The Developmental Transcriptome of Bagworm, Metisa Plana (Lepidoptera: Psychidae) and Insights Into Chitin Biosynthesis Genes

Total Page:16

File Type:pdf, Size:1020Kb

The Developmental Transcriptome of Bagworm, Metisa Plana (Lepidoptera: Psychidae) and Insights Into Chitin Biosynthesis Genes G C A T T A C G G C A T genes Article The Developmental Transcriptome of Bagworm, Metisa plana (Lepidoptera: Psychidae) and Insights into Chitin Biosynthesis Genes Nur Lina Rahmat 1, Anis Nadyra Zifruddin 1, Cik Mohd Rizuan Zainal Abidin 2, Nor-Azlan Nor Muhammad 1 and Maizom Hassan 1,* 1 Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 UKM, Selangor, Malaysia; [email protected] (N.L.R.); [email protected] (A.N.Z.); [email protected] (N.-A.N.M.) 2 Pest Management, FGV R&D Sdn. Bhd., Tun Razak 26400 PPP, Jengka, Pahang, Malaysia; [email protected] * Correspondence: [email protected] Abstract: Bagworm, Metisa plana (Lepidoptera: Psychidae) is a ubiquitous insect pest in the oil palm plantations. M. plana infestation could reduce the oil palm productivity by 40% if it remains untreated over two consecutive years. Despite the urgency to tackle this issue, the genome and transcriptome of M. plana have not yet been fully elucidated. Here, we report a comprehensive transcriptome dataset from four different developmental stages of M. plana, comprising of egg, third instar larva, pupa and female adult. The de novo transcriptome assembly of the raw data had produced a total of 193,686 transcripts, which were then annotated against UniProt, NCBI non-redundant (NR) database, Gene Ontology, Cluster of Orthologous Group, and Kyoto Encyclopedia of Genes and Genomes databases. From this, 46,534 transcripts were annotated and mapped to 146 known metabolic or signalling KEGG pathways. The paper further identified 41 differentially expressed transcripts encoding seven genes in the chitin biosynthesis pathways, and their expressions across each developmental stage were further analysed. The genetic diversity of M. plana was profiled whereby there were Citation: Rahmat, N.L.; Zifruddin, A.N.; Zainal Abidin, C.M.R.; Nor Muham- 21,516 microsatellite sequences and 379,895 SNPs loci found in the transcriptome of M. plana. These mad, N.; Hassan, M. The Develop- datasets add valuable transcriptomic resources for further study of developmental gene expression, mental Transcriptome of Bagworm, transcriptional regulations and functional gene activities involved in the development of M. plana. Metisa plana (Lepidoptera: Psychidae) Identification of regulatory genes in the chitin biosynthesis pathway may also help in developing an and Insights into Chitin Biosynthesis RNAi-mediated pest control management by targeting certain pathways, and functional studies of Genes. Genes 2021, 12, 7. https:// the genes in M. plana. dx.doi.org/doi:10.3390/genes12010007 Keywords: Metisa plana; transcriptome analysis; high throughput sequencing; expression profiling; Received: 18 November 2020 metamorphosis; bagworm; chitin Accepted: 12 December 2020 Published: 23 December 2020 Publisher’s Note: MDPI stays neu- 1. Introduction tral with regard to jurisdictional claims in published maps and institutional Oil palm is currently Malaysia’s most dominant oil crop with 4,186,914 hectares of oil affiliations. palm plantations, occupying up to 71.6% of the agricultural land by 2018 [1]. In 2015, the world market value of oil palm reached USD 65.73 billion, and it is predicted to reach USD 92.84 billion in 2021 [2]. M. plana (Lepidoptera: Psychidae), bagworm is one of the most destructive insect pest defoliators in the oil palm industry, specifically in Southeast Asia. Copyright: © 2020 by the authors. Li- M. plana is a holometabolous insect that completes its development from 80 to 113 days, censee MDPI, Basel, Switzerland. This depending on the climate of the time it grows. M. plana development starts from the article is an open access article distributed laying of eggs (Figure1A) from a mated female, and hatching into neonates, a term used to under the terms and conditions of the describe the newly hatched larva. The neonates will feed on oil palm leaves within 1–2 h of Creative Commons Attribution (CC BY) emergence to construct a small bag at the posterior end of their body. The case will enlarge license (https://creativecommons.org/ progressively with the amount of the plant materials it feeds on and the body