CONTROLLING Metisa Plana Walker (Lepidoptera: Psychidae) OUTBREAK USING Bacillus Thuringiensis at an OIL PALM PLANTATION in SLIM RIVER, PERAK, MALAYSIA

Total Page:16

File Type:pdf, Size:1020Kb

CONTROLLING Metisa Plana Walker (Lepidoptera: Psychidae) OUTBREAK USING Bacillus Thuringiensis at an OIL PALM PLANTATION in SLIM RIVER, PERAK, MALAYSIA JournalCONTROLLING of Oil Palm Metisa Research plana Walker Vol. (Lepidoptera: 29 (1) March Psychidae) 2017 OUTBREAK p. 47 – 54 USING Bacillus thuringiensis AT AN OIL PALM PLANTATION IN SLIM RIVER, PERAK, MALAYSIA DOI:JournalCONTROLLING https://doi.org/10.21894/jopr.2017.2901.05 of Oil Palm Metisa Research plana Walker Vol. (Lepidoptera: 29 (1) March Psychidae) 2017 OUTBREAK p. 47 – 54 USING Bacillus thuringiensis AT AN OIL PALM PLANTATION IN SLIM RIVER, PERAK, MALAYSIA CONTROLLING Metisa plana Walker (Lepidoptera: Psychidae) OUTBREAK USING Bacillus thuringiensis AT AN OIL PALM PLANTATION IN SLIM RIVER, PERAK, MALAYSIA NOORHAZWANI KAMARUDIN*; SITI RAMLAH AHMAD ALI*; MOHAMED MAZMIRA MOHD MASRI; NOORHAZWANIMOHD NAJIB KAMARUDIN*; AHMAD*; CHE SITI AHMAD RAMLAH HAFIZ AHMAD CHE MANAN*ALI*; MOHAMED and NORMAN MAZMIRA KAMARUDIN* MOHD MASRI; MOHD NAJIB AHMAD*; CHE AHMAD HAFIZ CHE MANAN* and NORMAN KAMARUDIN* ABSTRACT ABSTRACT Aerial spraying of Bacillus thuringiensis (Bt)-based biopesticides, Ecobac-1 (EC) was carried out at an Aerial spraying of Bacillus thuringiensis (Bt)-based biopesticides, Ecobac-1 (EC) was carried out at an oil palm plantation in Slim River, Perak, Malaysia to control the outbreak of bagworm, Metisa plana. oil palm plantation in Slim River, Perak, Malaysia to control the outbreak of bagworm, Metisa plana. Close monitoring of bagworm census, precise timing and follow-up aerial spraying of Ecobac-1 (EC) Close monitoring of bagworm census, precise timing and follow-up aerial spraying of Ecobac-1 (EC) were important strategies for controlling the multi-stage bagworm outbreak. The first aerial spraying of were important strategies for controlling the multi-stage bagworm outbreak. The first aerial spraying of Ecobac-1 (EC) which was conducted on 11 October 2013 had successfully reduced the first generation Ecobac-1 (EC) which was conducted on 11 October 2013 had successfully reduced the first generation larvae population from 187.1 larvae per frond (LPF) eight days prior to treatment to 77.6 LPF at 14 days larvae population from 187.1 larvae per frond (LPF) eight days prior to treatment to 77.6 LPF at 14 days after treatment (DAT), indicating 56.0% reduction in bagworm population. The second aerial spraying of after treatment (DAT), indicating 56.0% reduction in bagworm population. The second aerial spraying of Ecobac-1 (EC) undertaken on 19 December 2013, had reduced the second generation larvae population from Ecobac-1 (EC) undertaken on 19 December 2013, had reduced the second generation larvae population from 358.7 LPF a day prior to treatment to 105.2 LPF at 14 DAT, which resulted in 70.7% reduction in bagworm 358.7 LPF a day prior to treatment to 105.2 LPF at 14 DAT, which resulted in 70.7% reduction in bagworm population. Whilst the third aerial spraying done on 7 March 2014 had further reduced the population from population. Whilst the third aerial spraying done on 7 March 2014 had further reduced the population from 51.3 LPF three days prior to treatment to 17.2 LPF at 14 DAT, indicated a 66.4% reduction. The three 51.3 LPF three days prior to treatment to 17.2 LPF at 14 DAT, indicated a 