Exploring Spatial Disparities in Residential House Prices on a County Level in Germany

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Spatial Disparities in Residential House Prices on a County Level in Germany Exploring spatial disparities in residential house prices on a county level in Germany Abstract. In the segmented German residential real estate market, house price levels differ substantially among counties. This thesis explores a variety of drivers that may explain spatial disparities of house prices between German counties. Supply and demand for regional house price levels include different aspects as economic, socio-cultural, infrastructural, real estate, and regulatory drivers. An OLS model is built to investigate the associations with house price levels on a county-level. A distinction is made across space between 16 federal states and 401 German counties. Further, I characterize differences across regions where I pay special attention to a variety of drivers, including the urban-rural sprawl. I find that not all drivers have equal dominance levels for regional house price levels. Findings not only reveal that personal income is positively and average age of the inhabitants is negatively associated with the regional house prices, but also that urban and western counties are positively associated with house prices. Keywords. German house prices, residential price variations, urban-rural divide, spatial disparities Christoph Klare Master Thesis Real Estate Studies Final Version COLOFON Title A cross sectional analysis of German regional house prices and associations Version V9 Author Christoph Klare Student number S4115155 Supervisor Prof. dr. ir. A.J. (Arno) van der Vlist Assessor Dr. M. (Mark) van Duijn E-mail [email protected] Date Nov 18, 2020 Word count 15635 Words Disclaimer: “Master theses are preliminary materials to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the author and do not indicate concurrence by the supervisor or research staff.” Contents 1. Introduction .................................................................................................................................. 1 1.1 Motivation ............................................................................................................................... 1 1.2 Literature review.................................................................................................................... 2 1.3 Research problem statement .............................................................................................. 4 2. Associations influencing house prices ..................................................................................... 7 2.1 Demand drivers ..................................................................................................................... 7 2.2 Supply drivers ...................................................................................................................... 10 2.3 Other external drivers ......................................................................................................... 10 2.4 Stock-Flow model ............................................................................................................... 11 2.5 Hypotheses .......................................................................................................................... 13 3. Data & Method ........................................................................................................................... 14 3.1 Data sources........................................................................................................................ 14 3.2 Regional housing markets in Germany ........................................................................... 15 3.3 Descriptive analysis ............................................................................................................ 18 3.4 Real Estate Ratios .............................................................................................................. 25 3.5 Model development ............................................................................................................ 29 4. Results ........................................................................................................................................ 32 4.1 House price differences across federal states ............................................................... 32 4.2 House price differences across counties and urban areas .......................................... 34 4.3 Regional house price drivers ............................................................................................ 36 4.4 Chow Test ............................................................................................................................ 40 5. Conclusion.................................................................................................................................. 44 References ..................................................................................................................................... 46 Appendix A (Definitions) ............................................................................................................... 50 Appendix B (Descriptive Analysis and Ratios) .......................................................................... 52 Appendix C (OLS Results and Tests) ........................................................................................ 62 Appendix D (Assumption testing) ................................................................................................ 77 Appendix E (Stata Syntax) ........................................................................................................... 