size of the licenses/by/4.0/). Genes 2021, 12, 7. https://dx.doi.org/10.3390/genes12010007 https://www.mdpi.com/journal/genes Genes 2020, 11, x FOR PEER REVIEW 2 of 22 Genes 2021, 12, 7 2 of 20 neonates, a term used to describe the newly hatched larva. The neonates will feed on oil palm leaves within 1–2 h of emergence to construct a small bag at the posterior end of their body. The case will enlarge progressively larva.with the Male amount and female of the larva plant will materials take up to it fivefeeds and on seven and instarthe body stages, size respectively, of the before larva. Male and femalemetamorphosing larva will take into uppupa, to five with and the seven third instar larvastages, being respectively, the most activebefore leaf feeder metamorphosing into (Figurepupa, with1B). Thethe third pupa instar in the larv casinga being is mostly the most found active hanging leaf atfeeder the back (Figure of oil 1B). palm leaves The pupa in the casing(Figure is mostly1C). It found has remarkable hanging at differences the back betweenof oil palm the leaves male and (Figure female’s 1C). morphology, It has and remarkable differencessexual between segregation the male of and the female’s pupation morphology, site. The male and will sexual emerge segregation out of the of casing the as a fully pupation site. The maledeveloped will emerge moth out while of the the casing female as stays a fully inside developed the casing moth and resembleswhile the afemale maggot with no stays inside the casinglegs and and resembles wings (Figurea maggo1D)t with [3]. no legs and wings (Figure 1D) [3]. Figure 1.FigureDevelopmental 1. Developmental stages of stagesM. plana of .(M.A plana) Cluster. (A) ofCluster creamy-coloured of creamy-coloured eggs on eggs the left on withthe left its with casing its on the right. (B) Thirdcasing instar on larva. the (right.C) Pupa. (B) (ThirdD) adult instar on thelarva. left (C and) Pupa. male ( adultD) adult on theon the right. left (E and) Leaves male ofadult oil palm on the tree right. upon bagworm outbreak(E on) Leaves an oil palm of oil plantation palm tree inupon FELDA bagworm Besout outbreak 02, Perak, on Malaysia an oil palm (03◦ 46plantation0 N 100◦17 in0 FELDAE). Besout 02, Perak, Malaysia (03°46′ N 100°17′ E). The success of M. plana development and metamorphosis depends on several impor- The success of M.tant plana processes, development including and the regulationmetamorphosis of insect depends growth hormoneson several (ecdysone important and juvenile processes, including thehormone) regulation and of chitin insect biosynthesis, growth hormones modification, (ecdysone degradation, and juvenile and hormone) recycling. and Chitin forms a chitin biosynthesis, modification,significant portion degradation, of the integumentand recycling. layer Chitin of the forms exoskeleton a significant and peritrophicportion of matrix of the integument layer theof the alimentary exoskeleton canals. and Chitinperitrophic is biosynthesised matrix of the from alimentary the precursor, canals. trehalose,Chitin is and with biosynthesised from continuousthe precursor, enzymatic trehalose, reaction and with of eight continuous important enzymatic enzymes toreaction produce of the eight final polymer chain of UDP-N-acetyl-glucosamine collectively called chitin (Supplementary Figure S1). important enzymes to produce the final polymer chain of UDP-N-acetyl-glucosamine collectively During moulting, the chitin contents in the cuticle fluctuate with the simultaneous process called chitin (Supplementary Figure S1). During moulting, the chitin contents in the cuticle fluctuate of chitin biosynthesis and degradation to replace the old cuticle with the new one, espe- with the simultaneous process of chitin biosynthesis and degradation to replace the old cuticle with cially during larval moult and pupation [4]. Chitin is also required for several important the new one, especiallyprocesses during duringlarval moultingmoult and such pupation as in the [4]. attachment Chitin is also of cuticle required to epidermal for several cells and the important processes duringwing disk moulting formation such during as in th larvae attachment to pupa metamorphosis of cuticle to epidermal [5,6]. Chitin cells metabolic and the processes wing disk formation wereduring used larv asa insectto pupa growth metamorphosis regulators (IGRs) [5,6]. Chitin in the developmentmetabolic