66.4% reduction. The three consecutive aerial spraying of Ecobac-1 (EC) to control the three generations of M. plana at an oil palm consecutive aerial spraying of Ecobac-1 (EC) to control the three generations of M. plana at an oil palm plantation in Slim River, Perak successfully reduced the overall bagworm population by 90.8%. Therefore, plantation in Slim River, Perak successfully reduced the overall bagworm population by 90.8%. Therefore, it is recommended for the management to conduct a constant vigilance and census for successive control of it is recommended for the management to conduct a constant vigilance and census for successive control of bagworm population below the economic threshold level. bagworm population below the economic threshold level. Keywords: Bacillus thuringiensis, biopesticides, Ecobac-1 (EC), aerial spray, Metisa plana. Keywords: Bacillus thuringiensis, biopesticides, Ecobac-1 (EC), aerial spray, Metisa plana. Date received: 14 January 2016; Sent for revision: 20 January 2016; Received in final form: 19 August 2016; Accepted: 24 January 2017. Date received: 14 January 2016; Sent for revision: 20 January 2016; Received in final form: 19 August 2016; Accepted: 24 January 2017. INTRODUCTION infestation was an important issue that affected INTRODUCTION theinfestation yield of wasoil palm an importantdue to procrastinated issue that affectedcontrol, Bagworms are important leaf-eating pests of oil palm especiallythe yield of among oil palm smallholders due to procrastinated (Tey and Cheong, control, inBagworms Malaysia. are Bagworm important infestations leaf-eating pests and ofoutbreaks oil palm 2013).especially According among to smallholders a previous study (Tey in and 1929, Cheong, Metisa havein Malaysia. occurred Bagworm in Malaysia infestations for over and five outbreaks decades plana2013). Accordingis ranked toas a previousthe first studymost ineconomically 1929, Metisa (Cheonghave occurred and Tey, in 2012). Malaysia This remainsfor over to fivebe a problemdecades significantplana is ranked insect pestas theof oil first palm most in Malaysia economically (Basri despite(Cheong the and fact Tey, that 2012). effective This remains control to measures be a problem are etsignificant al., 1988). insect A more pest ofrecent oil palm survey in Malaysia conducted (Basri by available.despite the Bagworm fact that effectiveinfestations control can measurescause about are Normanet al., 1988). and ABasri more (2007) recent indicated survey conductedthat M. plana by 33%-40%available. yield Bagworm losses (Basri,infestations 1993). Incan 2013, cause bagworm about wasNorman most andwidely Basri distributed (2007) indicated in oil palm that plantations M. plana 33%-40% yield losses (Basri, 1993). In 2013, bagworm inwas Peninsular most widely Malaysia distributed followed in oil by palm Pteroma plantations pendula. Basedin Peninsular on analysis Malaysia of historical followed records by Pteroma of bagworm pendula. * Malaysian Palm Oil Board, 6 Persiaran Institusi, infestationBased on analysis done by of Ho historical et al. (2011), records over of bagworm63 955 ha * MalaysianBandar Baru Palm Bangi, Oil Board,43600 6Kajang, Persiaran Institusi, infestation done by Ho et al. (2011), over 63 955 ha BandarSelangor, Baru Malaysia. Bangi, 43600 Kajang, of oil palm in 69 estates in Peninsular Malaysia Selangor,E-mail: [email protected] Malaysia. showedof oil palm M. planain 69 and estates P. pendula in Peninsular to be the Malaysia primary