Hondurodendron, a New Monotypic Genus of Aptandraceae From

Total Page:16

File Type:pdf, Size:1020Kb

Hondurodendron, a New Monotypic Genus of Aptandraceae From HONDURODENDRON, Carmen Ulloa Ulloa,2 Daniel L. Nickrent,3 A NEW MONOTYPIC GENUS Caroline Whitefoord,4 and Daniel L. Kelly5 OF APTANDRACEAE FROM HONDURAS1 ABSTRACT Hondurodendron C. Ulloa, Nickrent, Whitef. & D. Kelly, a new monotypic genus endemic to Honduras, is here described and illustrated. The new species, H. urceolatum C. Ulloa, Nickrent, Whitef. & D. Kelly, is a dioecious tree, distinguished by its minute flowers borne on densely tomentose inflorescences, unique anthers opening by three valves, and a characteristic fruit totally enveloped by the accrescent calyx, which projects beyond the fruit. A molecular analysis based on four genes (nuclear small subunit [SSU] ribosomal DNA [rDNA], chloroplast rbcL, matK, and accD) placed this genus in a clade with Aptandra Miers, Harmandia Pierre ex Baill., Chaunochiton Benth., and Ongokea Pierre in the family Aptandraceae Miers. RESUMEN Se describe e ilustra un nuevo ge´nero monotı´pico Hondurodendron C. Ulloa, Nickrent, Whitef. & D. Kelly ende´mico de Honduras. La nueva especie H. urceolatum C. Ulloa, Nickrent, Whitef. & D. Kelly es un a´rbol dioico, que se distingue por las flores diminutas en inflorescencias densamente tomentosas, las anteras u´nicas que se abren por tres valvas y un fruto caracterı´stico totalmente encerrado por el ca´liz acrescente que se proyecta sobre e´ste. Un ana´lisis molecular con cuatro genes (SSU ADN riboso´mico nuclear, rbcL del cloroplasto, matK y accD) ubica al ge´nero en un clado junto con Aptandra Miers, Harmandia Pierre ex Baill., Chaunochiton Benth. y Ongokea Pierre en la familia Aptandraceae Miers. Key words: Aptandraceae, Cusuco National Park, Honduras, Hondurodendron, IUCN Red List, Olacaceae. During a plot based survey of the forest vegetation accrescent calyces include Aptandra Miers, Chauno of Parque Nacional El Cusuco in northwest Honduras chiton Benth., and Heisteria Jacq., but none of these in 2004 and 2006, specimens of an unknown tree were genera possess the combination of morphological collected that proved difficult to place into any known characters seen in the Honduran specimens. Central American genus or family. The plant had Compared with other Central American countries, distichous leaves and fine pubescence on the very Honduras is poorly known botanically with no young inflorescences, features reminiscent of the published flora. The country checklist of Molina genus Acanthosyris (Eichler) Griseb. (Santalaceae), (1975) and the new Cata´logo de las Plantas but it also possessed a greatly enlarged (accrescent) Vasculares de Honduras (Nelson Sutherland, 2008) calyx that projected beyond the fruit as a conspicuous were examined, but none of the Olacaceae and flared limb, thus suggesting Olacaceae s.l. The plant relatives mentioned in those lists corresponded to was dioecious, with remarkable anthers opening by the samples from Cusuco. Additional field observa three valves. Neotropical olacaceous genera with tions and collections that included both flowers and 1 All collections resulted from the survey of the biodiversity of Cusuco National Park, funded and organized by Operation Wallacea under the direction of Dr. T. Coles and Dr. R. Field. We are grateful for the support and assistance of the ‘‘Op Wall’’ team, especially J. Nu´n˜ez-Miro, A. Tozer, and J. Hines. For assistance in the fieldwork, we thank in particular R. Fritch, K. Fagan, C. Lennkh, G. Sandoval, A. Bergoend, and the students and teachers of South Bromsgrove School, Birmingham, and Beaumont School, St. Alban’s. For collecting permits, we thank Corporacio´n Honduren˜a de Desarrollo Forestal (COHDEFOR) and its successor organization