Tan Choo Hock Thesis Submitted in Fulfi

Total Page:16

File Type:pdf, Size:1020Kb

Tan Choo Hock Thesis Submitted in Fulfi TOXINOLOGICAL CHARACTERIZATIONS OF THE VENOM OF HUMP-NOSED PIT VIPER (HYPNALE HYPNALE) TAN CHOO HOCK THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF MEDICINE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 Abstract Hump-nosed pit viper (Hypnale hypnale) is a medically important snake in Sri Lanka and Western Ghats of India. Envenomation by this snake still lacks effective antivenom clinically. The species is also often misidentified, resulting in inappropriate treatment. The median lethal dose (LD50) of H. hypnale venom varies from 0.9 µg/g intravenously to 13.7 µg/g intramuscularly in mice. The venom shows procoagulant, hemorrhagic, necrotic, and various enzymatic activities including those of proteases, phospholipases A2 and L-amino acid oxidases which have been partially purified. The monovalent Malayan pit viper antivenom and Hemato polyvalent antivenom (HPA) from Thailand effectively cross-neutralized the venom’s lethality in vitro (median effective dose, ED50 = 0.89 and 1.52 mg venom/mL antivenom, respectively) and in vivo in mice, besides the procoagulant, hemorrhagic and necrotic effects. HPA also prevented acute kidney injury in mice following experimental envenomation. Therefore, HPA may be beneficial in the treatment of H. hypnale envenomation. H. hypnale-specific antiserum and IgG, produced from immunization in rabbits, effectively neutralized the venom’s lethality and various toxicities, indicating the feasibility to produce an effective specific antivenom with a common immunization regime. On indirect ELISA, the IgG cross-reacted extensively with Asiatic crotalid venoms, particularly that of Calloselasma rhodostoma (73.6%), suggesting that the two phylogenically related snakes share similar venoms antigenic properties. Double- sandwich ELISA was specific and able to distinguish and quantify venoms of H. hypnale, Daboia russelii and Echis carinatus sinhaleyus (three common Sri Lankan viperids) in human sera; hence it may be useful in diagnostics and venom level monitoring especially during clinical studies. iv In rabbits, the venom when injected intravenously showed a rapid distribution phase (t1/2α = 0.6 h) and a slow elimination phase (t1/2β = 20 h), consistent with prolonged abnormal hemostasis reported. The intramuscular bioavailability was exceptionally low (Fi.m = 4%), accountable for the highly varied LD50 between intravenous and intramuscular envenomings in animals. HPA infused post-envenomation markedly reduced the serum venom levels and subsequently induced venom redistribution. The redistributed venom was completely neutralized by a second dose of HPA. Proteomic study by shotgun-liquid chromatography-mass spectrometry/mass spectrometry (shotgun-LC-MS/MS) revealed 52 proteins in the venom, 70% of which are toxinologically related. The combined use of reverse-phase high performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide sequencing and mass fingerprinting technologies enabled the identification of the venom major components, i.e. zinc-dependent metalloproteases, phospholipases A2, L- amino acid oxidases, serine proteases and C-type lectins. These toxins correlate with the venom’s principal effects: hematoxicity (hemorrhage, coagulopathy) and tissue destruction (necrosis). Understanding of the venom composition is essential for ascertaining the principal toxins, and for optimizing antivenom formulation. Furthermore, hypnobin, a 37 kDa thrombin-like enzyme was purified. It exhibits arginine esterese and amidase activities, besides distinct specificity towards different mammalian fibrinogens. In fibrinogen coagulation, hypnobin predominantly releases fibrinopeptide A, followed slowly