E-mail: [email protected] showed M. plana and P. pendula to be the primary 47 47 JOURNAL OF OIL PALM RESEARCH 29 (1) (MARCH 2017) pests (Ho et al., 2011). Bagworm has been declared MATERIALS AND METHODS as a dangerous pest on 15 of November 2013 under the Malaysia Act 167, Plant Quarantine Act 1976. Mass Propagation of Bacillus thuringiensis (Bt) Under this Act, planters who failed to control the bagworm infestation after receiving the notice will B. thuringiensis was mass produced using liquid be fined not more than RM 10 000 or to be jailed for state fermentation and laboratory prepared medium two years. in 5 to 500 litres bioreactors (Satrorius Stedim, Agrichemicals consumption in Malaysia was Germany) for 48 hr, 30°C at MPOB Microbial reported to increase from RM 328 million in year 2005 Technology and Engineering Centre (MICROTEC) to RM 563 million in 2012 (Malaysian Agricultural (Najib et al., 2012). Mass production of microbial Digest, 2013). The sale of insecticides in Malaysia insecticide based on local isolates known as MPOB recorded a significant 28% increase since 2008 Bt1 for controlling bagworm has been patented (Malaysian Agricultural Digest, 2013). Chemical (Patent No. PI2011000307) (Ramlah et al., 2011). control has become the major control mechanism in Ecobac-1 (EC) is an emulsified product derived from managing bagworm outbreaks in most plantations an indigenous strain of B. thuringiensis (MPOB Bt1) as compared to smallholdings (Hasber, 2010). Study (Ramlah and Basri, 1997). The active ingredients of conducted by Salim et al. (2015) showed the fastest Ecobac-1 (EC) comprised of spores and δ-endotoxins acting of chemical insecticide can be seen 30 days and standardised to 1600 IU mg-1. after a single application of chemical insecticides where the larval population dropped below Aerial Spray the economic threshold level (ETL). However, over reliance on chemical insecticides to control Aerial spray was conducted at timely intervals agricultural pests has often led to the development against the susceptible first to fourth larval instars of of other more persistent problems such as resistance M. plana at an oil palm plantation in Slim River, Perak of pests to treatment, abundance of harmful chemical in 2013-2014. The aerial spray is scheduled based on residues in the environment and the disruption of the generations of the bagworm. The average life beneficial insects populations. Biological control cycle for M. plana from eggs to adult is 103.5 days is a method of controlling pests in agriculture that (Chua et al., 2011). The first (G1), second (G2) and relies on natural agents rather than chemicals. third (G3) generations of the bagworm were aerial Biopesticides are natural biological agents used to sprayed on 11 October 2013, 19 December 2013 and control pests, derived from microbes and plants. 7 March 2014, respectively. The bagworm infested They are recommended for use in agriculture by area was GPS-mapped and aerial sprayed with 40 farmers because they are target specific and poses litres Ecobac-1 (EC) diluted in an aircraft tank using little or no hazard to mankind and the environment 1000 litres of water. Spraying was conducted by an (Sethi and Gupta, 2013). aerial spraying services company using an AgCat Integrated Pest Management (IPM) is the best aircraft. strategy for controlling bagworm outbreaks in oil palm cultivated areas (Ramlah et al., 2013; 2007a,b; Bagworms Census Mohd Mazmira et al., 2010; Najib et al., 2013).
