M-3S, a Three-Stage Solid Propellent Rocket for Launching Scientific Satellites

Total Page:16

File Type:pdf, Size:1020Kb

M-3S, a Three-Stage Solid Propellent Rocket for Launching Scientific Satellites The Space Congress® Proceedings 1980 (17th) A New Era In Technology Apr 1st, 8:00 AM M-3S, A Three-Stage Solid Propellent Rocket for Launching Scientific Satellites Ryojiro Aklba Professor, Institute of Space and Aeronaut lea I Science, The University of Tokyo Tomonao Hayashi Professor, Institute of Space and Aeronaut lea I Science, The University of Tokyo Daikichiro Mori Professor, Institute of Space and Aeronaut lea I Science, The University of Tokyo Tamiya Nomura Professor, Institute of Space and Aeronaut lea I Science, The University of Tokyo Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Aklba, Ryojiro; Hayashi, Tomonao; Mori, Daikichiro; and Nomura, Tamiya, "M-3S, A Three-Stage Solid Propellent Rocket for Launching Scientific Satellites" (1980). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-5/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. M-3S, A THREE STAGE. SOLID PROPELLANT ROCKET FOR LAUNCHING SCIENTIFIC SATELLITES Dr. Ryojfro Akfba, Professor Dr.. Tomonao Hayashi, Professor Dr. Daikichlro Morf, Professor Dr. Tamlya Nomura, Professor Institute of Space and Aeronaut lea I Science The University of Tokyo ABSTRACT The Institute of Space and Aeronautical successf u I I y orb I tedl the th i rd sc \ ent i f i c Science, University of Tokyo has developed satellite "TAIYO" of 86 kilogram weight in the Mu series satellite' launchers. M-3S as February 1975. TAIYO 1 was designed for con­ the newest version of Mu family is a three ducting synthetic observations o^n aeronomy in stage solid propel I ant rocket in which TVC the magnetosphere, themnosphere and mesosphere systems are Introduced! first in the first- with a special reference to the solar- stage as well as the second stage. ' The terrestrial Interactions through radiation first flight test of M-3S has been success­ and particles. The launch of the third M-3C fully conducted on February 17th 1980. made in February 1976 was unsuccessful and Following to the historical remarks on the failed to orbit the fourth scientific deve1opment of Mu seni es , veh I c I e descrIp- satellite CORSA (Cosmic Radiation Satellite), tion, principles of the flight procedure which aimed at cosmic heavy primaries and X-­ including guidance and control and results ray astronomy observations. of.the flight test are reviewed. Further improvement of Mu is programmed concerning As the third generation of the Mu-rocket the to future sc i ent i f I c space observat i on, ISAS developed the M-3H vehicle, which was particularly to the interplanetary probe designed to have a more pay load weight capa- PLANET-A aiming at optical (UV) observation- bility than M-3C by the thrust augmentation of Halley f s Comet. furnished by extending the first stage motor. The first flight test of M-3H was made in HISTORICAL REMARKS February 1977, and a technological test satellite "TANSEI-3" was put Into a semi-polar The ISAS is responsible for the developments orbit. Following this test scientific satel­ of satellite launch vehicles and scientific lites "KYGKKG" and "JIK!KEN" were put Into satellites. The first generation of the orbit by M-3H f s In February and September 1978, satellite launch vehicle planned by the ISAS respectively. "KYOKKO 11 was designed for was M-4S. In February 1970 Lambda-45, that studies on aurora and related phenomena on a was designed as a simulation test vehicle semi-polar orbit, and "JIKIKEN" was designed for the development of M-4S, injected the for studies on wave-particle interaction in Japan's first satellite "OHSUMI" into an magnetosphere on a highly eccentric low orbit.. Following the launch of a technology inclination orbit. Both of them have partici­ test satellite "TANSEI" in February 1971, M- pated in the International Magnetosphere 4S vehicles successfully launched two full Study (1976-1979). fledged scientific satellites "SHINSEI" in September 1971 and "DENPA" in August 1972. in February 1979 CORSA-b was launched by M-3C- 4 Into a circular orbit to supplement the M-3C, the second generation of Mu series? is former failure of CORSA. This satellite named a three-stage solid propel I ant rocket designed "HAKUCHO" Is serving as a monitor for new to inject a scientific satellite around 90 kg, celestial X-ray sources and their burst Its another feature is the introduction of phenomena* the flight control system utilizing IfTVC (Liquid Inj ecti on Thrust Vector Cont roI) and N-3S Is the fourth generation of Mu series sidejets for the second stage. The first satellite launch vehicles. It is an improved . test of M-3C launch vehicle was successfully version of M-3H and Is provided with a flight made in February 1974 and a technology test control capability during the burning phase satellite "TANSEI-2" of 56 kilogram- weight of the first stage. The first test launch CM- was put into an orbit. The second M-3C 35- 1/MS-T4) has been conducted on Fab, 17*1980. §-43 VEHICLE DESCRIPTION command system, radar transponders, a timer and other instruments around its peripheral section. Configuration of M-3S is shown in Fig. I. A At the peripheral section of the instrumenta­ summary of the stage dimensions and engine tion bay 2 solid propellant spin motors are data of M-3S is given in Table I. The total