83 1. Introduction 1.1 Motivation House price differences are an often discussed issue in German society. House prices differ substantially within Germany. For example, official German statistics reveal that in 2017 the average house prices in metropolitan areas are substantially higher than the average house price of rural areas in Germany (Destatis, 2020). For housing seekers, the price level is an important determinant for the decision to buy. The question arises as to what drivers are associated with these house price differences. This paper explores the main associations that drive house prices between counties (Definition in Table appendix A, Table A.1). Interested parties should receive a deeper understanding, why one area is more expensive than the other one. By revealing what associations determine regional prices, for instance the average dwelling size in square meters, housing seekers can balance their preferences and have a deeper understanding of why one county is more expensive than the neighbouring counties. As an illustration, the German newspaper FAZ (for Definition, see appendix A, table A1) reports that municipalities within Germany can have up to 13 times higher square meter prices than other regions (Papon, 2019). Consequently, due to the fact that in recent years a substantial party is interested in buying their own property, a high share of the population is possibly interested in the main associations that drive house prices. The implications of regional house price differences are far-reaching as it is associated with migration as a driver as well. The increasing trend of migrating to new counties is among others connected to demographic drivers as for example job prospects and better infrastructure for young families are demanded (Bleck & Wagner, 2006). This leads to migration from rural to urban areas as well as from eastern to western regions (Diekmann, 2019). The question may arise, how regional migration balances affect the house price levels and whether other drivers stimulate house prices differently on a regional level. When people choose a new place to live, the demand for homeownership also increases more unequally within Germany, affecting local house prices. In 2018 the average homeownership rate in Germany was at 51.5% with a geographical disparity (Trading Economics, 2020; Zumbro, 2014). One of the stylized facts of housing markets is that regional house prices may vary considerably. Including national and international investors on the demand side to buy 1 residential real estate, the real estate market has become more unequally distributed and untransparent. Investors typically prefer urban regions because of personal risk and profit structures (Fabricius, 2015). The imperfect German real estate market reasoned the new subsidy program “GRW” (see appendix A, Table A1) which started January 1st, 2020 in order to create an equilibrium of economic power including house prices throughout Germany. Therefore, it also supports broadband expansion in rural areas for private persons and other subsidies and infrastructural measures to attract investors (BMWI, 2020). Thus, the question arises what drivers are associated with regional house prices? 1.2 Literature review This research connects to the literature on regional house price differences. The following subchapter lists the contributions provided by several scientists that examined different house price levels, separated into paragraphs for demand, supply and institutional factors. For further considerations the house prices will represent the perceived housing values as a proxy, yielding a common basis for comparisons for the following literature review. Similar to the research questions of this paper, Blanco et al. (2015) address the regional house price differences in Spain. More specifically, the authors attempt to find price levels in the different regions of Spain, meaning that in this case groups of
Recommended publications
  • Frankfurt/Offenbach, Germany Thanks to the Following Partners
    Frankfurt/Offenbach, Germany Thanks to the following partners: 8, 2015 8, City of Frankfurt: City of Offenbach: - • Olaf Cunitz, Deputy Mayor, Stadt • Horst Schneider, Lord Mayor, Frankfurt am Main Stadt Offenbach am Main May 3 May · • Ulrike Gaube, Stadt Frankfurt am • Markus Eichberger, Stadt Main Offenbach am Main • Ulrich Kriwall, Stadt Frankfurt am • Matthias Seiler, Stadt Main Offenbach am Main and supporters: Frankfurt/Offenbach, Germany Frankfurt/Offenbach, 2 About the Urban Land Institute • The mission of the Urban Land Institute is to 8, 2015 8, provide leadership in the responsible use of land - and in creating and sustaining thriving communities worldwide. May 3 May · • ULI is a membership organization with more than 34,000 members worldwide representing the spectrum of real estate development, land use planning, and financial disciplines, working in private enterprise and public service. • What the Urban Land Institute does: – Conducts research – Provides a forum for sharing of best practices – Writes, edits, and publishes books and magazines – Organizes and conducts meetings Frankfurt/Offenbach, Germany Frankfurt/Offenbach, – Directs outreach programs – Conducts Advisory Services Panels 3 The Advisory Services Program • Since 1947 8, 2015 8, - • 15 - 20 panels a year on a variety of land use subjects May 3 May • Provides independent, objective candid · advice on important land use and real estate issues • Process • Review background materials • Receive a sponsor presentation and tour • Conduct stakeholder interviews • Consider data, frame issues, and write recommendations • Make presentation • Produce a final report. Frankfurt/Offenbach, Germany Frankfurt/Offenbach, 4 The Panel • Bill Kistler, Kistler & Company, London, United Kingdom (Panel Chair) 8, 2015 8, - • Tim-Philipp Brendel, Dipl.-Ing.