Recommended publications
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • SEBAGAI PEMANGSA LARVA KUMBANG TANDUK Oryctes Rhinoceros Linn
    BIOEKOLOGI Myopopone castanea Smith (HYMENOPTERA: FORMICIDAE) SEBAGAI PEMANGSA LARVA KUMBANG TANDUK Oryctes rhinoceros Linn. (COLEOPTERA: SCARABAEIDAE) DISERTASI OLEH: WIDIHASTUTY NIM : 148104004 PROGRAM STUDI DOKTOR ILMU PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA MEDAN 2020 Universitas Sumatera Utara BIOEKOLOGI Myopopone castanea Smith (HYMENOPTERA: FORMICIDAE) SEBAGAI PEMANGSA LARVA KUMBANG TANDUK Oryctes rhinoceros Linn. (COLEOPTERA: SCARABAEIDAE) DISERTASI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Doktor dalam Program Doktor Ilmu Pertanian pada Program Pascasarjana Fakultas Pertanian Universitas Sumatera Utara OLEH: WIDIHASTUTY NIM : 148104004 Program Doktor (S3) Ilmu Pertanian PROGRAM STUDI DOKTOR ILMU PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA MEDAN 2020 Universitas Sumatera Utara LEMBAR PENGESAHAN DISERTASI Judul Disertasi Bioekologi Myopopone castanea Smith (Hymenoptera: Formicidae) Sebagai Pemangsa Larva Kumbang Tanduk Orycles rhinoceros Linn. (Coleoptera: Scarabaeidae) Nama Mahasiswa Widihastuty NIM 148104m4 Program Studi Doktor (S3) Ilmu Pertanian Menyetujui Komisi Pembimbing Co.Promotor Co-Promotor Tanggal Lulus; 13 Januari2020 Universitas Sumatera Utara Diuji pada Ujian Disertasi Terbuka (Promosi Doktor) Tanggal: 03 September 2020 PANITIA PENGUJI DISERTASI Pemimpin Sidang: Prof. Dr. Runtung Sitepu, SH, M.Hum (Rektor USU) Ketua : Prof. Dr. Dra. Maryani Cyccu Tobing, M.S. Universitas Sumatera Utara Anggota : Dr. Ir. Marheni, M.P. Universitas Sumatera Utara Prof. Dr. Ir. Retna Astuti Kuswardani,
    [Show full text]
  • Resilience of Ecological Functions to Drought in an Oil Palm Agroecosystem
    Environmental Research Communications LETTER • OPEN ACCESS Resilience of ecological functions to drought in an oil palm agroecosystem To cite this article: Amy E Eycott et al 2019 Environ. Res. Commun. 1 101004 View the article online for updates and enhancements. This content was downloaded from IP address 197.248.168.174 on 25/10/2019 at 19:53 Environ. Res. Commun. 1 (2019) 101004 https://doi.org/10.1088/2515-7620/ab48da LETTER Resilience of ecological functions to drought in an oil palm OPEN ACCESS agroecosystem RECEIVED 11 July 2019 Amy E Eycott1,2,5, Andreas Dwi Advento3,5, Helen S Waters1, Sarah H Luke1, Anak Agung Ketut Aryawan3, REVISED Amelia SC Hood1, Mohammad Naim3, Sudharto Ps3, Pujianto3, Dedi Purnomo3, T Dzulfikar S Rambe3, 27 August 2019 Soeprapto3, Suhardi3, Ribka Sionita Tarigan3, Resti Wahyuningsih3, Rudi Harto Widodo3, ACCEPTED FOR PUBLICATION 3 4 1 1,6 27 September 2019 Jean-Pierre Caliman , Jake L Snaddon , William A Foster and Edgar C Turner 1 PUBLISHED Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom 15 October 2019 2 Faculty of Biosciences and Aquaculture, Nord University Steinkjer, Kongens gate 42, 7713 Steinkjer, Norway 3 Sinar Mas Agro Resources Technology Research Institute (SMARTRI), Libo Estate, Kandis, Pekanbaru, Riau, Indonesia 4 University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom Original content from this 5 work may be used under These authors contributed equally to this manuscript. the terms of the Creative 6 Author to whom any correspondence should be addressed. Commons Attribution 3.0 licence. E-mail: [email protected] Any further distribution of Keywords: oil palm, El Nino, decomposition, seed removal, predation, herbivory, drought this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
    [Show full text]
  • The Oil Palm Grower's Handbook
    Human Planting Soil Material Timing Water Other Tools Plants Light 2 Human Planting Soil Material Timing Water Other Tools Plants Light 3 4 Introduction What drives life is a little electric current, kept up by the sunshine. Albert SZENT-GYÖRGYI, Nobel prize for medicine 1937 5 Over its lifetime, oil palm is one of the crops that generates most current" per unit area, from photosynthesis to oil: 5 to 10 times more oil per hectare than any other oil crop. This energy, in oil form, offers high nutritional value (vitamins, antioxidants, oleic fraction) and technological qualities (the naturally solid fraction is of interest to the agrifood industry). The photosynthetic efficiency of the oil palm cannot be achieved without humans, who are ten times more numerous per unit area than for the production of soybean oil: an “oil palm” project is therefore first and foremost a human project, a job generating project, a project that is demanding in both skills and work quality, a project combining the sun, land and people. These people are actively committed to producing seeds, managing prenurseries, nurseries and plantations, ensuring their upkeep and harvesting them... Their work is well rewarded, even on difficult soils. Water is the “switch”, and even the combustion agent, since every mm of rainfall gained over the water deficit generates much more than a linear response. Solar radiation feeds flow intensity, temperature modulates it. Production is organized in a given space that obviously needs to be preserved, or even enhanced – even more over the long term (oil palm works well for those who persevere best, and rewards them most generously).