by a small amount of fibrinopeptide B. The findings provide insights into the structures and mechanism of the thrombin-like enzyme, which are important for elucidation of the pathophysiology and for potential drug discovery, e.g. an anticoagulant for thromboembolic disorders. v Abstrak Ular Hypnale hypnale adalah penting dari segi perubatan di Sri Lanka dan Western Ghats, India. Envenomasi (patukan berbisa) ular ini masih tiada penawar bisa yang berkesan. Species ini juga kerap salah dikenalpasti dan ini mengakibatkan rawatan yang tidak sewajar. Dos maut median (LD50) bisa H. hypnale berbeza dari 0.9 µg/g secara intravena ke 13.7 µg/g scara intramuskular pada tikus. Bisa ini menunjukkan kesan-kesan prokoagulan, pendarahan, nekrosis dan aktiviti pelbagai enzim termasuk proteases, phospholipases A2 serta L-amino acid oxidases yang separanya telah diekstrakkan. Monovalent Malayan pit viper antivenom dan Hemato polyvalent antivenom (HPA) dari Thailand meneutralkan kesan maut bisa ini secara in vitro (dos efektif median, ED50 = 0.89 dan 1.52 mg bisa/mL antivenom, masing-masing) dan in vivo pada tikus, serta kesan-kesan prokoagulan, pendaraha dan nekrosis. HPA selepas envenomasi eksperimen turut mencegah kecederaan akut ginjal pada tikus. Maka, HPA mungkin bermanfaat sebagai rawatan bagi envenomasi H. hypnale. Antiserum dan IgG spesifik kepada H. hypnale yang dihasilkan melalui imunisasi arnab meneutralkan kesan-kesan maut dan toksik bisa itu. Ini menunkjukkan kebolehkaksanaan penghasilan suatu penawar bisa spesifik dengan rejim imunisasi yang am. Kajian ‘indirect ELISA’ menunjukkan IgG itu bereaksi-silang secara ekstensif dengan pelbagai bisa ular jenis ‘crotalid’ di Asia, khususnya Calloselasma rhodostoma (73.6%). Ini menunjukkan kedua-dua ular yang berhubungan filogenetik ini berkongsi antigen-antigen bisa yang sama. ‘Double-sandwich ELISA’ adalah spesifik dan dapat membezakan serta mengukur paras bisa-bisa H. hypnale, Daboia russelii dan Echis carinatus sinhaleyus (tiga ular jenis viperid yang biasa di Sri Lanka) dalam serum vi manusia. Ini mununjukkan potensinya digunakkan untuk diagnostik dan pemantauan paras bisa khasnya semasa kajian klinikal. Bisa ini apabila disuntik secara intravena pada arnab menunjukkan fasa ‘distribution’ yang pantas (t1/2α = 0.6 h) dan fasa ‘elimination’ yang lambat (t1/2β = 20 h), konsisten dengan hemostasis abnormal berpanjangan seperti dilaporkan. ‘Intramuscular bioavailability’ bisa ini adalah amat rendah (Fi.m = 4%), dan menjelaskan perbezaan LD50 yang besar antara cara pemberian intravena dan intramuskular pada haiwan. Infusi HPA selepas envenomasi eksperimental mengurangkan paras bisa dengan banyak dan seterusnya mendorong ‘venom redistribution’. Bisa yang diedarsemula itu dineutralkan oleh dos kedua HPA. Kajian proteomic dengan ‘shotgun-liquid chromatography-mass spectrometry/mass spectrometry (shotgun-LC-MS/MS)’ mengenalpasti 52 protein dalam bisa, di mana 70% berkaitan dengan aktiviti toksin . Penggunaan ‘reverse-phased high performance liquid chromatography’, ‘sodium dodecyl sulfate-polyacrylamide gel electrophoresis’, ‘peptide sequencing’ bersama ‘mass fingerprinting’ membolehkan komponen- komponen utama bisa itu dikenalpastikan, iaitu zinc-dependent metalloproteases, phospholipases A2, L-amino acid oxidases, serine proteases dan C-type lectins. Toksin- toksin ini berkorelasi dengan kesan-kesan utama bisa ini: hematoksik (pendarahan, koagulopati) dan kemusnahan tisu (nekrosis). Pemahaman komposisi bisa adalah penting bagi menentupasti toksin-toksin utama, dan untuk mengoptimumkan formulasi penawar bisa. Tambahan, hypnobin, suatu enzim jenis trombin berjisim 37 kDa telah diekstrakkan. Hypnobin menunjukkan aktiviti-aktiviti arginine ester hydrolase dan amidase, serta spesifikasi yang berbeza terhadap fibrinogen