Flowering Plants of Samoa

Total Page:16

File Type:pdf, Size:1020Kb

Flowering Plants of Samoa FLOWERING PLANTS OF SAMOA BY ERLING CHRISTOPHERSEN HONOLULU, HAWAII PUBLISHEDBY THE MUSEUM February 21, 1935 KRAUS REPRINT CO. New York 1971 CONTENTS PAGS Introduction ...................................................................................................................................... 3 Mono~otyledon~ae.......................................................................................................................... 6 Family 1. Pandanaceae ........................................................................................................ 6 Family 2. Hydrocharitaceae 6 Family 3. Gramineae ............................................................................................................ 6 Family 4. Cyperageae .......................................................................................................... 15 Family 5. Palmae .................................................................................................................. 25 Family 6- Araceae ................................................................................................................ 39 Family 7. Lemnaceae ............................................................................................................ 44 Family 8. Flagellariaceae 44 Family g. Bromeliaceae ...................................................................................................... 47 Family lo. Commelinaceae .................................................................................................. 48 . Family 1 I . Lihaceae ........................................................................................................... 48 Family iz. Amaryllidaceae .................................................................................................. 50 Family 13. Taccaceae .......................................................................................................... 50 Family 14. Dioscoreaceae ................................................................................................. 51 Family 15. Musaceae ............................................................................................................ 54 . Family 16. Zlnglberaceae .................................................................................................... 57 Family 17. Cannaceae .......................................................................................................... 60 Family 18. Marantaceae ...................................................................................................... 60 Family ig. Orchidaceae ...................................................................................................... 60 Dicotyledoneae 70 Family 20 . Chloranthaceae .................................................................................................. 70 Family 21 . Ulmaceae ............................................................................................................ 71 Family 22 . Moraceae ............................................................................................................ 71 Family a3. Urticaceae .......................................................................................................... 74 Family 24 . Loranthaceae .................................................................................................... 79 Family 25 . Olacaceae 80 Family 26 . Aristolochiaceae .............................................................................................. 82 Family 27 . Amaranthaceae ............................................................................................... 82 Family 28. Nyctaginaceae .................................................................................................. 83 Family 29 . Aizoaceae ....................................................................................................... 84 Family 30 . Portulacaceae .................................................................................................... 85 Family 31 . Menispermaceae ............................................................................................... 85 Family 32. Anonaceae 86 Family 33. Myristicaceae .................................................................................................... 86 Family 34 . Monimiaceae ...................................................................................................... 88 Family 35. Lauraceae .......................................................................................................... 89 Family 36 . Hernandiaceae .............................................................................................. 92 Family 37 . Cruciferae ........................................................................................................ 94 Family 38 . Capparidaceae .................................................................................................. 94 Family 39 . Crassulaceae 95 Family 40. Pittosporaceae .................................................................................................. 95 Family 41 . Cunoniaceae ...................................................................................................... 96 Family 42 . Rosaceae ............................................................................................................ 97 [ i I PAGE Family 43. Leguminosae ...................................................................................................... 98 Family 44. Oxalidaceae ...................................................................................................... loj Family 45 . Rutaceae ............................................................................................................ 106 Family 46 . Burseraceae 111 Family 47 . Meliaceae .......................................................................................................... 114 Family 48. Polygalaceae ...................................................................................................... 117 Family 49. Euphorbiaceae .................................................................................................. 117 Family 50 . Coriariaceae ...................................................................................................... 126 Family 51 . Anacardiaceae 127 Family 52 . Celastraceae ...................................................................................................... 128 Family 53. Icacinaceae ........................................................................................................ 128 Family 54. Sapindaceae ...................................................................................................... 130 Family 54a Balsaminaceae --. .......................................................... 133 Family 55 . Rhamnaceae ...................................................................................................... 133 Family 56. Elaeocarpaceae ................................................................................................ 135 Family 57. Tiliaceae 140 Family 58. Malvaceae 141 Family 58a. Bombacaceae ................................. 145 Family 59. Sterculiaceae ................................. 145 Family 60. Theaceae 146 Family 61. Guttiferae .......................................................................................................... 147 Family 62. Bixaceae ............................................................................................................ 149 Family 63. Violaceae ............................................................................................................ 149 Family 64. Flacourtiaceae 15 1 Family 65. Passifloraceae .................................................................................................... 153 Family 66. Caricaceae ...................................... -.. .................................................................. 153 Family 67. Thymelaeaceae .................................................................................................. 153 Family 68. Lythraceae ........................................................................................................ 154 Family 69. Lecythidaceae 154 Family 70. Rhizophoraceae ........................................................................................... 155 Family 71. Combretaceae .................................................................................................... 157 Family 72. Myrtaceae .. 158 Family 73. Onagraceae ........................................................................................................ 160 Family 74. Araliaceae .......................................................................................................... 160 Family 75 . Umbelliferae ...................................................................................................... 165 Family 76. Ericaceae .......................................................................................................... 166 Family 77. Myrsinaceae 166 Family 78. Plumbaginaceae ................................................................................................ 168 Family 79. Sapotaceae .......................................................................................................... 168 Family 80. Ebenaceae 172 Family 81. Oleaceae 174 Family 82. Loganiaceae 175 Family 83. Apocynaceae 177 Family 84. Asclepiadaceae 186 Family 85. Boraginaceae ...................................................................................................