    [Show full text]
  • RSPO MANUAL on BEST MANAGEMENT PRACTICES (Bmps) for EXISTING OIL PALM CULTIVATION on PEAT
    RSPO MANUAL ON BEST MANAGEMENT PRACTICES (BMPs) FOR EXISTING OIL PALM CULTIVATION ON PEAT OCTOBER 2018 DRAFT DOCUMENT FOR REVIEW ONLY NOT FOR QUOTATION TABLE OF CONTENT: 1.0 INTRODUCTION 1 1.1 INITIATION OF RSPO MANUAL FOR BEST MANAGEMENT PRACTICES 1 1.2 PURPOSE OF THE BMP MANUAL AND BENEFITS OF ADOPTION 1 1.3 BACKGROUND OF OIL PALM CULTIVATION ON PEATLAND 2 1.4 REGULATIONS & GUIDELINES RELATED TO OIL PALM CULTIVATION ON PEATLAND 3 2.0 NATURE AND CHARACTERISTICS OF TROPICAL PEAT AND CONSTRAINTS AND IMPACT OF 7 OIL PALM CULTIVATION 2.1 DEFINITION, FORMATION, DISTRIBUTION AND CLASSIFICATION OF PEAT 7 2.2 PEAT DEPTH, HORIZONS AND TOPOGRAPHY 9 2.3 PHYSIOCHEMICAL PROPERTIES AND FERTILITY OF DRAINED PEAT 10 2.4 THE IMPACT OF DRAINING PEAT FOR CULTIVATION 11 2.5 CONSTRAINTS OF OIL PALM CULTIVATION ON PEATLAND 16 3.0 WATER MANAGEMENT 18 3.1 WATER MANAGEMENT SYSTEM 20 3.2 MAINTAINING WATER LEVELS 23 3.3 CONTOUR-BASED WATER MANAGEMENT 24 3.4 MAINTENANCE OF THE WATER MANAGEMENT SYSTEM 25 3.5 UTILISATION OF WATER MANAGEMENT MAPS 26 3.6 WATER ZONING 26 3.7 DRAINABILITY ASSESSEMENT 31 3.8 REHABILITATION AND PALUDICULTURE 33 4.0 MANAGEMENT OF NUTRIENTS, PESTS AND DISEASES 35 4.1 FERTILIZER AND NUTRIENT MANAGEMENT 35 4.1.1 SYMPTOMS AND REMEDIES (MACRO-NUTRIENTS) 36 4.1.2 SYMPTOMS AND REMEDIES (MICRO-NUTRIENTS) 38 4.1.3 MANAGEMENT ASPECTS TO REDUCE ENVIRONMENTAL NEGATIVE IMPACTS ON 40 OIL PALM FERTILISATION 4.2 INTEGRATED PEST AND DISEASE MANAGEMENT 43 4.2.1 IDENTIFICATION OF MAJOR PEST AND DISEASES IN PEATLAND 44 4.2.2 BIOLOGICAL AND CHEMICAL CONTROL
    [Show full text]
  • RM New Entries 2016 Mar.Pdf
    International Plant Nutrition Institute Regional Office • Southeast Asia Date: March 31, 2016 Page: 1 of 88 New Entries to IPNI Library as References Roberts T. L. 2008. Improving Nutrient Use Efficiency. Turkish Journal of Agriculture and Forestry, 32:177-182. Reference ID: 21904 Notes: #21904e Abstract: Public interest and awareness of the need for improving nutrient use efficiency is great, but nutrient use efficiency is easily misunderstood. Four indices of nutrient use efficiency are reviewed and an example of different applications of the terminology show that the same data set might be used to calculate a fertilizer N efficiency of 21% or 100%. Fertilizer N recovery efficiencies from researcher managed experiments for major grain crops range from 46% to 65%, compared to on-farm N recovery efficiencies of 20% to 40%. Fertilizer use efficiency can be optimized by fertilizer best management practices that apply nutrients at the right rate, time, and place. The highest nutrient use efficiency always occurs at the lower parts of the yield response curve, where fertilizer inputs are lowest, but effectiveness of fertilizers in increasing crop yields and optimizing farmer profitability should not be sacrificed for the sake of efficiency alone. There must be a balance between optimal nutrient use efficiency and optimal crop productivity. Souza L. F. D.and D. H. Reinhardt. 2015. Pineapple. Pages 179-201 IPO. Reference ID: 21905 Notes: #21905e Abstract: Pineapple is one of the tropical fruits in greatest demand on the international market, with world production in 2004 of 16.1 million mt. Of this total, Asia produces 51% (8.2 million mt), with Thailand (12%) and the Philippines (11%) the two most productive countries.
