University Microfiims

Total Page:16

File Type:pdf, Size:1020Kb

University Microfiims INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or. chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginrimg below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. University Microfiims 300 North Zeeb Road Ann Arbor, Michigan 48106 A Xerox Education Company 72-29,881 GREEN, Edwin Alfred, 1931- THE COMPARATIVE LARVAL MORPHOLOGY OF REPRESENTATIVE NEW WORLD DRYOPOID BEETLES. The University of Oklahoma, Ph.D., 1972 Zoology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED THE UNIVERSITY OF OKLAHOMA nPAOUATE COLLEGE THE COMPARATIVE LARVAL MORPHOLOGY OF REPRESENTATIVE NEW WORLD DRYOPOID BEETLES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements for the degree of doctor of philosophy BY EDWIN ALFRED GREEN Merman, Oklahoma 1972 THE COMPARATIVE LARVAL MORPHOLOGY OF REPRESENTATIVE NEW WORLD DRYOPOID BEETLES APPROVED BY DISSERTATION C0f4MITTEE PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms, A Xerox Education Company ACKNOWLEDGMENTS The w rite r wishes to express his appreciation and thanks to Dr. Harley P. Brown for his guiding assistance and criticism during the course of th is study and the preparation of the dissertation. Dr. Brown also kindly contributed most of the larvae studied here and made available to me reference materials without which this study could not have been completed. I also wish to thank Drs, George Goodman, Cluff Hop la, and Frank Sonleltner for their assistance and criticism of this study. I am deeply obliged to David Shetlar for his assistance on a collecting trip to southern Oklahoma. Finally, I would like to thank my wife, Loretta for her continued encouragement and Pamela, Edwin J r ., and Eric fo r th e ir patience. III TABLE OF CONTENTS Page LIST OF FIGURES v I. INTRODUCTION 1 I I . MATERIALS AND METHODS 3 I I I . RESULTS 7 PsephenIdae 7 Llmnlchldae 54 Elmldae 84 IV. DISCUSSION 376 V. SUMMARY AND CONCLUSIONS 387 LITERATURE CITED 389 Iv LIST OF FIGURES Page(s) External Morphology of Psephenus texanus (Figures 1-7) 32-36 Internal Morphology of Psephenus texanus (Figures 8-10) 37-38 Histological Morphology of Psephenus texanus (Figure 11) 39 External Morphology of Ectoprla nervosa (Figures 12-19) 40-44 Internal Morphology of Ectoprla nervosa (Figures 20 - 22) 45 Histological Morphology of Ectoprla nervosa (Figures 23 - 26) 46-48 External Morphology of Psephenops smith I (Figures 27 - 33) 49-50 Internal Morphology of Psephenops smith! (Figures 34 - 35) 51 Histological Morphology of Psephenops smith! (Figures 36 - 38) 52-53 External Morphology of Lutrochus luteus (Figures 39 - 48) 69-72 Internal Morphology of Lutrochus luteus (Figures 49 - 50) 73 Histological Morphology of Lutrochus luteus (Figures 51 - 53) 74-75 External Morphology o f Lutrochus "8” (Figures 54 - 68) 76-81 Internal Morphology of Lutrochus "B” (Figures 69 - 71) 82 Histological Morphology of Lutrochus "B" (Figures 72 - 73) 83 External Morphology of Hexanchorus caralbus (Figures 74 - 87) 207-210 Internal Morphology of Hexanchorus caralbus (Figures 88 - 90) 211 Histological Morphology of Hexanchorus caralbus (Figure 91) 212 External Morphology of Lara avara (Figure 92 - 102) 213-219 Internal Morphology of Lara avara (Figure 103) 220 Histological Morphology of Lara avara (Figures 104 - 108) 221-222 External Morphology of PotamophIlops (Figures 109 - 123) 223-229 Internal Morphology of PotamophItops (Figures 124 - 125) 230 Histological Morphology of PotamophIlops (Figures 126 - 129) 231 External Morphology of Phanocerus clavlcornis (Figures 130 - 142) 232-235 Internal Morphology of Phanocerus clavlcornis (Figures 143 - 144) 236 Histological Morphology of Phanocerus clavlcornis (Figures 145 - 147) 237 External Morphology of Ancyronyx varlegata (Figures 148 - 163) 238-247 Internal Morphology of Ancyronyx varlegata (Figures 164 - 165) 248 Histological Morohology of Ancyronyx varlegata (Figures 166 - 169) 249-251 vl External Morpholoqy of Austrolimnîus formosus (Figures 170 - 187) 252-256 Histological Morphology of Austrolimnîus formosus (Figures 189 - 191) 257 External Morphology of EIslanus texanus (Figures 192 - 208) 258-266 Internai ?4orpholoqy of EIslanus texanus (Figuras 209 - 210Ï 267 Histological Morphology of EIslanus texanus (Figures 211 - 218) 268-271 External Morphology of Macronychus qîabratus (Figures 219 - 240) 272-281 Internai Morphology of Macronychus qîabratus (Figures 241 - 242) 282 Histological Morphology of Macronychus olabratus (Figures 243 - 248) 283-284 External Morphology of Neocylloepus sandersoni (Figures 249 - 262) 286-291 Histological Morphology of Heocylloepus sandersoni (Figures 263 - 265) 2.92-294 External Morphology of Nooeimis sp» (Figures 266 - 276) 295-299 Histological Morphology of Meoelmls sp. (Figure 277) 300 External Morphology of Optlosorvus oval Is (?) (Figures 278 - 237) 301-307 Internal Morphology of Optloservus oval Is (?) (Figures 288 - 289) 308 Histological Morphology of Optloservus oval Is (?) (Figures 290 - 292) 309 External Morphology of Oullmnlus iatlusculus (Figures 293 - 302) 310-314 Histological Morphology of Oullmnlus iatlusculus (Figures 303 - 304) 315 External Morphology of Promoresla tarde 1 la (Figures 305 - 316) 316-320 vil Hîstologfcal Morphology of Promorasla fardel la (Figures 317 - 318) “ 321-321 External Morphology of Tolrlolus ungulatus (Figures 319 - 331) 323-328 Internal Morphology of Tolrlolus ungulatus (Figure 332) ' 329 Histological Morphology of Tolrlolus ungulatus (Figure 333) 330 External Mofphology of Zaltzovla parvula (Figures 334 - 3481--------------------------- 331-337 Internal Morphology' of Zaltzavla parvula (Figures 349 - 350')’ “"“" 338 Histological Morphology of Zaltzovla parvula (Figure 351) 339 External Morphology of Xonelmls bufo (Figures 352 - 365)-------------------- 340-344 Internal Morphology of Xenelmis bufo (Figures 366 - 367)--------------------- 345 Histological Morphology of Xenelmis bufo (Figure 368) 346 External Morphology of MIcrocylloepus pustllus (Figures 369 - 3807 ---------------- 347-353 Internal Morphology of MIcrocyl loepus pustllus (Figure 381) 354 Histological Morphology of MIcrocylloepus puslllus (Figura 352) 355 Exfornal Morphology of Dub I raphia sp. (Figures 383 - 394)' ................. 356-359 Internal Morphologyof Dublraphia sp. (Figures 395 - 391Î) -------------- 360 External Morphology of Heterelmls vulnerata (Figures 397 - 408) --------------------------------- 361-366 Histological Morphology of Heterelmls vulnerata (Figures 409 - 4 1 2 ) ---------------------------------- 367-371 vlll External Morphology of Stenetmis sp. (Figure 413 - 420) 372-374 Internal Morphology of Stenelmis sp. (Figure 421) 375 ix THE COMPARATIVE LARVAL MORPHOLOGY OF REPRESENTATIVE NEW WORLD DRYOPOlD BEETLES INTRODUCTION With the publication of Leng's checklist (1920), taxonomists be­ came aware of the need fo r a more natural system of classifying the Coleoptera, Such a system could only be developed when an adequate consideration of larval features Is taken Into account along with adult features. In spite of general recognition of the need for studies of larvae, our present knowledge of the morphology of Immature dryopold beetles results from the work of a very limited number of Investigators. The classical work by Bbvlng and Craighead (1931) represents the largest single publication concerned with the i vae of beetles. This work, which Included a number of dryopolds, caused Lang and Mutch 1er (1933) to make sig n ifican t changes In th e ir subsequent classificatio n scheme. West (1929), prsssr/lng the family name of Dryopldae, studied the external morphology of larval structures In selected genera. Later studies by other Investigators have necessitated changes In most of the names used by West, but his work represented a great contribution to our
Recommended publications
  • Online Dictionary of Invertebrate Zoology Parasitology, Harold W
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: S Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: S" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 6. https://digitalcommons.unl.edu/onlinedictinvertzoology/6 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 800 sagittal triact (PORIF) A three-rayed megasclere spicule hav- S ing one ray very unlike others, generally T-shaped. sagittal triradiates (PORIF) Tetraxon spicules with two equal angles and one dissimilar angle. see triradiate(s). sagittate a. [L. sagitta, arrow] Having the shape of an arrow- sabulous, sabulose a. [L. sabulum, sand] Sandy, gritty. head; sagittiform. sac n. [L. saccus, bag] A bladder, pouch or bag-like structure. sagittocysts n. [L. sagitta, arrow; Gr. kystis, bladder] (PLATY: saccate a. [L. saccus, bag] Sac-shaped; gibbous or inflated at Turbellaria) Pointed vesicles with a protrusible rod or nee- one end. dle. saccharobiose n.