Instituto de Conservacio´n Forestal (ICF). We gratefully acknowledge the assistance of our guides P. Corte´s, M. Ramı´rez, and others. For photographs, we thank K. Snarr and J. Kolby. N. Robson kindly translated the diagnosis into Latin. A. L. Arbela´ez prepared the beautiful line drawing. T. Distler and J. Hidalgo helped with determining the conservation status and P. Jørgensen with preparing Figures 5 and 6. Thanks to D. Gates and J. Bozzola (Southern Illinois University Carbondale Integrated Microscopy and Graphics Expertise [IMAGE]) for assistance with pollen scanning electron microscopy and to V. Male´cot for providing the herbarium specimen of Harmandia and for assistance with pollen ultrastructure. Helpful comments from reviewers V. Male´cot, Z. Rogers, and P. Stevens improved the manuscript. 2 Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. [email protected]. 3 Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509, U.S.A. 4 Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. 5 Department of Botany, School of Natural Sciences, Trinity College, University of Dublin, Dublin 2, Republic of Ireland. doi: 10.3417/2009040 ANN.MISSOURI BOT.GARD. 97: 457–467. PUBLISHED ON 10 OCTOBER 2010. 458 Annals of the Missouri Botanical Garden silica gel dried leaf samples were obtained in 2008; these have allowed the phylogenetic position of this mysterious plant to be confirmed. MATERIALS AND METHODS PHYLOGENETIC ANALYSIS The specimens used for DNA extraction are listed in Table 1. Samples were taken from herbarium specimens or from silica gel dried leaves. The methods for DNA extraction, polymerase chain rbcL matK accD reaction (PCR) amplifications, and sequencing were DQ790145 DQ790182 DQ790251 generally the same as those reported in Rogers et al. (2008), except that the automated sequencer used to generate the new sequences reported here was an FJ848849 FJ848842 FJ848845 FJ848843 FJ848847 AB3130xl capillary system (Applied Biosystems, FJ848848 FJ848841 FJ848846 FJ848844 Carlsbad, California, U.S.A.). PCR primer sequences for nuclear small subunit (SSU) ribosomal DNA (rDNA) and chloroplast rbcL, matK, and accD were 4184 DQ790120 DQ790140 DQ790177 DQ790246 4202 DQ790105 DQ790141 DQ790178 DQ790247 4055 DQ790125 DQ790155 DQ790191 DQ790259 30525597 DQ790106 DQ7901424256 DQ790179 DQ790248 DQ790114 DQ790165 DQ790201 DQ790268 4244 5555 reported in Rogers et al. (2008). Eight ingroup taxa number SSU rDNA were used in this study, representing all genera of DNA accession Aptandraceae. Maburea trinervis Maas (Erythropala ceae) and Strombosiopsis tetrandra Engl. (Strombosia ceae) were used as outgroups as guided by the topology of the tree in Male´cot and Nickrent (2008). Nine of the 40 sequences used in the alignment were generated in the present study, whereas the rest were reported by Male´cot and Nickrent (2008). The KYO Indonesia MO Solomon Islands 4247 DQ790104 DQ790144 DQ790181 DQ790250 MO Peru MO Madagascar 4204 DQ790122 DQ790143 DQ790180 DQ790249 MO Costa Rica MO Brazil MO Honduras NHN Gabon NHN Gabon sequences were aligned manually using SeAl version NHN Guyana 2.0 (Rambaut, 2004), and this alignment is available Herbarium Country online under ‘‘Combinatorial Data Sets’’ at ,http:// www.parasiticplants.siu.edu/Alignments/Alignments. html.. Exhaustive maximum parsimony (MP) analy ses were conducted on the concatenated four gene data set using PAUP* 4.0b10 (Swofford, 2002). Nodal support was determined using MP bootstrap analysis Voucher (branch and bound search using 1000 replicates, taxon addition sequence set as ‘‘furthest’’). In addition, a maximum likelihood (ML) bootstrap tree Regalado & Sirikolo 692 van der Werff & Vasquez 13846 Koizumi 1411 Breteler et al. 14888 Schatz et al. 3439 Zamora 1928 Ratter et al. 6782 Wieringa 3300 was generated