    [Show full text]
  • Jonathan Pereira
    UNIVERSIDADE FEDERAL DO PARANÁ JONATHAN PEREIRA EFICÁCIA DE Bacillus thuringiensis NO CONTROLE DE Grapholita molesta (BUSCK, 1916) E Bonagota salubricola (MEYRICK, 1937) (LEPIDOPTERA: TORTRICIDAE) E IDENTIFICAÇÃO DE BIÓTIPOS POR MEIO DE BIOENSAIOS E INFRAVERMELHO PRÓXIMO CURITIBA 2012 JONATHAN PEREIRA EFICÁCIA DE Bacillus thuringiensis NO CONTROLE DE Grapholita molesta (BUSCK, 1916) E Bonagota Salubricola (MEYRICK, 1937) (LEPIDOPTERA: TORTRICIDAE) E IDENTIFICAÇÃO DE BIÓTIPOS POR MEIO BIOENSAIOS E INFRAVERMELHO PRÓXIMO Dissertação apresentada ao curso de Pós- Graduação em Ciências Biológicas, Área de Concentração Entomologia, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, como parte das exigências para a obtenção do título de Mestre em Ciências Biológicas. Orientador: Prof. Dr. Lino Bittencout Monteiro Co-orientador: Dr. Daniel Ricardo Sosa-Gomez Co-orientador: Dr. Daniel Ricardo Sosa-gomez CURITIBA 2012 Pereira, Jonathan EFICÁCIA DE Bacillus thuringiensis NO CONTROLE DE Grapholita molesta (BUSCK, 1916) E Bonagota salubricola (MEYRICK, 1937) (LEPIDOPTERA: TORTRICIDAE) E IDENTIFICAÇÃO DE BIÓTIPOS POR MEIO BIOENSAIOS E INFRAVERMELHO PRÓXIMO /Jonathan Pereira. – Curitiba, 2012. 61f. Orientador: Lino Bittencourt Monteiro Dissertação (Mestrado em Entomologia) – Setor de Ciências Biológicas, Universidade Federal do Paraná. Aos meus pais Mario Pereira e Hildeney Terezinha Jaskiu, Aos meus irmãos, E minha querida Ana, Por sempre me incentivarem e estarem ao meu lado em quase todos os momentos, Dedico. AGRADECIMENTOS Á Universidade Federal do Paraná e ao programa de Pós-Graduação em Ciências Biológicas/Entomologia pela oportunidade de realização do Mestrado. Á Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão da bolsa de estudos. Ao meu orientador Dr. Lino Bittencourt Monteiro pela amizade e confiança depositada em mim.