    [Show full text]
  • A Checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the World
    INSECTA MUNDI, Vol. 15, No.3, September, 2001 151 A checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the world P. J. Spangler, C. L. Staines, P.M. Spangler, and S.L. Staines Department of Entomology National Museum of Natural History Smithsonian Institution Washington, DC 20560 Abstract. A checklist of the world species of Limnichidae (35 genera, 345 species) and Lutrochidae (1 genus, 11 species) is presented. The author, year of publication and page number, synonyms, distribution by country, and a terminal bibliography are given for each genus and species. Biological information is also reviewed. Introduction scribed the species and adult behavior of Lutrochus arizonicus Brown and Murvosh. Hilsenhoff and The Limnichidae Erichson (1847) and Lutro­ Schmude (1992) reported that adults of L. laticeps chidae Kasap and Crowson (1975) are small semi­ Casey (1893) were found in small to large, warm, aquatic beetles; adults of both families most fre­ calcareous streams; that adults oviposit on sub­ quently live in riparian habitats. Both families merged wood or on travertine rocks; and larvae were previously assigned to the superfamily Dry­ were aquatic and were collected on the travertine opoidea (Crowson, 1978); however, they are now rocks. placed in the Byrrhoidea (Lawrence and Newton, Previous world catalogs that included the lim­ 1995). From 1975 through 1993, D. P. Wooldridge nichids and lutrochids are by Zaitzev (1910) and published numerous limnichid descriptions and von Dalla Torre (1911) who recorded 11 genera and revisions but much systematic work remains to be 75 species. Blackwelder (1944) published a check­ done for the Limnichidae, especially in the tropical list of the Coleoptera of Mexico, Central America, regions of the Eastern Hemisphere.
    [Show full text]
  • Shell Microstructures in Early Cambrian Molluscs
    Shell microstructures in Early Cambrian molluscs ARTEM KOUCHINSKY Kouchinsky, A. 2000. Shell microstructures in Early Cambrian molluscs. - Acta Palaeontologica Polonica 45,2, 119-150. The affinities of a considerable part of the earliest skeletal fossils are problematical, but investigation of their microstructures may be useful for understanding biomineralization mechanisms in early metazoans and helpful for their taxonomy. The skeletons of Early Cambrian mollusc-like organisms increased by marginal secretion of new growth lamel- lae or sclerites, the recognized basal elements of which were fibers of apparently aragon- ite. The juvenile part of some composite shells consisted of needle-like sclerites; the adult part was built of hollow leaf-like sclerites. A layer of mineralized prism-like units (low aragonitic prisms or flattened spherulites) surrounded by an organic matrix possibly existed in most of the shells with continuous walls. The distribution of initial points of the prism-like units on a periostracurn-like sheet and their growth rate were mostly regular. The units may be replicated on the surface of internal molds as shallow concave poly- gons, which may contain a more or less well-expressed tubercle in their center. Tubercles are often not enclosed in concave polygons and may co-occur with other types of tex- tures. Convex polygons seem to have resulted from decalcification of prism-like units. They do not co-occur with tubercles. The latter are interpreted as casts of pore channels in the wall possibly playing a role in biomineralization or pits serving as attachment sites of groups of mantle cells. Casts of fibers and/or lamellar units may overlap a polygonal tex- ture or occur without it.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Phylogeny of Psephenidae (Coleoptera: Byrrhoidea) Based on Larval, Pupal and Adult Characters