    [Show full text]
  • Mitgliederübersicht | BDEW
    BDEW Logo » Verband » Mitglieder » Mitgliederübersicht Mitglieder BDEW Mitglieder im Überblick # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Suche nach Name Bundesland Alle Organisation Alle E E WIE EINFACH GmbH Köln Nordrhein-Westfalen E-MAKS GmbH & Co. KG Freiburg Baden-Württemberg e-netz Südhessen AG Darmstadt Hessen e-regio GmbH & Co. KG Euskirchen Nordrhein-Westfalen E-WALD GmbH Teisnach Bayern e.dat GmbH Schwerin Mecklenburg-Vorpommern E.DIS AG Fürstenwalde/Spree Brandenburg E.DIS Netz GmbH Fürstenwalde/Spree Brandenburg e.disnatur Erneuerbare Energien GmbH Potsdam Brandenburg e.distherm Wärmedienstleistungen GmbH Schönefeld Berlin e.kundenservice Netz GmbH Hamburg Hamburg E.ON Bioerdgas GmbH Essen Nordrhein-Westfalen E.ON Business Solutions GmbH Essen Nordrhein-Westfalen E.ON Digital Technology GmbH Hannover Niedersachsen E.ON Energie AG Essen Nordrhein-Westfalen E.ON Energie Deutschland GmbH München Bayern E.ON Energie Dialog GmbH Potsdam Brandenburg E.ON Energy Projects GmbH München Bayern E.ON Gas Mobil GmbH Essen Nordrhein-Westfalen E.ON Metering GmbH Unterschleißheim Bayern E.ON SE Essen Nordrhein-Westfalen E.ON Solutions GmbH Essen Nordrhein-Westfalen E.VITA GmbH Hamburg Baden-Württemberg e.wa riss GmbH & Co. KG Biberach an der Riß Baden-Württemberg e.wa riss Netze GmbH Biberach an der Riß Baden-Württemberg EAM Beteiligungen GmbH Kassel Hessen EAM Energie GmbH Kassel Hessen EAM EnergiePlus GmbH Kassel Hessen EAM GmbH & Co. KG Kassel Hessen EBLD Schweiz Strom GmbH Rheinfelden (Baden) Baden-Württemberg ED Netze GmbH Rheinfelden (Baden) Baden-Württemberg EDF Deutschland GmbH Berlin Berlin EEG Energie- Einkaufs- und Service GmbH Henstedt-Ulzburg Schleswig-Holstein EEW Energy from Waste GmbH Helmstedt Niedersachsen EFG Erdgas Forchheim GmbH Forchheim Bayern EGF EnergieGesellschaft Frankenberg mbH Frankenberg (Eder) Hessen Egge-Wasserwerke GmbH Paderborn Nordrhein-Westfalen EGK Entsorgungsgesellschaft Krefeld GmbH & Co.
    [Show full text]
  • Offenbach Am Main
    OFFENBACH AM AM MAIN OFFENBACH INDUSTRIEKULTUR RHEIN-MAIN ROUTE DER ROUTE NR.30 LOKALER ROUTENFÜHRER 58 Objekte der Industriekultur in Offenbach am Main ROUTE DER INDUSTRIEKULTUR Im Zuge der wirtschaftlichen Blüte verwandelte sich die RHEIN-MAIN Stadt binnen eines Jahrhunderts von einer ländlich geprägten Klein- in eine dicht bebaute Großstadt, deren Den Schatz an lebendigen Zeugnissen des produzierenden dynamisches Wachstum erst mit der Wirtschaftskrise Gewerbes samt dazugehöriger Infrastruktur zu bergen, nach dem Ersten Weltkrieg ihr Ende fand: In der Folge wieder ins Bewusstsein zu bringen und zugänglich zu mussten zahlreiche Betriebe schließen oder wanderten machen, ist Ziel der Route der Industriekultur Rhein-Main. ab. Nach einer Phase relativer Stabilität wurde in den Sie führt zu wichtigen industriekulturellen Orten im 1960/70er Jahren auch Offenbach von einem tiefgreifenden gesamten Rhein-Main-Gebiet und befasst sich mit Themen Strukturwandel erfasst. wirtschaftlicher, sozialer, technischer, architektonischer und städtebaulicher Entwicklung in Vergangenheit, In der Folge prägten Leerstände und Brachen das Stadt- Gegenwart und Zukunft. bild, die nun wieder revitalisiert werden. Dabei erweist sich heute als Vorteil, dass mancher leer stehende Mehr zur Route der Industriekultur Rhein-Main finden Fabrikbau nicht abgerissen wurde und jetzt von jungen Sie im Faltblatt „Wissenswertes“ unter www.krfrm.de. Unternehmen und Kreativen genutzt wird, die mit dazu beigetragen haben, Offenbach als Dienstleistungsstandort in der Region Rhein-Main zu etablieren. INDUSTRIEGESCHICHTE IN OFFENBACH Stärker als andere Städte des Rhein-Main-Gebiets wurde Offenbach durch seine industrielle Entwicklung geprägt. ROUTE DER INDUSTRIEKULTUR Den Grundstein hierfür legte Graf Johann Philipp von IM ÜBERBLICK Isenburg, der mit der Aufnahme hugenottischer Glaubens- Bad Nauheim flüchtlinge 1698/99 für einen kulturellen und wirtschaft- Friedberg Friedrichsdorf lichen Aufschwung sorgte.