mamalia yang berlainan. Bagi koagulasi fibrinogen, hypnobin membebaskan fibrinopeptide A kebanyakannya, vii diikui amaun kecil fibrinopeptide B yang dibebaskan dengan lambat. Penemuan sedemikian memberi pemahaman terhadap struktur dan mekanisme thrombin-like enzyme ini, penting bagi penerangan patofisiologi dan penemuan ubat-ubatan, contohnya, sebagai antikoagulan bagi rawatan penyakit tromboembolik. viii Acknowledgement I would like to express my gratitude to my supervisors, Professor Sim Si Mui (Department of Pharmacology) and Professor Tan Nget Hong (Department of Molecular Medicine), Faculty of Medicine, University of Malaya for their guidance and efforts in supervising the research. I sincerely thank them for their endless patience and expertise training which are of immense significance to my future academic career. I thank Professor Christeine Ariaranee Gnanathasan (Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka) and the staff at the serpentarium of the university, for their trust, kind assistance and sharing of samples in this collaborative project, from which I have benefited. I also thank Professor Sumana Khomvilai and Professor Visith Sitprija from the Queen Saovabha Memorial Institute of Bangkok, Thailand, for their good will and the supply of antivenoms, without which the project would not be possible to complete. I take this opportunity to express my special thanks to Professor Datin Zahurin Mohamed (Head, Department of Pharmacology) for her continuous support and encouragement extended towards my study and candidature in the Department. My special thanks is also expressed to Doctor Fung Shin Yee (Department of Molecular Medicine) for her advice and sharing of experiences in this project; to Professor Jayalakshmi Pailoor (Department of Pathology) for her assistance and advice in histopathology; and to all staff from the Department of Pharmacology, the Department of Molecular Medicine and the Laboratory Animal Center (Faculty of Medicine,
Recommended publications
  • Survey for the Eastern Massasauga (Sistrurus C. Catenatus) in the Carlyle Lake Region
    Survey for the Eastern Massasauga (Sistrurus c. catenatus) in the Carlyle Lake Region: Final Report for Summer 2003 – Spring 2004 Submitted to the: Illinois Department of Natural Resources In Fulfillment of DNR Contract Number R041000001 19 January 2005 Submitted by: Christopher A. Phillips and Michael J. Dreslik Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, Illinois 61820 INTRODUCTION At the time of European settlement, the eastern massasauga (Sistrurus catenatus catenatus) was found throughout the northern two-thirds of Illinois. There are accounts of early travelers and farmers encountering 20 or more massasaugas in a single season (Hay, 1893). As early as 1866, however, the massasauga was noted as declining (Atkinson and Netting, 1927). Through subsequent years, habitat destruction and outright persecution reduced the Illinois range of the massasauga to a few widely scattered populations. Of the 24 localities Smith (1961) listed, only five may remain extant (Phillips et al., 1999a) and abundance estimates at all but one are less than 50 individuals (Anton, 1999; Wilson and Mauger, 1999). The exception is the Carlyle Lake population, where recent size estimates have exceeded 100 individuals (Phillips et al.,1999b; Ibid 2001). A cooperative effort between Scott Ballard of the Illinois Department of Natural Resources (IDNR) and site personnel at IDNR parks and Army Corps of Engineers (ACE) personnel at Carlyle Lake resulted in approximately 30 reports of the massasauga between 1991 and 1998 (S. Ballard, pers. com.). Most of these reports were associated with mowing and a few were the result of road mortality or incidental encounters with park personnel and visitors.