processes of biorational were pesticides used as insect growthas regulators chitin structure (IGRs) is uniquein the todevelopment arthropods. Sinceof biorational 1981, targeting pesticides chitin foras thechitin development structure is unique to ofarthropods. IGRs has beenSince conducted 1981, targeting [7], and chitin still for largely the development studied by many of IGRs researchers has been in targeting conducted [7], and stilldifferent largely stages studied of insectby many development researchers [8 –in12 targeting]. different stages of insect development [8–12]. The outbreak of M. plana can cause 50% of leaves defoliation and yield loss of up to The outbreak of M.40–47% plana can over cause two 50% consecutive of leaves years defoliation of serious and yield infestation loss of (Figure up to 40-47%1E) [ 13 over]. The current two consecutive yearspest of serious management infestation control (Figure of the 1E) insect [13]. inThe oil current palm plantations
Recommended publications
  • Estimation of Rice Yield Losses Due to the African Rice Gall Midge, Orseolia Oryzivora Harris and Gagne
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 1996 Estimation of Rice Yield Losses Due to the African Rice Gall Midge, Orseolia oryzivora Harris and Gagne Souleymane Nacro E. A. Heinrichs D. Dakouo Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Agronomy and Crop Sciences Commons, and the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in International Journal of Pest Management 42:4 (1996), pp. 331–334; doi: 10.1080/09670879609372016 Copyright © 1996 Taylor & Francis Ltd. Used by permission. Published online November 13, 2008. Estimation of Rice Yield Losses Due to the African Rice Gall Midge, Orseolia oryzivora Harris and Gagne Souleymane Nacro,1 E. A. Heinrichs,2 and D. Dakouo2 1. Institut d’Etudes et de Recherches Agricoles (INERA), Station de Farako-Ba, BP 910, Bobo Dioualasso, Burkina Faso 2. West Africa Rice Development Association (WARDA), 01 BP 2551, Bouake, Côte d‘Ivoire Abstract The African rice gall midge, Orseolia oryzivora Harris and Gagne (Diptera: Cecidomyiidae), is an im- portant pest of rice, Oryza sativa, in Burkina Faso as well as other countries in West and East Africa. In spite of its importance, little is known regarding the relationship between gall midge populations and grain yield losses. To determine yield losses, the gall midge was reared in cages, and adult midges were placed on caged plants of the rice variety ITA 123 at different population levels.
    [Show full text]
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • Bitki Koruma Bülteni / Plant Protection Bulletin, 2020, 60 (3) : 39-45
    Bitki Koruma Bülteni / Plant Protection Bulletin, 2020, 60 (3) : 39-45 Bitki Koruma Bülteni / Plant Protection Bulletin http://dergipark.gov.tr/bitkorb Original article A pest that could be posing a threat to mulberry production of Turkey: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae) Türkiye dut üretimini tehdit edebilecek bir zararlı: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae) Gürsel ÇETİNa* Pınar HEPHIZLI GÖKSELa Mustafa ÖZDEMİRb Yılmaz BOZa a*Directorate of Ataturk Central Horticultural Research Institute, Süleyman Bey Mah., Yalı Cad., 77100 Yalova, Turkey bPlant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv. 06172 Yenimahalle, Ankara, Turkey ARTICLE INFO ABSTRACT Article history: Mulberry, Morus spp. (Moraceae) is naturally cultivated in Turkey, and no DOI: 10.16955/bitkorb.669491 chemical input used during the production process. Hitherto, major and common Received : 02.01.2020 species of insect and acari caused the economic yield and quality losses in the Accepted : 28.05.2020 mulberry production have not been recorded. On the other hand, lesser mulberry snout moth, Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae), Keywords: considered being one of the most important pests of mulberry around the world Lesser mulberry snout moth, Glyphodes pyloalis, Morus spp., was detected in the province of Yalova in the last week of August in 2018 for the Crambidae, Lepidoptera first time. Larvae of this pest caused serious damage to leaves of white mulberry (Morus alba L., 1753), black mulberry (Morus nigra L., 1753), and weeping white * Corresponding author: Gürsel ÇETİN mulberry (Morus alba cv. ‘Pendula’) (Urticales: Moraceae) whereas it has newly [email protected] just occurred.