    [Show full text]
  • A Century of Shocks: the Evolution of the German City Size Distribution 1925 - 1999
    A CENTURY OF SHOCKS: THE EVOLUTION OF THE GERMAN CITY SIZE DISTRIBUTION 1925 - 1999 E. MAARTEN BOSKER STEVEN BRAKMAN HARRY GARRETSEN MARC SCHRAMM CESIFO WORKING PAPER NO. 1728 CATEGORY 10: EMPIRICAL AND THEORETICAL METHODS MAY 2006 An electronic version of the paper may be downloaded • from the SSRN website: www.SSRN.com • from the RePEc website: www.RePEc.org • from the CESifo website: www.CESifo-group.deT T CESifo Working Paper No. 1728 A CENTURY OF SHOCKS: THE EVOLUTION OF THE GERMAN CITY SIZE DISTRIBUTION 1925 - 1999 Abstract The empirical literature on city size distributions has mainly focused on the USA. The first major contribution of this paper is to provide empirical evidence on the evolution and structure of the West-German city size distribution. Using a unique annual data set that covers most of the 20th century for 62 of West-Germany's largest cities, we look at the evolution of both the city size distribution as a whole and each city separately. The West-German case is of particular interest as it has undergone major shocks, most notably WWII. Our data set allows us to identify these shocks and provide evidence on the effects of these `quasi-natural experiments' on the city size distribution. The second major contribution of this paper is that we perform unit-root tests on individual German city sizes using a substantial number of observations to analyze the evolution of the individual cities that make up the German city size distribution. Our main findings are twofold. First, WWII has had a major and lasting impact on the city size distribution.
    [Show full text]
  • Bitkom Smart City Index 2020 Berücksichtigt Alle 81 Deutschen Großstädte (100.000 Einwohner Und Mehr)
    Smart City Index 2020 Ausführliche Ergebnisse www.bitkom.org Smart City Index 2019 2 Impressum Herausgeber Bitkom e. V. Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e. V. Albrechtstraße 10 | 10117 Berlin Ansprechpartner Svenja Hampel | Projektleiterin Smart City Index T 030 27576 -560 | [email protected] Satz & Layout Sabrina Flemming | Bitkom Titelbild © FotoStuss – adobe.stock.com Copyright Bitkom 2020 Diese Publikation stellt eine allgemeine unverbindliche Information dar. Die Inhalte spiegeln die Auffassung im Bitkom zum Zeitpunkt der Veröffentlichung wider. Obwohl die Informationen mit größtmöglicher Sorgfalt erstellt wurden, besteht kein Anspruch auf sachliche Richtigkeit, Vollständigkeit und / oder Aktualität, insbesondere kann diese Publikation nicht den besonderen Umständen des Einzelfalles Rechnung tragen. Eine Verwendung liegt daher in der eigenen Verantwortung des Lesers. Jegliche Haftung wird ausgeschlossen. Alle Rechte, auch der auszugs- weisen Vervielfältigung, liegen beim Bitkom. Smart City Index 2019 3 Inhaltsverzeichnis Inhaltsverzeichnis Einleitung ________________________________________________________________________ 4 1 Gesamtergebnisse ____________________________________________________________ 9 2 Verwaltung _________________________________________________________________ 14 3 IT- und Kommunikation _______________________________________________________ 19 4 Energie und Umwelt __________________________________________________________ 24 5 Mobilität ___________________________________________________________________
    [Show full text]
  • Presentation
    1 MEDIUM RANGE HEAT HEALTH FORECASTING Paul Becker*, Christina Koppe Deutscher Wetterdienst, Freiburg, Germany 1. INTRODUCTION conditions of the past month using the HeRATE Heat Health Warning Systems (HHWS) with procedure (Health Related Assessment of the a forecast horizon of up to two days have been Thermal Environment). Therefore, the threshold established in several countries during the last upon which a thermal situation could be defined decade. In addition, it seems useful to as a heat wave depends on the location and on complement an HHWS by advance heat the previous weather conditions. information that contains a corresponding Therefore, the aim of this study is to develop forecast with lead times of up to 10 days a method using the HeRATE procedure in (medium range weather forecasts). This early combination with an ensemble prediction system heat information is useful for the health sector which is able to give a hint at the possibility of a for preparation purposes. Unfortunately, the heat wave occurring within the next ten days. uncertainty of a forecast increases with its lead Probability forecasts were computed based on time. Probabilistic forecasts can be used to the ECMWF ensemble prediction system. estimate this uncertainty of medium range A heat health warning requires a warning weather forecasts. A study by Lalaurette (2003) indicator that somehow is related to negative indicates that it was possible to predict one of impacts on health. Quite a broad range of the most severe heat waves Europe has ever methods is used to identify this warning experienced up to 5 days before the onset of the indicator.