    [Show full text]
  • Exploration Into the Hidden World of Mozambique's Sky Island Forests: New Discoveries of Reptiles and Amphibians
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zoosystematics and Evolution Jahr/Year: 2016 Band/Volume: 92 Autor(en)/Author(s): Conradie Werner, Bittencourt-Silva Gabriela B., Engelbrecht Hanlie M., Loader Simon P., Menegon Michele, Nanvonamuquitxo Cristovao, Scott Michael, Tolley Krystal A. Artikel/Article: Exploration into the hidden world of Mozambique’s sky island forests: new discoveries of reptiles and amphibians 163-180 Creative Commons Attribution 4.0 licence (CC-BY); original download https://pensoft.net/journals Zoosyst. Evol. 92 (2) 2016, 163–180 | DOI 10.3897/zse.92.9948 museum für naturkunde Exploration into the hidden world of Mozambique’s sky island forests: new discoveries of reptiles and amphibians Werner Conradie1,2, Gabriela B. Bittencourt-Silva3, Hanlie M. Engelbrecht4,5, Simon P. Loader6, Michele Menegon7, Cristóvão Nanvonamuquitxo8, Michael Scott9, Krystal A. Tolley4,5 1 Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, South Africa 2 South African Institute for Aquatic Biodiversity, P/Bag 1015, Grahamstown, 6140, South Africa 3 University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland 4 South African National Biodiversity Institute, Private Bag X7, Claremont, 7735, South Africa 5 Department of Botany and Zoology, Stellenbosch University, Matieland 7602, Stellenbosch, South Africa 6 University of Roehampton, Department of Life Sciences, London, SW15
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • The Plains Garter Snake, Thamnophis Radix, in Ohio
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 6-30-1945 The Plains Garter Snake, Thamnophis radix, in Ohio Roger Conant Zoological Society of Philadelphia Edward S. Thomas Ohio State Museum Robert L. Rausch University of Washington, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Conant, Roger; Thomas, Edward S.; and Rausch, Robert L., "The Plains Garter Snake, Thamnophis radix, in Ohio" (1945). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 378. https://digitalcommons.unl.edu/parasitologyfacpubs/378 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1945, NO.2 COPEIA June 30 The Plains Garter Snake, Thamnophis radix, in Ohio By ROGER CONANT, EDWARD S. THOMAS, and ROBERT L. RAUSCH HE announcement that Thamnophis radix, the plains garter snake, oc­ T curs in Ohio and is not rare in at least one county, will surprise most herpetologists and students of animal distribution. Since the publication of Ruthven's monograph on the genus (1908), almost all authors have followed his definition of the range of this species, giving eastern Illinois as its eastern­ most limit. Ruthven (po 80), however, believed that radix very probably would be found in western Indiana, a supposition since substantiated by Schmidt and Necker (1935: 72), who report the species from the dune region of Lake and Porter counties.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Real-Time DNA Barcoding in a Remote Rainforest Using Nanopore Sequencing
    bioRxiv preprint doi: https://doi.org/10.1101/189159; this version posted September 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Real-time DNA barcoding in a remote rainforest using nanopore sequencing 2 3 Aaron Pomerantz1,*, Nicolás Peñafiel2, Alejandro Arteaga3, Lucas Bustamante3, Frank Pichardo3, 4 Luis A. Coloma4, César L. Barrio-Amorós5, David Salazar-Valenzuela2, Stefan Prost 1,6,* 5 6 1 Department of Integrative Biology, University of California, Berkeley, CA, USA 7 2 Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en 8 Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad 9 Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador 10 3 Tropical Herping, Quito, Ecuador 11 4 Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, 12 Ecuador 13 5 Doc Frog Expeditions, Uvita, Costa Rica 14 6 Program for Conservation Genomics, Department of Biology, Stanford University, Stanford, CA, 15 USA 16 17 * Corresponding authors: [email protected] (A. Pomerantz) and 18 [email protected] (S. Prost) 19 20 Abstract 21 Advancements in portable scientific instruments provide promising avenues to expedite 22 field work in order to understand the diverse array of organisms that inhabit our planet. 