Recommended publications
  • Promecothecini Chapuis 1875 Promecothecites Chapuis 1875:300
    Tribe Promecothecini Chapuis 1875 Promecothecites Chapuis 1875:300. Handlirsch 1925:666 (classification); Gressitt 1950:81 (China species). Promecothecini Chapuis. Würmli 1975a:45 (genera); Bouchard et al. 2011:78, 518 (nomenclature); Liao et al. 2015:162 (host plants). Promecothecini Weise 1911a:78. Weise 1911b:81 (redescription); Zacher 1913:103 (key); Handlirsch 1925:666 (classification); Uhmann 1931i:848 (museum list), 1940g:121 (claws), 1951a:31 (museum list), 1958e:222 (catalog), 1959d:8 (scutellum), 1964a:458 (catalog), 1964(1965):241 (faunal list), 1966d:275 (note); Bryant 1936:256 (faunal list); Liu 1936:249 (China species); Wu 1937:912 (faunal list); Gressitt 1939c:133 (distribution), 1957b:279 (South Pacific species), 1970:71 (Fiji species); Gressitt & Kimoto 1963a:905 (China species); Seeno & Wilcox 1982:164 (catalog); Jolivet 1988b:13 (host plants), 1989b:310 (host plants); Jolivet & Hawkeswood 1995:154 (host plants); Cox 1996a:172 (pupae); Mohamedsaid 2004:169 (Malaysian species); Staines 2004a:317 (host plants); Chaboo 2007:183 (phylogeny). Type genus:Promecotheca Blanchard. Promecispa Weise 1909 Promecispa Weise 1909:112. Type species:Promecispa voeltzkowi Weise 1909 by monotypy. Weise 1910d:442, 501 (faunal list), 1911a:53 (catalog), 1911b:80 (redescription); Uhmann 1931i:848 (museum list), 1958e:223 (catalog); Würmli 1975a:46 (genera); Seeno & Wilcox 1982:164 (catalog). Promecispa voeltzkowi Weise 1909 Promecispa voeltzkowi Weise 1909:112 (type:Madagascar, Kinkuni, ZMHB). Weise 1910d:442, 501 (faunal list), 1911a:53 (catalog), 1911b:80 (catalog); Uhmann 1931i:848 (type), 1958e:223 (catalog). Distribution. Madagascar. Food plant. Unknown. Promecotheca Blanchard 1853 Promecotheca Dejean 1837:387 Nomen Nudum. Guérin-Méneville 1840b:334 (note). Promecotheca Blanchard 1853:312. Type species:Hispa cyanipes Erichson 1834, designated by Baly 1858.
    [Show full text]
  • Conflicting Power Paradigms in Samoa's
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. CONFLICTING POWER PARADIGMS IN SAMOA’S “TRADITIONAL DEMOCRACY” FROM TENSION TO A PROCESS OF HARMONISATION? A thesis presented in partial fulfilment of the Requirements for the degree of Doctor of Philosophy in Political Science at Massey University, Albany, New Zealand Christina La’alaai-Tausa 2020 COPYRIGHT Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. 2 ABSTRACT This research argues that the tension evident between western democracy and Samoa’s traditional leadership of Fa’amatai has led to a power struggle due to the inability of the government to offer thorough civic education through dialectical exchange, proper consultation, discussion and information sharing with village council leaders and their members. It also argues that Fa’amatai are being disadvantaged as the government and the democratic system is able to manipulate cultural practices and protocols to suit their political needs, whereas village councils are not recognized or acknowledged by the democratic system (particularly the courts), despite cultural guidelines and village laws providing stability for communities and the country. In addition, it claims that, despite western academics’ arguments that Samoa’s traditional system is a barrier to a fully-fledged democracy, Samoa’s Fa’amatai in theory and practice in fact proves to be more democratic than the democratic status quo.