using GARLI 1.0 (Zwickl, 2006). The Fagan et al. DA/2/MSZagt 313-II s.n. nucleotide substitution model was general time reversible (GTR + G + I) using program defaults, except random starting trees were used instead of stepwise addition starting trees for each analysis. Two analyses for each bootstrap replication were conduct cot, C Ulloa, ed and both found the same tree. A majority rule ´ Baill Male consensus tree was constructed with the 100 bootstrap Engl (Sagot) Ducke trees. (Benth ) Miers Schellenb (Poepp ) Benth ex Miers Taxon Maas (Hua) Pierre TAXONOMY All measurements were taken from herbarium G E Schatz & Bosser specimens, but flower measurements are from rehy Nickrent, Whitef & D Kelly Table 1 Voucher information and GenBank accession numbers for 10 taxa used in the phylogenetic analysis The DNA accession numbers refer to the collections by D L Nickrent Anacolosa papuana Aptandra tubicina archived at Southern Illinois University Carbondale Sequences in boldface were newly generated for this study NHN, National Herbarium of the Netherlands Phanerodiscus capuronii Cathedra acuminata Strombosiopsis tetrandra Harmandia mekongensis Hondurodendron urceolatum Ongokea gore Chaunochiton kappleri drated herbarium material. Additional observations, Maburea trinervis Volume 97, Number 3 Ulloa Ulloa et al. 459 2010 Hondurodendron (Aptandraceae) Figure 1. Phylogenetic tree derived from analysis of the concatenated four-gene data set (nuclear SSU rDNA, and chloroplast rbcL, matK, and accD) for genera of Aptandraceae (see Table 1 for vouchers). For maximum parsimony, one tree of length 1245 was found following an exhaustive search. The tree has a consistency index (minus uninformative sites) of 0.7473. Numbers above the branches are maximum parsimony bootstrap percentages (1000 replications, branch-and-bound search) followed by maximum likelihood bootstrap percentages; numbers below are branch lengths. photographs, and ecological notes were taken in the Hondurodendron urceolatum C. Ulloa, Nickrent,
Recommended publications
  • MISSOURI BOTANICAL GARDEN RESEARCHER DISCOVERS NEW GENUS Finding New Genus Rare in Modern Plant Taxonomy
    Date: October 15, 2010 MISSOURI BOTANICAL GARDEN RESEARCHER DISCOVERS NEW GENUS Finding New Genus Rare in Modern Plant Taxonomy (ST. LOUIS): An article published in the October issue of the Annals of the Missouri Botanical Garden describes a new genus of tree of the Aptandraceae family, a group that is related to the sandalwoods (order Santalales). The genus, which has been given the name Hondurodendron , is endemic to Honduras and means “tree of Honduras.” In the article, “Hondurodendron, a New Monotypic Genus of Aptandraceae from Honduras,” lead author Dr. Carmen Ulloa, associate curator at the Missouri Botanical Garden, and co-authors Dr. Daniel L. Nickrent, Southern Illinois University-Carbondale, Dr. Caroline Whitefoord, The Natural History Museum in London, and Dr. Daniel L. Kelly, Trinity College in Dublin, describe the genus as a tree about 40-feet-tall, with minute male and female flowers less than 2 mm (1/8 inch) wide, borne respectively on separate plants. The tiny stamens have rather unusual anthers opening by three valves. The fruit measures 2 cm (1 inch) across; it is tightly wrapped by the calyx which enlarges greatly as the fruit matures and eventually may even project beyond as a flared limb. The authors named the single species known of this genus as Hondurodendron urceolatum with the Latin specific epithet meaning “shaped like a pitcher or urn” because of the striking form of the fruit. The first specimens of this genus were collected by Kelly and a team of researchers and students during a plot-based survey of the forest vegetation of Parque Nacional El Cusuco in northwest Honduras in 2004 and 2006.