    [Show full text]
  • SEBAGAI PEMANGSA LARVA KUMBANG TANDUK Oryctes Rhinoceros Linn
    BIOEKOLOGI Myopopone castanea Smith (HYMENOPTERA: FORMICIDAE) SEBAGAI PEMANGSA LARVA KUMBANG TANDUK Oryctes rhinoceros Linn. (COLEOPTERA: SCARABAEIDAE) DISERTASI OLEH: WIDIHASTUTY NIM : 148104004 PROGRAM STUDI DOKTOR ILMU PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA MEDAN 2020 Universitas Sumatera Utara BIOEKOLOGI Myopopone castanea Smith (HYMENOPTERA: FORMICIDAE) SEBAGAI PEMANGSA LARVA KUMBANG TANDUK Oryctes rhinoceros Linn. (COLEOPTERA: SCARABAEIDAE) DISERTASI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Doktor dalam Program Doktor Ilmu Pertanian pada Program Pascasarjana Fakultas Pertanian Universitas Sumatera Utara OLEH: WIDIHASTUTY NIM : 148104004 Program Doktor (S3) Ilmu Pertanian PROGRAM STUDI DOKTOR ILMU PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA MEDAN 2020 Universitas Sumatera Utara LEMBAR PENGESAHAN DISERTASI Judul Disertasi Bioekologi Myopopone castanea Smith (Hymenoptera: Formicidae) Sebagai Pemangsa Larva Kumbang Tanduk Orycles rhinoceros Linn. (Coleoptera: Scarabaeidae) Nama Mahasiswa Widihastuty NIM 148104m4 Program Studi Doktor (S3) Ilmu Pertanian Menyetujui Komisi Pembimbing Co.Promotor Co-Promotor Tanggal Lulus; 13 Januari2020 Universitas Sumatera Utara Diuji pada Ujian Disertasi Terbuka (Promosi Doktor) Tanggal: 03 September 2020 PANITIA PENGUJI DISERTASI Pemimpin Sidang: Prof. Dr. Runtung Sitepu, SH, M.Hum (Rektor USU) Ketua : Prof. Dr. Dra. Maryani Cyccu Tobing, M.S. Universitas Sumatera Utara Anggota : Dr. Ir. Marheni, M.P. Universitas Sumatera Utara Prof. Dr. Ir. Retna Astuti Kuswardani,
    [Show full text]
  • References Affiliations
    Cover Page The handle http://hdl.handle.net/1887/20872 holds various files of this Leiden University dissertation. Author: Lommen, Suzanne Theresia Esther Title: Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control Issue Date: 2013-05-16 References Abouheif E (2004) A framework for studying the evolution of gene networks underlying polyphenism: insights from winged and wingless ant castes. In: Hall BK (ed) Environment, development, and evolution. MIT Press, pp. 125-137 Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249-252 Adachi-Hagimori T, Shibao M, Tanaka H, Seko T, Miura K (2011) Control of Myzus persicae and Lipaphis erysimi (Hemiptera: Aphididae) by adults and larvae of a flightless strain of Harmonia axyridis (Coleoptera: Coccinellidae) on non-heading Brassica cultivars in the greenhouse. BioControl 56:207-213 Agarwala BK, Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol. Entomol. 17:303-309 Anbesse SA, Strauch O, Ehlers R-U (2012) Genetic improvement of the biological control nematode Heterorhabditis bacteriophora (Rhabditidomorpha: Heterorhabditidae): heterosis effect enhances desiccation but not heat tolerance. Biocontrol Sci. Technol. 22:1035-1045 Arnaud L, Spinneux Y, Haubruge E (2003) Preliminary observations of sperm storage in Adalia bipunctata (Coleoptera : Coccinellidae): sperm size and number. Appl. Entomol. Zoolog. 38:301-304 Atallah J, Dworkin I, Cheung U, Greene A, Ing B, Leung L, Larsen E (2004) The environmental and genetic regulation of obake expressivity: morphogenetic fields as evolvable systems. Evol. Dev. 6:114-122 Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Mini Data Sheet on Cryptothelea Variegata (Publication Date: 2016)