    [Show full text]
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • Acronychia Acidula Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Acronychia acidula Click on images to enlarge Family Rutaceae Scientific Name Acronychia acidula F.Muell. Fruit, several views, cross sections and seeds. Copyright W. Mueller, F.J.H. von (1864) Fragmenta Phytographiae Australiae 4: 154. Type: In montibus Seaview Range T. Cooper apud Rockingham Bay. Dallachy. Common name Hard Aspen; Lemon Aspen; Lemon Wood Stem Blaze odour generally conspicuous, difficult to describe, but perhaps resembling mango (Mangifera indica) or citrus (Citrus spp.). Leaves Leaves and Flowers. Copyright B. Gray Leaf blades about 10.5-19.5 x 5-11 cm. About 8-20 main lateral veins on each side of the midrib. Underside of the leaf blade only slightly paler than the upper surface. Crushed leaves often emit an odour like mango skin (Mangifera indica). Flowers Inflorescence usually more than 2 cm long. Flowers about 9.5 mm long. Stamens eight, dimorphic, four long and four short, in one whorl, long and short stamens alternating. Disk and style yellow. Ovary and stigma green. Fruit Scale bar 10mm. Copyright CSIRO Fruits +/- globular, about 20 mm diam. Seeds about 4.5 mm long. Seedlings Cotyledons about 9-11 mm long, margins toothed. First and second pairs of leaves trifoliolate. At the tenth leaf stage: leaf blade inconspicuously toothed, more conspicuous on earlier leaves. Seed germination time 51 to 226 days. Distribution and Ecology Endemic to Queensland, occurs in NEQ and CEQ.
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Savai'i Volcano
    A Visitor’s Field Guide to Savai’i – Touring Savai’i with a Geologist A Visitor's Field Guide to Savai’i Touring Savai'i with a Geologist Warren Jopling Page 1 A Visitor’s Field Guide to Savai’i – Touring Savai’i with a Geologist ABOUT THE AUTHOR AND THIS ARTICLE Tuapou Warren Jopling is an Australian geologist who retired to Savai'i to grow coffee after a career in oil exploration in Australia, Canada, Brazil and Indonesia. Travels through Central America, the Andes and Iceland followed by 17 years in Indonesia gave him a good understanding of volcanology, a boon to later educational tourism when explaining Savai'i to overseas visitors and student groups. His 2014 report on Samoa's Geological History was published in booklet form by the Samoa Tourism Authority as a Visitor's Guide - a guide summarising the main geological events that built the islands but with little coverage of individual natural attractions. This present article is an abridgement of the 2014 report and focuses on Savai'i. It is in three sections; an explanation of plate movement and hotspot activity for visitors unfamiliar with plate tectonics; a brief summary of Savai'i's geological history then an island tour with some geologic input when describing the main sites. It is for nature lovers who would appreciate some background to sightseeing. Page 1 A Visitor’s Field Guide to Savai’i – Touring Savai’i with a Geologist The Pacific Plate, The Samoan Hotspot, The Samoan Archipelago The Pacific Plate, the largest of the Earth's 16 major plates, is born along the East Pacific Rise.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Samoa Socio-Economic Atlas 2011
    SAMOA SOCIO-ECONOMIC ATLAS 2011 Copyright (c) Samoa Bureau of Statistics (SBS) 2011 CONTACTS Telephone: (685) 62000/21373 Samoa Socio Economic ATLAS 2011 Facsimile: (685) 24675 Email: [email protected] by Website: www.sbs.gov.ws Postal Address: Samoa Bureau of Statistics The Census-Surveys and Demography Division of Samoa Bureau of Statistics (SBS) PO BOX 1151 Apia Samoa National University of Samoa Library CIP entry Samoa socio economic ATLAS 2011 / by The Census-Surveys and Demography Division of Samoa Bureau of Statistics (SBS). -- Apia, Samoa : Samoa Bureau of Statistics, Government of Samoa, 2011. 76 p. : ill. ; 29 cm. Disclaimer: This publication is a product of the Division of Census-Surveys & Demography, ISBN 978 982 9003 66 9 Samoa Bureau of Statistics. The findings, interpretations, and conclusions 1. Census districts – Samoa – maps. 2. Election districts – Samoa – expressed in this volume do not necessarily reflect the views of any funding or census. 3. Election districts – Samoa – statistics. 4. Samoa – census. technical agencies involved in the census. The boundaries and other information I. Census-Surveys and Demography Division of SBS. shown on the maps are only imaginary census boundaries but do not imply any legal status of traditional village and district boundaries. Sam 912.9614 Sam DDC 22. Published by The Samoa Bureau of Statistics, Govt. of Samoa, Apia, Samoa, 2015. Overview Map SAMOA 1 Table of Contents Map 3.4: Tertiary level qualification (Post-secondary certificate, diploma, Overview Map ................................................................................................... 1 degree/higher) by district, 2011 ................................................................... 26 Introduction ...................................................................................................... 3 Map 3.5: Population 15 years and over with knowledge in traditional tattooing by district, 2011 ...........................................................................