    [Show full text]
  • Annex 2 — Cities Participating in the Urban Audit Data Collection
    Annex 2 — Cities participating in the Urban Audit data collection Cities in bold are capital cities. European Union: Urban Audit cities Belgium BE001C1 Bruxelles / Brussel BE002C1 Antwerpen BE003C1 Gent BE004C1 Charleroi BE005C1 Liège BE006C1 Brugge BE007C1 Namur BE008C1 Leuven BE009C1 Mons BE010C1 Kortrijk BE011C1 Oostende Bulgaria BG001C1 Sofia BG002C1 Plovdiv BG003C1 Varna BG004C1 Burgas BG005C1 Pleven BG006C1 Ruse BG007C1 Vidin BG008C1 Stara Zagora BG009C1 Sliven BG010C1 Dobrich BG011C1 Shumen BG012C1 Pernik BG013C1 Yambol BG014C1 Haskovo BG015C1 Pazardzhik BG016C1 Blagoevgrad BG017C1 Veliko Tarnovo BG018C1 Vratsa Czech Republic CZ001C1 Praha CZ002C1 Brno CZ003C1 Ostrava CZ004C1 Plzeň CZ005C1 Ústí nad Labem CZ006C1 Olomouc CZ007C1 Liberec 1 CZ008C1 České Budějovice CZ009C1 Hradec Králové CZ010C1 Pardubice CZ011C1 Zlín CZ012C1 Kladno CZ013C1 Karlovy Vary CZ014C1 Jihlava CZ015C1 Havířov CZ016C1 Most CZ017C1 Karviná CZ018C2 Chomutov-Jirkov Denmark DK001C1 København DK001K2 København DK002C1 Århus DK003C1 Odense DK004C2 Aalborg Germany DE001C1 Berlin DE002C1 Hamburg DE003C1 München DE004C1 Köln DE005C1 Frankfurt am Main DE006C1 Essen DE007C1 Stuttgart DE008C1 Leipzig DE009C1 Dresden DE010C1 Dortmund DE011C1 Düsseldorf DE012C1 Bremen DE013C1 Hannover DE014C1 Nürnberg DE015C1 Bochum DE017C1 Bielefeld DE018C1 Halle an der Saale DE019C1 Magdeburg DE020C1 Wiesbaden DE021C1 Göttingen DE022C1 Mülheim a.d.Ruhr DE023C1 Moers DE025C1 Darmstadt DE026C1 Trier DE027C1 Freiburg im Breisgau DE028C1 Regensburg DE029C1 Frankfurt (Oder) DE030C1 Weimar
    [Show full text]
  • Stand: 28.04.2021 Fachberaterzentrum Für
    Stand: 28.04.2021 Fachberaterzentrum für Herkunftssprachen, Mehrsprachigkeit und schulische Integration Standorte für den herkunftssprachlichen Unterricht Serbisch im Schuljahr 2021/2022 H-Hessen Jahrgang Schul- Zuständiges Schulamt Sprache Schulname Schulstraße Schul PLZ Schul Ort Schul TelNr Schul E-Mail K-Konsulat 1-4 oder nummer 5-10 Bad Vilbel für den Hochtaunuskreis und den Wetteraukreis Serbisch K 1-10 Europäische Schule RheinMain 4866 Theodor-Heuss-Straße 65 61118 Bad Vilbel +49 (6101) 50566 0 [email protected] Bad Vilbel für den Hochtaunuskreis und den Wetteraukreis Serbisch H 1-4 Friedrich-Ebert-Schule 3996 Unterer Mittelweg 24 61352 Bad Homburg +49 (6172) 288910 [email protected] Bad Vilbel für den Hochtaunuskreis und den Wetteraukreis Serbisch H 1-10 Gesamtschule am Gluckenstein 6069 Gluckensteinweg 99 61350 Bad Homburg +49 (6172) 967550 [email protected] Bad Vilbel für den Hochtaunuskreis und den Wetteraukreis Serbisch H 5-10 Humboldtschule 5194 Jacobistraße 37 61348 Bad Homburg +49 (6172) 6870700 [email protected] Darmstadt für den Landkreis Darmstadt- Dieburg und die Stadt Darmstadt Serbisch K 1-10 Justus-Liebig-Schule 5124 Julius-Reiber-Straße 3 64293 Darmstadt +49 (6151) 13483600 [email protected] Frankfurt am Main für die Stadt Frankfurt am Main Serbisch K 1-10 Ackermannschule 3123 Ackermannstraße 37 60326 Frankfurt a. M. +49 (69) 21235549 [email protected] Frankfurt am Main für die Stadt Frankfurt am Main Serbisch K 1-10 Heinrich-Seliger-Schule 3159 Mierendorffstraße 8 60320 Frankfurt a. M. +49 (69) 21235332 poststelle@heinrich-seliger-schule.frankfurt.schulverwaltung.hessen.de Frankfurt am Main für die Stadt Frankfurt am Main Serbisch K 5-10 Hellerhofschule 3160 Idsteiner Straße 47 60326 Frankfurt a.