    [Show full text]
  • "Santalales (Including Mistletoes)"
    Santalales (Including Introductory article Mistletoes) Article Contents . Introduction Daniel L Nickrent, Southern Illinois University, Carbondale, Illinois, USA . Taxonomy and Phylogenetics . Morphology, Life Cycle and Ecology . Biogeography of Mistletoes . Importance of Mistletoes Online posting date: 15th March 2011 Mistletoes are flowering plants in the sandalwood order that produce some of their own sugars via photosynthesis (Santalales) that parasitise tree branches. They evolved to holoparasites that do not photosynthesise. Holopar- five separate times in the order and are today represented asites are thus totally dependent on their host plant for by 88 genera and nearly 1600 species. Loranthaceae nutrients. Up until recently, all members of Santalales were considered hemiparasites. Molecular phylogenetic ana- (c. 1000 species) and Viscaceae (550 species) have the lyses have shown that the holoparasite family Balano- highest species diversity. In South America Misodendrum phoraceae is part of this order (Nickrent et al., 2005; (a parasite of Nothofagus) is the first to have evolved Barkman et al., 2007), however, its relationship to other the mistletoe habit ca. 80 million years ago. The family families is yet to be determined. See also: Nutrient Amphorogynaceae is of interest because some of its Acquisition, Assimilation and Utilization; Parasitism: the members are transitional between root and stem para- Variety of Parasites sites. Many mistletoes have developed mutualistic rela- The sandalwood order is of interest from the standpoint tionships with birds that act as both pollinators and seed of the evolution of parasitism because three early diverging dispersers. Although some mistletoes are serious patho- families (comprising 12 genera and 58 species) are auto- gens of forest and commercial trees (e.g.
    [Show full text]
  • A Morphological Cladistic Analysis of Olacaceae
    Systematic Botany (2004), 29(3): pp. 569±586 q Copyright 2004 by the American Society of Plant Taxonomists A Morphological Cladistic Analysis of Olacaceae VALE RY MALE COT,1,4 DANIEL L. NICKRENT,2 PIETER BAAS,3 LEEN VAN DEN OEVER,3 and DANIELLE LOBREAU-CALLEN1 1Equipe d'Accueil 3496 Classi®cation Evolution et BiosysteÂmatique, Laboratoire de PaleÂobotanique et PaleÂoeÂcologie, Universite Pierre et Marie Curie, 12 rue Cuvier, 75005 Paris, France; 2Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509; 3National Herbarium, Leiden University, P.O. Box 9514, 2300 RA Leiden, Netherlands; 4Author for Correspondence. Present address: UMR A 462 SAGAH, Institut National d'Horticulture, 2 rue Le NoÃtre, 49045 Angers Cedex 01, France ([email protected]) Communicating Editor: Gregory M. Plunkett ABSTRACT. A cladistic study based on morphological characters is presented for all 28 genera of Olacaceae as well as 26 representative genera from ®ve other families of Santalales: Loranthaceae, Misodendraceae, Opiliaceae, Santalaceae, and Viscaceae. The data matrix consists of 80 macro-morphological, palynological, and anatomical characters. The phylogenetic trees obtained show a paraphyletic Olacaceae with four main clades. Some of these clades are congruent with previously recognized tribes, but all of subfamilies are para- or polyphyletic. Examination of character transformations con®rms several assumptions of evolutionary trends within Olacaceae and Santalales, but others appear to be more complex than expected. Optimization of trophic mode on the consensus tree shows that root hemiparasitism had a single origin in Santalales. Whatever the optimization procedure used, the basal-most clade of Olacaceae consists of 12 genera, among which ®ve are known to be autotrophs, whereas the remaining three clades (15 genera) contain four genera known to be root parasites.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Threatened Endemic Plants of Palau