    [Show full text]
  • Local and Landscape Management of Biological Pest Control in Oil Palm Plantations
    Local and Landscape Management of Biological Pest Control in Oil Palm Plantations Dissertation For the award of the degree “Doctor of Philosophy” of the Georg-August-Universität Göttingen, Faculty of Crop Sciences within the International Ph.D. Program for Agricultural Sciences (IPAG) Submitted by Fuad Nurdiansyah, M. PlaHBio Born in Jambi, Indonesia, on 12 December 1981 Göttingen, March 2016 1. Supervisor: Prof. Dr. Teja Tscharntke 2. Supervisor: Prof. Dr. Kerstin Wiegand 2. Co-Supervisor: Dr. Yann Clough Date of Dissertation Submission: 10.03.2016 Date of Oral Examination / Defense: 03.05. 2016 TABLE OF CONTENTS Table of Contents ...................................................................................................... i Part 1. General Introduction ................................................................................ 1 Impacts of Oil Palm Expansion .....................................................................................2 Biodiversity Losses affect Ecosystem Functions ..........................................................3 Key Obstacles in Biocontrol .........................................................................................4 Study Area ....................................................................................................................7 Chapter Outline .............................................................................................................8 List of References .......................................................................................................11
    [Show full text]
  • En Esta Edición
    OFICINA DE COMUN/CAClONrn Publicación cofinanciada por el Fondo de Fomento Palmero • Venezuela restringió importaciones de aceites y grasas provenientes de la CAN Entre enero y junio Colombia exportó a Venezuela cerca de 42.000 toneladas de aceites y grasas crudos y refinados. enezue1a impuso una salvaguardia para la importación de aceites y grasas crudos y refinados procedentes de los países de la ~ Comunidad Andina. En el caso de Colombia y en el de Perú estableció un arancel del 29% y en el de Ecuador y Bolivia determinó la solicitud de licencias previas de importación. La salvaguardia cobija los aceites crudos y refinados de soya, palma, girasol y cártamo, las mantecas, las mezclas de aceites vegetales y las margarinas con excepción de la margarina líquida, provenientes de estos países. CONTINÚA PAG 2 .... La Palma de Aceite Gobierno nombrará coordinador en Malasia desde a nivel presidencial para desarrollo de la palma de aceite. la óptica colombiana B PresldenU! de la Repill!IIc:a. Andres PaWana Arango, En esta edición El Palmicultor ha invitado a Alvaro decidió nombrm un coonIi!¡ador a nivel p<esic!enl:laI para Silva Carreño, quien hizo parte de la delegación el desarrollo Integral de la AgrolndUSlrle de la Palma de colombiana que estuvo en Malasia con ocasión del Aceite en Colombia, Pipoc 2001. En su entrevista realizó una sintesis Este nuevo cargo sera olWpodo por el doelol Arturo de sus apreciaciones sobre la situación general del Infanto Vlllarreal, actual EmI>l\Jador de Colombia en país asiático y específicamente de la Agroindustria Malasl ... Illtesta mane", el Gobierno da respuesta 8 de la Palma de Aceite, también habló sobre los una pe.tlclÓn que desde 1Iac.e cuatro años le ~enía desarrollos futuros y estableció un interesante formulando el sector palm[ooHor a traV" de Fedepalma.
    [Show full text]
  • INFESTATIONS by the BAGWORMS Metisa Plana and Pteroma
    JOURNALJournal of OF Oil OIL Palm PALM Research RESEARCH Vol. 23 ( A23UGUST August 2011) 2011 p. 1040-1050 INFESTATIONS BY THE BAGWORMS Metisa plana AND Pteroma pendula FOR THE PERIOD 1986-2000 IN MAJOR OIL PALM ESTATES MANAGED BY GOLDEN HOPE PLANTATION BERHAD IN PENINSULAR MALAYSIA HO CHENG TUCK*; YUSOF IBRAHIM* and KHOO KHAY CHONG* ABSTRACT Metisa plana Walker and Pteroma pendula Joannis are important pests of the oil palm, Elaeis guineensis Jacquin, which is the primary agricultural crop in Malaysia. Although there is a history of integrated management of the bagworms, information gaps exist with regard to their incidence, biology, dispersion and population dynamics. Such new information is needed to improve the current integrated management of these pests. Analysis of historical records of bagworm infestations over 63 955 ha of oil palm in 69 estates in Peninsular Malaysia showed M. plana and P. pendula to be the primary pests. Infestations were of single or mixed species, and ranged from nil to 7811 ha yr-1. Cumulative infestations were 18 297 ha, 4904 ha and 14 607 ha for single species of P. pendula and M. plana, and for mixed species of P. pendula and M. plana, respectively. This shows P. pendula to be the predominant species, and is attributed to its ability to survive very wet weather (>200 mm rain per month) and its propensity to balloon compared to M. plana, which is predisposed to wash-off by rain. Keywords: bagworms, historical data, incidence of infestation, outbreaks, oil palm. Date received: 18 March 2010; Sent for revision: 18 May 2010; Received in final form: 15 November 2010; Accepted: 19 April 2011.