    [Show full text]
  • Medicinal Plants Research
    V O L U M E -III Glimpses of CCRAS Contributions (50 Glorious Years) MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll Glimpses of CCRAS contributions (50 Glorious years) VOLUME-III MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi MiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiM Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll © Central Council for Research in Ayurvedic Sciences Ministry of AYUSH, Government of India, New Delhi - 110058 First Edition - 2018 Publisher: Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, New Delhi, J. L. N. B. C. A. H. Anusandhan Bhavan, 61-65, Institutional Area, Opp. D-Block, Janakpuri, New Delhi - 110 058, E-mail: [email protected], Website : www.ccras.nic.in ISBN : 978-93-83864-27-0 Disclaimer: All possible efforts have been made to ensure the correctness of the contents. However Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, shall not be accountable for any inadvertent error in the content. Corrective measures shall be taken up once such errors are brought
    [Show full text]
  • Androcalva Bivillosa
    THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister approved this conservation advice and included this species in the Critically Endangered category, effective from 11/05/2018. Conservation Advice Androcalva bivillosa Summary of assessment Conservation status Androcalva bivillosa has been found to be eligible for listing in the Critically Endangered category as outlined in the attached assessment. Reason for conservation assessment by the Threatened Species Scientific Committee This advice follows assessment of information provided by Western Australia as part of the Common Assessment Method process, to systematically review species that are inconsistently listed under the EPBC Act and relevant state/territory legislation or lists. More information on the Common Assessment Method is available at: http://www.environment.gov.au/biodiversity/threatened/cam The information in this assessment has been compiled by the relevant state/territory government. In adopting this assessment under the EPBC Act, this document forms the Approved Conservation Advice for this species as required under s266B of the EPBC Act. Public consultation Notice of the proposed amendment and a consultation document was made available for public comment for 32 business days between 16 August 2017 and 29 September 2017. Any comments received that were relevant to the survival of the species were considered by the Committee as part of the assessment process. Recovery plan A recovery plan for this species under the EPBC Act is not recommended, because the Approved Conservation Advice provides sufficient direction to implement priority actions and mitigate against key threats. The relevant state/territory may decide to develop a plan under its equivalent legislation.
    [Show full text]
  • Giant Swamp Taro, a Little-Known Asian-Pacific Food Crop Donald L
    36 TROPICAL ROOT CROPS SYMPOSIUM Martin, F. W., Jones, A., and Ruberte, R. M. A improvement of yams, Dioscorea rotundata. wild Ipomoea species closely related to the Nature, 254, 1975, 134-135. sweet potato. Ec. Bot. 28, 1974,287-292. Sastrapradja, S. Inventory, evaluation and mainte­ Mauny, R. Notes historiques autour des princi­ nance of the genetic stocks at Bogor. Trop. pales plantes cultiVl!es d'Afrique occidentale. Root and Tuber Crops Tomorrow, 2, 1970, Bull. Inst. Franc. Afrique Noir 15, 1953, 684- 87-89. 730. Sauer, C. O. Agricultural origins and dispersals. Mukerjee, I., and Khoshoo, T. N. V. Genetic The American Geogr. Society, New York, 1952. evolutionary studies in starch yielding Canna Sharma, A. K., and de Deepesh, N. Polyploidy in edulis. Gen. Iber. 23, 1971,35-42. Dioscorea. Genetica, 28, 1956, 112-120. Nishiyama. I. Evolution and domestication of the Simmonds, N. W. Potatoes, Solanum tuberosum sweet potato. Bot. Mag. Tokyo, 84, 1971, 377- (Solanaceae). In Simmonds, N. W., ed., Evolu­ 387. tion of crop plants. Longmans, London, 279- 283, 1976. Nishiyama, I., Miyazaki, T., and Sakamoto, S. Stutervant, W. C. History and ethnography of Evolutionary autoploidy in the sweetpotato some West Indian starches. In Ucko, J. J., and (Ipomea batatas (L). Lam.) and its preogenitors. Dimsley, G. W., eds., The domestication of Euphytica 24, 1975, 197-208. plants and animals. Duckworth, London, 177- Plucknett, D. L. Edible aroids, A locasia, Colo­ 199, 1969. casia, Cyrtosperma, Xanthosoma (Araceae). In Subramanyan, K. N., Kishore, H., and Misra, P. Simmonds, N. W., ed., Evolution of crop plants. Hybridization of haploids of potato in the plains London, 10-12, 1976.
    [Show full text]