    THREA TENED ENDEMIC PLANTS OF PALAU BIODI VERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 19 BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 19 Threatened Endemic Plants of Palau Biodiversity Conservation Lessons Learned Technical Series is published by: Critical Ecosystem Partnership Fund (CEPF) and Conservation International Pacific Islands Program (CI-Pacific) PO Box 2035, Apia, Samoa T: + 685 21593 E: [email protected] W: www.conservation.org The Critical Ecosystem Partnership Fund is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. A fundamental goal is to ensure civil society is engaged in biodiversity conservation. Conservation International Pacific Islands Program. 2013. Biodiversity Conservation Lessons Learned Technical Series 19: Threatened Endemic Plants of Palau. Conservation International, Apia, Samoa Authors: Craig Costion, James Cook University, Australia Design/Production: Joanne Aitken, The Little Design Company, www.thelittledesigncompany.com Photo credits: Craig Costion (unless cited otherwise) Cover photograph: Parkia flowers. © Craig Costion Series Editors: Leilani Duffy, Conservation International Pacific Islands Program Conservation International is a private, non-profit organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code. OUR MISSION Building upon a strong foundation of science, partnership and field demonstration,
    [Show full text]
  • 9 Costion Plant Endemism 133-166 PROOFS
    Micronesica 41(1): 131–164, 2009 Plant Endemism, Rarity, and Threat in Palau, Micronesia: A Geographical Checklist and Preliminary Red List Assessment 1 CRAIG M. COSTION Department of Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide SA 5001 [email protected] ANN HILLMANN KITALONG The Environment, Inc., P.O. Box 1696, Koror, Palau 96940 TARITA HOLM Palau Conservation Society/PALARIS, P.O. Box 1811, Koror, Palau, 96940 Abstract—An official checklist of the endemic plant species of Palau has been long awaited, and is presented here for the first time. For each species a substrate limitation, growth form, and relative abundance is listed. In addition an IUCN red list assessment was conducted using all available data. For over half of the endemic species there is insufficient data to provide a red listing status however an expected minimum number of threatened plants out of the total is inferred. Approximately 15% of Palau’s endemic plants are believed to be only known from the type collection and many more only known from a few collections. These taxa however may now be prioritized and targeted for future inventory and research. The taxonomic robustness of several of these taxa is questionable and it is expected that more endemic species will be lost to synonymy in the future. Previous estimations have significantly over-estimated the rate of plant endemism in Palau (e.g., 194). Here, 130 plants are recognized for Palau, making its level of plant endem- ism comparable to some of its neighboring Micronesian islands to the east, notably Guam and Pohnpei.
    [Show full text]
  • Malaysia's Unique Biological Diversity: New Insights from Molecular Evolutionary Studies of Parasitic Flowering Plants
    Malaysia's Unique Biological Diversity: New Insights from Molecular Evolutionary Studies of Parasitic Flowering Plants Daniel L. Nickrent Department of Plant Biology Southern Illinois University Carbondale, IL 62901-6509 e-mail: [email protected] October 2, 1995 ABSTRACT Malaysia is home to a rich assemblage of parasitic flowering plants representing seven families, 46 genera and approximately 100 species. These plants are seldom considered candidates for conservation efforts, however, many species are important components of the tropical ecosystem that show complex associations with other organisms and unique biochemical features. Results of a phylogenetic analysis of 29 members of Santalales using a combined dataset of nuclear-encoded 18S rDNA and plastid-encoded rbcL sequences are presented. Sequences from representatives of three nonphotosynthetic, holoparasitic families often allied with Santalales, Balanophoraceae, Hydnoraceae and Rafflesiaceae, have been obtained from nuclear-encoded 18S rDNA and plastid- encoded 16S rDNA. As with 18S rDNA, the 16S rDNA sequences from all three holoparasite families showed an increase in the number of substitutions. The greatest increases were seen in Mitrastema and Hydnora, greater than values obtained from pairwise comparisons involving taxa as phylogenetically distant as angiosperms and liverworts. A case is made that these plants represent unique natural genetic experiments that offer a wealth of opportunity for molecular genetic and phylogenetic analyses. 2 “We do not know enough about any gene, species, or ecosystem to be able to calculate its ecological and economic worth in the large scheme of things” (Ehrenfeld 1988) Why conserve parasitic plants? When considering the reasons for conservation of biodiversity, one inevitably concludes that all involve value judgments that are, in essence, anthropocentric.