    Systematic Entomology (2007), 32, 502–538 DOI: 10.1111/j.1365-3113.2006.00374.x Phylogeny of Psephenidae (Coleoptera: Byrrhoidea) based on larval, pupal and adult characters CHI-FENG LEE1 , MASATAKA SATOˆ2 , WILLIAM D. SHEPARD3 and M A N F R E D A . J A¨CH4 1Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan, 2Dia Cuore 306, Kamegahora 3-1404, Midoriku, Nagoya, 458-0804, Japan, 3Essig Museum of Entomology, 201 Wellman Hall, University of California, Berkeley, CA 94720, U.S.A., and 4Natural History Museum, Burgring 7, A-1010 Wien, Austria Abstract. We conducted the first comprehensive phylogenetic analysis of Pse- phenidae, based on 143 morphological characters of adults, larvae and pupae and coded for 34 taxa, representing three outgroups and 31 psephenid genera, including four undescribed ones. A strict consensus tree calculated (439 steps, consistency index ¼ 0.45, retention index ¼ 0.75) from the two most-parsimonious cladograms indicated that the monophyly of the family and subfamilies is supported, with the exception of Eubriinae, which is paraphyletic when including Afroeubria. Here a new subfamily, Afroeubriinae (subfam.n.), is formally estab- lished for Afroeubria. The analysis also indicated that the ‘streamlined’ larva is a derived adaptive radiation. Here, suprageneric taxonomy and the evolution of some significant characters are discussed. Keys are provided to the subfamilies and genera of Psephenidae considering larvae, adults and pupae. Introduction type specimens and the association of adults and immature stages by rearing, five new genera were proposed for Ori- Psephenidae, the ‘water penny’ beetles, are characterized by ental taxa and a well-resolved phylogenetic tree was ob- the peculiar larval body shape (Figs 4–7).
    [Show full text]
  • Vol 30 Svsn.Pdf
    c/o Museo di Storia Naturale Fontego dei Turchi, S. Croce 1730 30135 Venezia (Italy) Tel. 041 2750206 - Fax 041 721000 codice fiscale 80014010278 sito web: www.svsn.it e-mail: [email protected] Lavori Vol. 30 Venezia 31 gennaio 2005 La Società Veneziana di Scienze Naturali si è costituita a Venezia nel Dicembre 1975 Consiglio Direttivo Presidente della Società: Giampietro Braga Vice Presidente: Fabrizio Bizzarini Consiglieri (*) Botanica: Linda Bonello Maria Teresa Sammartino Didattica, Ecologia,Tutela ambientale: Giuseppe Gurnari Maria Chiara Lazzari Scienze della Terra e dell’Uomo: Fabrizio Bizzarini Simone Citon Zoologia: Raffaella Trabucco Segretario Tesoriere: Anna Maria Confente Revisori dei Conti: Luigi Bruni Giulio Scarpa Comitato scientifico di redazione: Giovanni Caniglia (Direttore), Fabrizio Bizzarini, Giampietro Braga, Paolo Canestrelli, Corrado Lazzari, Francesco Mezzavilla, Alessandro Minelli, Enrico Negrisolo, Michele Pellizzato Direttore responsabile della rivista: Alberto Vitucci Iniziativa realizzata con il contributo della Regione Veneto Il 15 ottobre 1975 il tribunale di Venezia autorizzava la pubblicazione della rivista scientifica “Lavori” e nel gennaio del 1976 la Società Veneziana di Scienze Naturali presentava ai soci il primo numero della rivista che conteneva 13 con- tributi scientifici. In ordine alfabetico ne elenchiamo gli autori: Lorenzo Bonometto, Silvano Canzoneri, Paolo Cesari, Antonio Dal Corso, Federico De Angeli, Giorgio Ferro, Lorenzo Munari, Helio Pierotti, Leone Rampini, Giampaolo Rallo, Enrico Ratti, Marino Sinibaldi e Roberto Vannucci. Nasceva così quell’impegno editoriale che caratterizza da allora la nostra società non solo nel puntuale rispetto dei tempi di stampa, entro il primo trimestre di ogni anno, del volume degli atti scientifici: “Lavori”, ma anche nelle altre pub- blicazione.