23 Here we tested the feasibility for in situ molecular analyses of endemic fauna using a 24 portable laboratory fitting within a single backpack, in one of the world’s most imperiled 25 biodiversity hotspots: the Ecuadorian Chocó rainforest.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • Venom Characterization of the Three Species of Ophryacus and Proteomic Profiling of O. Sphenophrys Unveils Sphenotoxin, a Novel
    Journal of Proteomics xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot Venom characterization of the three species of Ophryacus and proteomic profiling of O. sphenophrys unveils Sphenotoxin, a novel Crotoxin-like heterodimeric β-neurotoxin Edgar Neri-Castroa,b, Bruno Lomontec, Mariel Valdésa,d, Roberto Ponce-Lópeza, Melisa Bénard-Vallea, Miguel Borjae, Jason L. Stricklandf, Jason M. Jonesg, Christoph Grünwaldg, ⁎ Fernando Zamudioa, Alejandro Alagóna, a Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México b Programa de Doctorado en Ciencias Biomédicas UNAM, México. c Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica d Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 07738, México e Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio C.P. 35010, México. f Department of Biology, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA. g Herp.mx A.C., Villa del Álvarez, Colima, México ABSTRACT Venoms of the three species of Ophryacus (O. sphenophrys, O. smaragdinus, and O. undulatus), a viperid genus endemic to Mexico, were analyzed for the first time in the present work. The three venoms lacked procoagulant activity on human plasma, but induced hemorrhage and were highly lethal to mice. These venoms also displayed proteolytic and phospholipase A2 activities in vitro. The venom of O. sphenophrys was the most lethal and caused hind-limb paralysis in mice. Proteomic profiling of O.
    [Show full text]
  • Hump-Nosed Viper Bite
    Shivanthan et al. Journal of Venomous Animals and Toxins including Tropical Diseases 2014, 20:24 http://www.jvat.org/content/20/1/24 REVIEW Open Access Hump-nosed viper bite: an important but under-recognized cause of systemic envenoming Mitrakrishnan Chrishan Shivanthan1*, Jevon Yudhishdran2, Rayno Navinan2 and Senaka Rajapakse3 Abstract Hump-nosed viper bites are common in the Indian subcontinent. In the past, hump-nosed vipers (Hypnale species) were considered moderately venomous snakes whose bites result mainly in local envenoming. However, a variety of severe local effects, hemostatic dysfunction, microangiopathic hemolysis, kidney injury and death have been reported following envenoming by Hypnale species. We systematically reviewed the medical literature on the epidemiology, toxin profile, diagnosis, and clinical, laboratory and postmortem features of hump-nosed viper envenoming, and highlight the need for development of an effective antivenom. Keywords: Hypnale, Hump-nosed viper, Envenoming, Viper, Venom, Antivenom Introduction envenoming in Sri Lanka [7,8]. The clinical and epidemio- Hump-nosed viper (Hypnale) bite is an important yet logical importance of HNV bite is under-recognized, under-recognized cause of morbidity and mortality in and currently no effective antivenom exists. In this paper Southern India and Sri Lanka, where three species have we review the published literature on the epidemiology, been identified, namely Hypnale hypnale, H. zara and H. clinical manifestations, and treatment of envenoming nepa. Specifically, H. hypnale has been reported from Sri following HNV bite. Lanka and the Western Ghats of South India, while the We performed a systematic review of the published lit- other two species are endemic to Sri Lanka alone [1].