    [Show full text]
  • Expert Consultation on Coconut Beetle Outbreak in Apppc Member Countries
    RAP PUBLICATION 2004/29 Report of the EXPERT CONSULTATION ON COCONUT BEETLE OUTBREAK IN APPPC MEMBER COUNTRIES 26-27 October 2004, Bangkok, Thailand RAP PUBLICATION 2004/29 Report of the expert consultation on coconut beetle outbreak in APPPC member countries 26-27 October 2004, Bangkok, Thailand FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, 2004 The designation and presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers and boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for sale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Plant Protection Officer, FAO Regional Office for Asia and the Pacific, Maliwan Mansion, 39 Phra Atit Road, Bangkok 10200, Thailand or by e-mail to: [email protected] © FAO 2004 For copies write to: Piao Yongfan FAO Regional Office for Asia and the Pacific Maliwan Mansion 39 Phra Atit Road Bangkok 10200 THAILAND Tel: (+66) 2 697 4000 Fax: (+66) 2 697 4445 E-mail: [email protected] ii Contents Page Report of the expert consultation on coconut beetle outbreak in APPPC member countries Executive summary................................................................................................
    [Show full text]
  • Instruções Para Colaboradores MG.Biota
    v. 5, n.5 – Dez. 2012 / Jan. 2013 ISSN 1983-3687 Distribuição Gratuita INSTITUTO ESTADUAL DE FLORESTAS - MG DIRETORIA DE PESQUISA E PROTEÇÃO À BIODIVERSIDADE GERÊNCIA DE PROJETOS E PESQUISAS OO bichobicho dodo cestocesto EspéciesEspécies arbóreasarbóreas emem praçaspraças públicaspúblicas dede JoãoJoão MonlevadeMonlevade InfestaçãoInfestação dede AethalionAethalion reticulatumreticulatum EXPEDIENTE MG.BIOTA Instruções para colaboradores MG.Biota Boletim de divulgação científica da Diretoria de Pesquisa e Proteção à Biodiversidade/IEF que publica Aos autores, bimestralmente trabalhos originais de contribuição científica para divulgar o conhecimento da biota mineira e áreas afins. O Boletim tem como política editorial manter a conduta ética em relação a seus Os autores deverão entregar os seus artigos diretamente à Gerência de Projetos e Pesquisas (GPROP), colaboradores. acompanhada de uma declaração de seu autor ou responsável, nos seguintes termos: Transfiro para o Instituto Estadual de Florestas por meio da Diretoria de Pesquisa e Proteção à Biodiversidade, Equipe PUBLICAÇÃO TÉCNICA INFORMATIVA MG.BIOTA todos os direitos sobre a contribuição (citar Título), caso seja aceita para publicação no MG.Biota, publicado Denize Fontes Nogueira pela Gerência de Projetos e Pesquisas. Declaro que esta contribuição é original e de minha responsabilidade, Janaína A. Batista Aguiar Edição: Bimestral que não está sendo submetida a outro editor para publicação e que os direitos autorais sobre ela não foram Maria Margaret de Moura Caldeira (Coordenação) Tiragem: 5.000 exemplares anteriormente cedidos à outra pessoa física ou jurídica. Mariana da Silva Tomás Barbosa Diagramação: Raquel M. Mariani / Imprensa Oficial Miriam Silva de Souza Diniz (Estagiária) A declaração deverá conter: Local e data, nome completo, CPF, documento de identidade e endereço completo.
    [Show full text]