Serotonin Receptor and Transporter Ligands – Current Status
Current Medicinal Chemistry 2001, 8, 999-1034 999 Serotonin Receptor and Transporter Ligands – Current Status Seung Jun Oh1, Hyun-Joon Ha2,*, Dae Yoon Chi3 and Hee Kyung Lee1 1Department of Nuclear Medicine, Asan Medical Center, University of Ulsan, College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, Korea 2Department of Chemistry, Hankuk University of Foreign Studies,Yongin, Kyunggi-Do 449- 791, Korea 3Department of Chemistry, Inha University, Younghun-dong, Nam-gu, Inchon, 402-751, Korea Abstract: The serotonin (5-HT) receptor system has 14 different subtypes classified by pharmacology and function. Many ligands are widely used for therapeutic and diagnostic purposes in some severe human diseases. Most of the ligands that are specific for each 5-HT receptor have distinctive chemical structures with regard to pharmacophore elements including 4-arylpiperazine, benzimidazole, benzamide, chroman, aminopyridazine, tetralin, and polycycles. However, their affinity and selectivity for 5-HT, dopamine and a 1 receptors depend on their substituents and linker spacers. 5-HT transporter inhibitors have also been developed as potential antidepressants. In contrast to classical tricyclic compounds, newly developed secondary amine derivatives such as paroxetine and tetralin show high binding affinity and selectivity. Radioisotope-labeled ligands have 11 11 18 also been developed, including [carbonyl- C]WAY 100635 for 5-HT1A receptor, [ C or F]ketanserine 125 123 derivatives for 5-HT2 receptor, [ I]DAIZAC for 5-HT3 receptor, and [ I]IDAM for 5-HT transporter, and these are accumulated in brain regions that are rich in the respective receptors. This review summarizes the recent development of 5-HT receptor- and transporter-specific ligands and their pharmacological properties on the basis of their chemical structures.
[Show full text]