    DROPSA, October 2016 This short description was prepared in the framework of the EU FP7 project DROPSA - Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens (grant agreement no. 613678). This pest was listed in the DROPSA alert list for orange and mandarin fruit. Cryptothelea variegata (Lepidoptera: Psychidae) Location of life stages on plant parts: Psychidae are primarily defoliators, but may feed externally on fruit (USDA, 2013). Fruit pathway: Possibly, as larvae. Because this is based on a statement for Psychidae generally, it is uncertain. Other pathways: plants for planting. Hosts: Polyphagous, incl. Citrus, Mangifera indica, Anacardium occidentale, Camellia sinensis, Casuarina, Cinnamomum, Shorea robusta (NBAIR, 2016), Manihot esculenta, Ricinus communis, Albizia, Syzygium aromaticum, Cinchona, Uncaria gambir (CABI CPC), Castanea (as chestnut) (Nasu et al., 2011), Pinus, Bischofia javanica, Paulownia tomentosa, Acacia nilotica (FAO, 2007). Distribution: Asia: India (NBAIR, 2016), China, Indonesia, Malaysia, Vietnam (CABI CPC), Japan (Nasu et al., 2011). CABI CPC also mentions ‘South East Asia’. Damage: In Southern China on Citrus, C. variegata is considered as very widespread and important, and minor on coconut, coffee, jackfruit and mango (Li et al., 1997). In India, it is rated as a minor pest (NBAIR, 2016). C. variegata can cause damage on citrus and tea, but is much more polyphagous (Sobczyk, no date). In Sumatra, it causes significant defoliation of pines (in natural forests) and damage on crop trees e.g. Paulownia tomentosa, Acacia nilotica (FAO, 2007). Other information: The name Eumeta variegata is used in most publications. Recorded impact: Moderate Intercepted: Not known Spreading/invasive: Not (uncertain) known References: CABI CPC.
    [Show full text]
  • Resilience of Ecological Functions to Drought in an Oil Palm Agroecosystem
    Environmental Research Communications LETTER • OPEN ACCESS Resilience of ecological functions to drought in an oil palm agroecosystem To cite this article: Amy E Eycott et al 2019 Environ. Res. Commun. 1 101004 View the article online for updates and enhancements. This content was downloaded from IP address 197.248.168.174 on 25/10/2019 at 19:53 Environ. Res. Commun. 1 (2019) 101004 https://doi.org/10.1088/2515-7620/ab48da LETTER Resilience of ecological functions to drought in an oil palm OPEN ACCESS agroecosystem RECEIVED 11 July 2019 Amy E Eycott1,2,5, Andreas Dwi Advento3,5, Helen S Waters1, Sarah H Luke1, Anak Agung Ketut Aryawan3, REVISED Amelia SC Hood1, Mohammad Naim3, Sudharto Ps3, Pujianto3, Dedi Purnomo3, T Dzulfikar S Rambe3, 27 August 2019 Soeprapto3, Suhardi3, Ribka Sionita Tarigan3, Resti Wahyuningsih3, Rudi Harto Widodo3, ACCEPTED FOR PUBLICATION 3 4 1 1,6 27 September 2019 Jean-Pierre Caliman , Jake L Snaddon , William A Foster and Edgar C Turner 1 PUBLISHED Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom 15 October 2019 2 Faculty of Biosciences and Aquaculture, Nord University Steinkjer, Kongens gate 42, 7713 Steinkjer, Norway 3 Sinar Mas Agro Resources Technology Research Institute (SMARTRI), Libo Estate, Kandis, Pekanbaru, Riau, Indonesia 4 University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom Original content from this 5 work may be used under These authors contributed equally to this manuscript. the terms of the Creative 6 Author to whom any correspondence should be addressed. Commons Attribution 3.0 licence. E-mail: [email protected] Any further distribution of Keywords: oil palm, El Nino, decomposition, seed removal, predation, herbivory, drought this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
    [Show full text]
  • Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
    EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al.