    [Show full text]
  • A Catalog of the Coleóptera of America North of Mexico X
    I Ag84Ah A CATALOG OF THE COLEÓPTERA OF AMERICA NORTH OF MEXICO X 1^ FAMILY: LIMNICHIDAE f.--;.- :?: -°7^ :3 0T >-y o- rV^o "0 \;.0 VC r- ■\ :x) -o t/^ 'J^ NAL_Digitizi ngProj ect fell ah52948 ,^ UNITED STATES AGRICULTURE PREPARED BY ÉTl DEPARTMENT OF( HANDBOOK ^£'^'fo^>I^'^^^ ^^ AGRICULTURE NUMBER 529-48 ÇÎ^F.'^?^^ SERVICE FAMILIES OF COLEóPTERA IN AMERICA NORTH OF MEXICO Fascicle ' Family Year issued Fascicle ' Family Year issued Fascicle ' F o m il y Year issued 1_.. _ -Cupedidae ____ 1979 45... ..Chelonariidae ... 98.. ...Endomychidae __ 2_- ..Micromalthidae . 1982 46... ..Callirhipidae ... 100- ...Lathridiidae 3_....Carabidae 47._.—Hetcroceridae .. 1978 102.. ...BiphylHdae 4_....Rhysodidae -___ 1985 48... ..Limnichidae 1986 103.. ...Byturidae 5_..„Amphizoidae --- 1984 49_....Dryopidae 1983 104- ...Mycetophagidae 6_..--Haliplidae 50-_- ..Elmidae 1983 105.- ...Ciidae 1982 8_....Noteridae 51.....Buprestidae 107.. ...Prostomidae 9_....Dytiscidae 52... Cebrionidae 109-...Colydiidae 10_....Gyrinidae 53-_. ..Elateridae -..Monommatidae 13-....Sphaeriidae 54.....Throscidae 110- 14-....Hydroscaphidae 55....-Cerophytidae ... 111-. ...Cephaloidae 15... Hydraenidae 56... ..Perothopidae ... 112.. ...Zopheridae 16-...Hydrophilidae _. 57....-Eucnemidae ... 115.. ...Tenebrionidae _. 17_.. Georyssidae 58 .. ..Telegeusidae __. 116.. ...Alleculidae 18..—.Sphaeritidae 61....-Phengodidae ... 117. ..Lagriidae 20_....Histeridae 62 ..Lampyridae 118 SalDÎneidae 21.....Ptiliidae 63... ..Cantharidae 119_. ...Mycteridae 22.. Limulodidae 64...-.Lycidae 120.. ...Pyrochroidae _.- 1983 23.....Dasyceridae 65.....Derodontidae ... 121.....Othniidae 24.....Micropeplidae — 1984 66.....Nosodendridae . 122.. Inopeplidae 25 --Leptinidae 67.. -.Dermestidae 123.. -.-Oedemeridae .._ 26.....Leiodidae 69_. -.Ptinidae 124.. ...Melandryidae ._ 27.....Scydmaenidae .. 70.....Anobiidae 1982 125- ...Mordellidae 28.....Silphidae 71.. -.Bostrichidae 126.. Rhipiphoridae .. 29.._._Scaphidiidae 72.....Lyctidae 127 Meloidae 30. —Staphylinidae ... 74....-Trogositidae 128.. Anthicidae 31..—.Pselaphidae 76.
    [Show full text]
  • Guide to the Systematic Distribution of Mollusca in the British Museum
    PRESENTED ^l)c trustee*. THE BRITISH MUSEUM. California Swcademu 01 \scienceb RECEIVED BY GIFT FROM -fitoZa£du^4S*&22& fo<?as7u> #yjy GUIDE TO THK SYSTEMATIC DISTRIBUTION OK MOLLUSCA IN III K BRITISH MUSEUM PART I HY JOHN EDWARD GRAY, PHD., F.R.S., P.L.S., P.Z.S. Ac. LONDON: PRINTED BY ORDER OF THE TRUSTEES 1857. PRINTED BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET. PREFACE The object of the present Work is to explain the manner in which the Collection of Mollusca and their shells is arranged in the British Museum, and especially to give a short account of the chief characters, derived from the animals, by which they are dis- tributed, and which it is impossible to exhibit in the Collection. The figures referred to after the names of the species, under the genera, are those given in " The Figures of Molluscous Animals, for the Use of Students, by Maria Emma Gray, 3 vols. 8vo, 1850 to 1854 ;" or when the species has been figured since the appear- ance of that work, in the original authority quoted. The concluding Part is in hand, and it is hoped will shortly appear. JOHN EDWARD GRAY. Dec. 10, 1856. ERRATA AND CORRIGENDA. Page 43. Verenad.e.—This family is to be erased, as the animal is like Tricho- tropis. I was misled by the incorrectness of the description and figure. Page 63. Tylodinad^e.— This family is to be removed to PleurobrancMata at page 203 ; a specimen of the animal and shell having since come into my possession.
    [Show full text]
  • T TA /Î-T Dissertation Ij L Y L I Information Service
    INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advstnced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarify on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.* *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. T TA /Î-T Dissertation i J l Y l i Information Service University Microfilms International A Bell & Howell Information Company 300 N.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]