    [Show full text]
  • E), (P), Singapore (SING
    BLUMEA 26(1980) 145-168 A taxonomic account of the Olacaceae of Asia, Malesia, and the adjacent areas H. Sleumer Rijksherbarium, Leiden, The Netherlands Contents 1. Introduction 145 146 2. Artificial key to the genera of Olacaceae in Asia, Malesia, Australia, and the Pacific . 3. An account of the genus Anacolosa Bl. in Asia, Malesia. and the Pacific 146 4. Bl The genus Erythropalum 151 Harmandia Pierre Baill 5. The genus ex 153 6. The Mast 153 genus Ochanostachys 7. An account of the genus Ola.v L. in Asia, Malesia, Australia, and the Pacific 154 8. The Becc 160 genus Scorodocarpus 9. The genus Schoepfia Schreb. in Asia and Malesia 161 10. The Bl. in genus Strombosia Asia and Malesia 163 The Ximenia L. in Asia. Australia, and the Pacific 11. genus Malesia, 166 1. Introduction In the present work detailsare given in the first place for the Malesian Olacaceae, the basis of of the in ‘Flora representing my forthcoming treatment family Malesiana’, in which full descriptions of the Malesian genera and species will be of given. As the Olacaceae Malesiaare connectedwith thoseof Southand Southeast Asia the and thoseofAustralia and the Pacific the other it has been on one, on side, necessary to study the respective materials too. A part of the Malesian genera is represented also in Africa inch Madagascar, and even in Central and South America; the appertaining species have been studied but are not mentioned in this paper. A criticalelaborationof the family for Africa and America is urgently needed, but influence scientific will, as far as can be seen, be of no of the delimitationand names of the Asiatic-Malesian Olacaceae.
    [Show full text]
  • Updated Angiosperm Family Tree for Analyzing Phylogenetic Diversity and Community Structure
    Acta Botanica Brasilica - 31(2): 191-198. April-June 2017. doi: 10.1590/0102-33062016abb0306 Updated angiosperm family tree for analyzing phylogenetic diversity and community structure Markus Gastauer1,2* and João Augusto Alves Meira-Neto2 Received: August 19, 2016 Accepted: March 3, 2017 . ABSTRACT Th e computation of phylogenetic diversity and phylogenetic community structure demands an accurately calibrated, high-resolution phylogeny, which refl ects current knowledge regarding diversifi cation within the group of interest. Herein we present the angiosperm phylogeny R20160415.new, which is based on the topology proposed by the Angiosperm Phylogeny Group IV, a recently released compilation of angiosperm diversifi cation. R20160415.new is calibratable by diff erent sets of recently published estimates of mean node ages. Its application for the computation of phylogenetic diversity and/or phylogenetic community structure is straightforward and ensures the inclusion of up-to-date information in user specifi c applications, as long as users are familiar with the pitfalls of such hand- made supertrees. Keywords: angiosperm diversifi cation, APG IV, community tree calibration, megatrees, phylogenetic topology phylogeny comprising the entire taxonomic group under Introduction study (Gastauer & Meira-Neto 2013). Th e constant increase in knowledge about the phylogenetic The phylogenetic structure of a biological community relationships among taxa (e.g., Cox et al. 2014) requires regular determines whether species that coexist within a given revision of applied phylogenies in order to incorporate novel data community are more closely related than expected by chance, and is essential information for investigating and avoid out-dated information in analyses of phylogenetic community assembly rules (Kembel & Hubbell 2006; diversity and community structure.
    [Show full text]
  • Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae
    Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) Plus Dilleniales Author(s): Ying Yu, Alexandra H. Wortley, Lu Lu, De-Zhu Li, Hong Wang and Stephen Blackmore Source: Annals of the Missouri Botanical Garden, 103(1):106-161. Published By: Missouri Botanical Garden https://doi.org/10.3417/2017017 URL: http://www.bioone.org/doi/full/10.3417/2017017 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. EVOLUTION OF ANGIOSPERM Ying Yu,2 Alexandra H. Wortley,3 Lu Lu,2,4 POLLEN. 5. EARLY DIVERGING De-Zhu Li,2,4* Hong Wang,2,4* and SUPERASTERIDAE Stephen Blackmore3 (BERBERIDOPSIDALES, CARYOPHYLLALES, CORNALES, ERICALES, AND SANTALALES) PLUS DILLENIALES1 ABSTRACT This study, the fifth in a series investigating palynological characters in angiosperms, aims to explore the distribution of states for 19 pollen characters on five early diverging orders of Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) plus Dilleniales.