    [Show full text]
  • Crocodylus Moreletii
    ANFIBIOS Y REPTILES: DIVERSIDAD E HISTORIA NATURAL VOLUMEN 03 NÚMERO 02 NOVIEMBRE 2020 ISSN: 2594-2158 Es un publicación de la CONSEJO DIRECTIVO 2019-2021 COMITÉ EDITORIAL Presidente Editor-en-Jefe Dr. Hibraim Adán Pérez Mendoza Dra. Leticia M. Ochoa Ochoa Universidad Nacional Autónoma de México Senior Editors Vicepresidente Dr. Marcio Martins (Artigos em português) Dr. Óscar A. Flores Villela Dr. Sean M. Rovito (English papers) Universidad Nacional Autónoma de México Editores asociados Secretario Dr. Uri Omar García Vázquez Dra. Ana Bertha Gatica Colima Dr. Armando H. Escobedo-Galván Universidad Autónoma de Ciudad Juárez Dr. Oscar A. Flores Villela Dra. Irene Goyenechea Mayer Goyenechea Tesorero Dr. Rafael Lara Rezéndiz Dra. Anny Peralta García Dr. Norberto Martínez Méndez Conservación de Fauna del Noroeste Dra. Nancy R. Mejía Domínguez Dr. Jorge E. Morales Mavil Vocal Norte Dr. Hibraim A. Pérez Mendoza Dr. Juan Miguel Borja Jiménez Dr. Jacobo Reyes Velasco Universidad Juárez del Estado de Durango Dr. César A. Ríos Muñoz Dr. Marco A. Suárez Atilano Vocal Centro Dra. Ireri Suazo Ortuño M. en C. Ricardo Figueroa Huitrón Dr. Julián Velasco Vinasco Universidad Nacional Autónoma de México M. en C. Marco Antonio López Luna Dr. Adrián García Rodríguez Vocal Sur M. en C. Marco Antonio López Luna Universidad Juárez Autónoma de Tabasco English style corrector PhD candidate Brett Butler Diseño editorial Lic. Andrea Vargas Fernández M. en A. Rafael de Villa Magallón http://herpetologia.fciencias.unam.mx/index.php/revista NOTAS CIENTÍFICAS SKIN TEXTURE CHANGE IN DIASPORUS HYLAEFORMIS (ANURA: ELEUTHERODACTYLIDAE) ..................... 95 CONTENIDO Juan G. Abarca-Alvarado NOTES OF DIET IN HIGHLAND SNAKES RHADINAEA EDITORIAL CALLIGASTER AND RHADINELLA GODMANI (SQUAMATA:DIPSADIDAE) FROM COSTA RICA .....
    [Show full text]
  • A New Species of Arboreal Pitviper from the Atlantic Versant of Northern Central America
    Rev. Biol. Trop., 48(4): 1001-1013, 2000 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu A new species of arboreal pitviper from the Atlantic versant of northern Central America Jonathan A. Campbell1 and Eric N. Smith1 1 Department of Biology, The University of Texas at Arlington, Arlington, TX 76010, USA. Fax 817-272-2406. e- mail (JAC) [email protected], (ENS) [email protected] Received 9-II-2000. Corrected 14-VI-2000. Accepted 16-VI-2000. Abstract: A new species of green, prehensile-tailed pitviper of the genus Bothriechis is described from the Atlantic slopes of eastern Guatemala and western Honduras. This species appears to be most closely related to B. bicolor of the Pacific versant of Chiapas (Mexico) and Guatemala. Several other species of Bothriechis occur on the Atlantic versant of northern Central America, including two montane species, B. aurifer and B. marchi but, with one possible exception, these are not known to be sympatric with the new species and occur in differ- ent mountain ranges. The widespread B. schlegelii occurs up to at least 900 m on the Sierra de Caral, where the lowest elevation recorded for the new species is 885 m. Key words: Reptilia, Squamata, Viperidae, Pitvipers, Bothriechis, New species, Izabal, Guatemala, Honduras. Species of the arboreal pitviper genus pitvipers that are usually mostly greenish in Bothriechis range from the highlands immedi- color, have the middle preocular and suprala- ately east of the Isthmus of Tehuantepec to cunal coalesced into a single scale, and have western Panama, with one species extending an exceptionally short tail spine that is usual- into northern South America (Crother et al.
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]