    [Show full text]
  • 10. Hessen Open in Kassel
    Deutsche Indoor-Rowing Serie`10/`11 powered by Concept2 Indoor-Rower 1. Lauf zur Deutschen Ruderergometer-Meisterschaft 10. Hessen Open in Kassel Rennen 101 : Mädchen 13 u.jünger 1000 m Start : 10.30 Uhr 1 RV Friedrichsgymnasium Kassel Katharina Noll (98) 2 RV Friedrichsgymnasium Kassel Victoria Zimmer (99) 3 RV Friedrichsgymnasium Kassel Lea Müller (98) 4 RV Friedrichsgymnasium Kassel Elena Siebert (99) 5 RV Friedrichsgymnasium Kassel Hannah Heimbucher (99) 6 Frankfurter Rudergesellschaft 'Germania' Jessica Thierbach 7 Limburger Club für Wassersport 1895/1907 Lena Fritz (98) 8 RV Friedrichsgymnasium Kassel Fabienne Jensen (99) 9 RV Friedrichsgymnasium Kassel Carina Halfar (99) 10 RV Friedrichsgymnasium Kassel Salome Asare (99) 11 Frankfurter Rudergesellschaft 'Germania' Julia Gold 12 Limburger Club für Wassersport 1895/1907 Fiona Thurau (98) 13 RV Friedrichsgymnasium Kassel Alicia Weller (99) Rennen 102 : Jungen 13 u.jünger 1000 m Start : 10.40 Uhr 1 RV Friedrichsgymnasium Kassel Johannes Korff (98) 2 RV Friedrichsgymnasium Kassel Lukas Wilhelm (98) 3 Frankfurter Rudergesellschaft 'Germania' Yannik Dorn 4 RC Nassovia Höchst, Frankfurt/ Main Niclas Dienst (99) 5 RV Friedrichsgymnasium Kassel Hannes Heitmann (98) 6 Frankfurter Rudergesellschaft 'Germania' Philipp Teupe 7 RV Friedrichsgymnasium Kassel Michael Glatthaar (98) 8 RV Friedrichsgymnasium Kassel Keno Wimmel (98) 9 Frankfurter Rudergesellschaft 'Germania' Michel Woldter 10 Mündener Ruderverein e.V., Hann Münden Friso Kahler (98) 11 Frankfurter Rudergesellschaft 'Germania' Max Huber
    [Show full text]
  • Altlast Teerfabrik Lang in Offenbach Am Main Information Für Beteiligte (Stand: August 2020)
    Regierungspräsidium Darmstadt Abteilung Arbeitsschutz und Umwelt Frankfurt Frankfurt, den 18. August 2020 Az.: IV/F 41.1-100i-0843 Bearbeiter/in: Dieter Binder Durchwahl: 27 14 – 2923 E-Mail: [email protected] Altlast Teerfabrik Lang in Offenbach am Main Information für Beteiligte (Stand: August 2020) 1. Ausgangssituation Zwischen 1914 und 1929 betrieb die Fa. Gustav Lang auf dem ca. 18.000 m² umfassenden Areal am Nordring in Offenbach-Kaiserlei eine chemische Fabrik für Teerprodukte. Innerhalb des relativ kurzen Betriebszeitraums kam es zu massiven Einträgen an Teeröl in den Unter- grund. Bei Boden- und Grundwasseruntersuchungen seit 1991 wurde festgestellt, dass der Untergrund sehr stark mit Teeröl kontaminiert ist. Die Mächtigkeit der teerölverunreinigten Bodenhorizonte beträgt mehrere Meter und reicht bis auf die Basis des oberen Grundwasserleiters. Dabei hat sich das schwere Teeröl zum großen Teil als Phase auf dem grundwasserstauenden Rupelton in ca. 8-10 Metern Tiefe horizontal sowohl nach Norden zum Main hin als auch nach Süden ausgebreitet, so dass auch angrenzende Grundstücke betroffen sind. Hauptschadstoffe dieser Teerölkontamination sind Polyzyklische Aromatische Kohlenwasserstoffe (PAK), Heterozyklische Kohlenwasserstoffe (NSO-Het), einkernige aromatische Kohlenwasserstoffe (BTEX) und Phenole sowie sonstige für Teerölschäden typische Schadstoffe. Die Menge an teerölverunreinigtem Boden beträgt nach Berechnungen ca. 64.000 Tonnen. Daneben liegen in der zuoberst liegenden Auffüllung auffüllungstypische Schadstoffe wie Schwermetalle und PAK vor. Eine Verlagerung in tiefere Schichten wurde nicht festgestellt. Die teeröltypischen Schadstoffe finden sich auch im Grundwasser in sehr hohen Konzentrationen wieder. Betroffen ist vor allem das Grundwasser des oberflächennahen Grundwasserleiters, das einen Flurabstand von 3-4 Metern aufweist. Hier hat sich eine Schadstofffahne vom Schadensherd in Richtung Süd bis Südwest ausgebildet.