    [Show full text]
  • Map-Based Cloning of the Hessian Fly Resistance Gene H13 in Wheat
    Map-based cloning of the Hessian fly resistance gene H13 in Wheat by Anupama Joshi B.S., Panjab University, 2006 M.S., Panjab University, 2008 AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Interdepartmental Genetics College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Abstract H13, a dominant resistance gene transferred from Aegilops tauschii into wheat (Triticum aestivum), confers a high level of antibiosis against a wide range of Hessian fly (HF, Mayetiola destructor) biotypes. Previously, H13 was mapped to the distal arm of chromosome 6DS, where it is flanked by markers Xcfd132 and Xgdm36. A mapping population of 1,368 F2 individuals derived from the cross: PI372129 (h13h13) / PI562619 (Molly, H13H13) was genotyped and H13 was flanked by Xcfd132 at 0.4cM and by Xgdm36 at 1.8cM. Screening of BAC-based physical maps of chromosome 6D of Chinese Spring wheat and Ae. tauschii coupled with high resolution genetic and Radiation Hybrid mapping identified nine candidate genes co-segregating with H13. Candidate gene validation was done on an EMS-mutagenized TILLING population of 2,296 M3 lines in Molly. Twenty seeds per line were screened for susceptibility to the H13- virulent HF GP biotype. Sequencing of candidate genes from twenty-eight independent susceptible mutants identified three nonsense, and 24 missense mutants for CNL-1 whereas only silent and intronic mutations were found in other candidate genes. 5’ and 3’ RACE was performed to identify gene structure and CDS of CNL-1 from Molly (H13H13) and Newton (h13h13). Increased transcript levels were observed for H13 gene during incompatible interactions at larval feeding stages of GP biotype.
    [Show full text]
  • The Oil Palm Grower's Handbook
    Human Planting Soil Material Timing Water Other Tools Plants Light 2 Human Planting Soil Material Timing Water Other Tools Plants Light 3 4 Introduction What drives life is a little electric current, kept up by the sunshine. Albert SZENT-GYÖRGYI, Nobel prize for medicine 1937 5 Over its lifetime, oil palm is one of the crops that generates most current" per unit area, from photosynthesis to oil: 5 to 10 times more oil per hectare than any other oil crop. This energy, in oil form, offers high nutritional value (vitamins, antioxidants, oleic fraction) and technological qualities (the naturally solid fraction is of interest to the agrifood industry). The photosynthetic efficiency of the oil palm cannot be achieved without humans, who are ten times more numerous per unit area than for the production of soybean oil: an “oil palm” project is therefore first and foremost a human project, a job generating project, a project that is demanding in both skills and work quality, a project combining the sun, land and people. These people are actively committed to producing seeds, managing prenurseries, nurseries and plantations, ensuring their upkeep and harvesting them... Their work is well rewarded, even on difficult soils. Water is the “switch”, and even the combustion agent, since every mm of rainfall gained over the water deficit generates much more than a linear response. Solar radiation feeds flow intensity, temperature modulates it. Production is organized in a given space that obviously needs to be preserved, or even enhanced – even more over the long term (oil palm works well for those who persevere best, and rewards them most generously).
    [Show full text]