    [Show full text]
  • Ecological Aspects of the Cretaceous Flowering Plant Radiation1
    Aww. Akv. EarfA f/o««f. Sci. 799& 26. J7V-/J/ ECOLOGICAL ASPECTS OF THE CRETACEOUS FLOWERING PLANT RADIATION1 Scott L. Wing and Lisa D. Boucher Department of Paleobiology, NHB121, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; e-mail: [email protected], boucherl @ nmnh. si.edu KEY WORDS: angiosperms, Cretaceous, paleoecology, diversification, evolution ABSTRACT The first flowering plant fossils occur as rare, undiverse pollen grains in the Early Cretaceous (Valanginian-Hauterivian). Angiosperms diversified slowly during the Barremian-Aptian but rapidly during the Albian-Cenomanian. By the end of the Cretaceous, at least half of the living angiosperm orders were present, and angiosperms were greater than 70% of terrestrial plant species globally. The rapid diversification of the group, and its dominance in modern vegetation, has led to the idea that the Cretaceous radiation of angiosperms also represents their rise to vegetational dominance. Paleoecological data cast a different light on the Cretaceous radiation of an- giosperms. Analyses of sedimentary environments indicate that angiosperms not only originated in unstable habitats but remained centered there through most of the Cretaceous. Morphology of leaves, seeds, and wood is consistent with the status of most Cretaceous angiosperms as herbs to small trees with early successional strategy. The diversification of flowering plants in the Cretaceous represents the evolution of a highly speciose clade of weeds but not necessarily a major change in global vegetation. INTRODUCTION Flowering plants, or angiosperms, are presently the most dominant group of terrestrial autotrophs. They span an array of habits including very large trees, 1 The US Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.
    [Show full text]
  • Acta Botanica Brasilica All the Contents of This Journal, Except Where Otherwise Noted, Is Licensed Under a ​ Creative Commons Attribution License
    Acta Botanica Brasilica All the contents of this journal, except where otherwise noted, is licensed under a ​ Creative Commons Attribution License. Fonte: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-33062012000200003&lng=en&tln g=en. Acesso em: 08 out. 2020. REFERÊNCIA ARRUDA, Rafael et al. Ecology of neotropical mistletoes: an important canopy-dwelling component of Brazilian ecosystems. Acta Botanica Brasilica, Feira de Santana, v. 26, n. 2, p. 264-274, abr./jun. ​ ​ 2012. DOI: https://doi.org/10.1590/S0102-33062012000200003. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-33062012000200003&lng=en&tln g=en. Acesso em: 08 out. 2020. Acta Botanica Brasilica 26(2): 264-274. 2012. Revisão / Review Ecology of neotropical mistletoes: an important canopy-dwelling component of Brazilian ecosystems Rafael Arruda1,9, Rodrigo Ferreira Fadini2, Lucélia Nobre Carvalho1, Kleber Del-Claro3, Fabiana Alves Mourão4, Claudia Maria Jacobi4, Grazielle Sales Teodoro5, Eduardo van den Berg6, Claudenir Simões Caires7 and Greta Aline Dettke8 Recebido em 28/09/2011. Aceito em 9/04/2012 RESUMO (Ecologia de ervas-de-passarinho Neotropicais: um importante componente do dossel de ecossistemas brasileiros). Ervas-de-passarinho têm sim sido regularmente estudadas em países temperados por afetar negativamente espécies cultivadas e fl orestas manejadas. Em comparação com ambientes temperados pouco se conhece sobre a ecologia das ervas-de-passarinho neotropicais. Desta forma, é necessário maior conhecimento sobre o grupo porque são importantes elementos de comunidades vegetais, atuando como recurso-chave para polinizadores, dispersores de sementes e herbívoros. Através de uma combinação de trabalhos clássicos já publicados com evidências empíricas recentes, nós apresentamos padrões emergentes da interação entre ervas-de-passarinho com os organismos associados e questionamentos para estudos adicionais.
    [Show full text]