    [Show full text]
  • Prespa Ohrid Nature Trust (PONT) Offenbach Am Main/Germany
    Prespa Ohrid Nature Trust (PONT) Offenbach am Main/Germany Annual Financial Statements for the Financial Year from 1 January to 31 December 2018 Prespa Ohrid Nature Trust (PONT), Offenbach am Main/Germany Balance Sheet as at 31 December 2018 Assets Equity and Liabilities 31 Dec. 2018 31 Dec. 2017 31 Dec. 2018 31 Dec. 2018 31 Dec. 2017 31 Dec. 2017 EUR EUR EUR EUR EUR EUR A. Fixed assets A. Equity I. Foundation capital I. Property, plant and equipment 1. Initial endowment 3,000,000.00 3,000,000.00 Operating and office equipment 1,154.00 534.00 2. Donations 17,600,000.00 12,600,000.00 20,600,000.00 15,600,000.00 II. Financial assets II. Reserves Long-term securities 22,517,887.26 18,777,858.43 1. Reserves for endowing 22,519,041.26 18,778,392.43 with assets (Section 62 (3) No. 2 AO) 10,473,522.88 11,303,835.77 2. Savings reserve (Section 62 (4) AO) 407,333.83 299,654.32 B. Current assets 10,880,856.71 11,603,490.09 III. Funds carried forward 8,814.25 173,785.01 I. Receivables and other assets 31,489,670.96 27,377,275.10 Other assets 2,539,160.80 43,332.58 II. Bank balances 6,503,237.58 8,656,173.96 B. Provisions 9,042,398.38 8,699,506.54 Other provisions 65,837.17 63,569.55 C. Liabilities 1. Liabilities to banks 0.00 22.50 2. Trade payables 1,398.50 0.00 3.
    [Show full text]
  • OECD Territorial Grids
    BETTER POLICIES FOR BETTER LIVES DES POLITIQUES MEILLEURES POUR UNE VIE MEILLEURE OECD Territorial grids August 2021 OECD Centre for Entrepreneurship, SMEs, Regions and Cities Contact: [email protected] 1 TABLE OF CONTENTS Introduction .................................................................................................................................................. 3 Territorial level classification ...................................................................................................................... 3 Map sources ................................................................................................................................................. 3 Map symbols ................................................................................................................................................ 4 Disclaimers .................................................................................................................................................. 4 Australia / Australie ..................................................................................................................................... 6 Austria / Autriche ......................................................................................................................................... 7 Belgium / Belgique ...................................................................................................................................... 9 Canada ......................................................................................................................................................
    [Show full text]