show full text]
  • Redox Reactions and Weak Buffering Capacity Lead to Acidification in the Chesapeake Bay
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2017 Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay Wei-Jun Cai Wei-Jen Huang George W. Luther III Denis Pierrot Ming Li See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Cai, Wei-Jun; Huang, Wei-Jen; Luther, George W. III; Pierrot, Denis; Li, Ming; Testa, Jeremy; Xue, Ming; Joesoef, Andrew; Mann, Roger L.; Brodeur, Jean; Xu, Yuan-Yuan; Chen, Baoshan; Hussain, Najid; Waldbusser, George G.; Cornwell, Jeffery; and Kemp, W. Michael, Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay (2017). NATURE COMMUNICATIONS, 8. 10.1038/s41467-017-00417-7 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors Wei-Jun Cai, Wei-Jen Huang, George W. Luther III, Denis Pierrot, Ming Li, Jeremy Testa, Ming Xue, Andrew Joesoef, Roger L. Mann, Jean Brodeur, Yuan-Yuan Xu, Baoshan Chen, Najid Hussain, George G. Waldbusser, Jeffery Cornwell, and W. Michael Kemp This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/7 ARTICLE DOI: 10.1038/s41467-017-00417-7 OPEN Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay Wei-Jun Cai 1, Wei-Jen Huang1,2, George W.
    [Show full text]