installed. Each of them has two nozzles direct­ length is 23.8 m, maximum diameter is 1.4 m, ing to opposite sides, one for accelerating lift-off weight is 49.5 ton and the total spin, the other for decelerating it. The amount of lift-off thrust is 246 ton incilud- latter nozzle is closed until the spin rate ing thrust of 8 strap-on boosters. comes up to 2 rps which is detected by gyro system. LITVC and side jet modules are equip­ The first stage motor named M-13 is composed ped around the nozzle of M-22. LITVC for the of 4 segments loaded with polybutadiene base second stage is a similar to that of the first solid propellant. The motor case material of stage but injection valves are of on-off type M-13 is a maraging steel with nominal tensile instead of the proportional type. The side jet strength of 200 kg/mm2 . A couple of shaped is an H202 monopropellant rocket of 8 kgf charges are provided at both sides of the thrust. In each side jet module, 4 thrusters top segment to destroy the motor for f I ight are placed directing 2 by 2 to the opposite di­ safety. 8 strap-on boosters making 4 pairs rection. 4 modules installed evenly around the are attached to the first stage for the pur­ nozzle close to its exit produce thrust circum- pose of minimizing the dispersion caused by ferentially on both directions. Those 16 side disturbances in the early phase of launching jets are efficiently used in various modes, as well as enhancing performance. The exposed high thrust mode, low thrust mode (only 8 span of ta i I fin is taken as about 2/3 of the thrusters are operative In this mode), spin former Mu (M-3H)to reduce the aerodynamic mode and three axes mode, in accordance with stability margin so as to make TVC effective. the progress of flight phase. TVC injectant of FVC equipments are located around the nozzle 20 & and the side jet propellant of 20 Jl are and a solid motor for roll control (SMRC) is loaded for the second stage control. The M-22 attached to the tip of each fin. motor has also destruction device for safety at the center of its forward plate. The nose TVC employed in M-3S is so called LI TVC in fairing is made of FRP honeycomb sandwich which Freon II4B 2 is used for injectant. 8 shell covered by a thin cork layer for heat proportional type injection valves, actuated protection. by electro-hydraulic device are installed one to every octant surrounding the nozzle. A spherical third stage motor M-3A Is mated to Simple blowdown N 2 pressurization is adopted the second stage fastened with a marman clamp to both the hydraulic power and Freon feed. on an interstage structure of a truncated cone The Freon of 120 £ is loaded in 15 tanks. A which is opened Into 4 petals after the comple­ tank of the same configuration is used for the tion of separation. The case material of M-3A actuator oil accumulator. Is Ti alloy, and M-3A Is also loaded with polybutadiene base propellant. Electrical There are electronic instruments, rate gyros interface of M-3S is illustrated In Fig. 2. and telemetry systems for the first stage also Most of the events such as Ignition and separa­ inside the fin shroud. The interstage struc­ tion are conducted by the command from an ture between the first and the second stage electronic programming timer (EPT). is composed of 6 triangular trusses which are opened after separation by the coil springs FLIGHT SEQUENCE AND PRINCIPLE OF GUIDANCE AND set at the hinges of the trusses. CONTROL An SMRC is in principle a device tnat is a Fig. 3 sketches flight sequence of M-3S-I solid propellant gas generator equtpped with schematically, and Table 2 shows the main a hot gas valve which alternatively opens or sequence of events.
Recommended publications
  • Ed Spencer 402-510-3276 for Moreinformation
    AUTOS, AUCTIONS, BARGAINS, BUILDING SUPPLIES, EVENTS, IMPLEMENTS, REAL ESTATE - OVER 85,000 READERS Leading Rocket Member Publications Avoca Journal Herald • 888-343-2154 Oakland Herald Dunlap Reporter • 642-2791 888-343-2154 Harlan PennySaver Missouri Valley Times 800-909-6397 642-2791 Mapleton Press • 881-1101 Harrison County Merchandiser WHERE Covering Charter Oak, Schleswig & Ute 642-2791 Coverage also includes Denison & Crawford County, THE ACTION Manilla, Manning, Woodbine & Logan, IS Pottawattamie County & Council Bluffs rural routes August 11 - 13, 2020 FREE Harlan (IA) Tribune Printing SECTION ★ ★ ★ BIKES ★ MUSIC ★ DRINKS FEATURING: For Latest Details, Check Out Our Facebook Page: BikesonThe100Block Remember To Please Maintain Social Distancing! Circulated every week in the following publications Avoca Harlan Oakland Harrison County WHERE THE Journal Herald PennySaver Herald Merchandiser ACTION IS 888-343-2154 800-909-6397 888-343-2154 712-642-2791 Dunlap Mapleton Press Missouri Valley Reaching Coverage also includes Denison & Crawford County, Manilla, Manning, Reporter Covering Charter Oak, Schleswig & Ute Times-News 44,000 readers Woodbine & Logan, Pottawattamie County & Council Bluffs rural routes 712-642-2791 712-881-1101 712-642-2791 in Western Iowa 08/11/2020 Call 1-888-343-2154 To Place Your Ad In The Rocket Avoca, Iowa WE WON'T BE UNDERSOLD! Cover Crop Specials Reward ȏ Wheat Bulk Retail $7.95/Bu 60# ȏ Radishes $1.70/lb ȏ Rye Bulk Retail $10.50/Bu 56# ȏ Turnips $1.52/lb Yourself ȏ Peas 59¢/lb ȏ Rape 94¢/lb SPECIAL BALE TUFF Easy Way Cattle Oilers With a Career SILAGE WRAP & Back Rubbers 30"x5,000', 1 Mil, White, $69.95 Also Cattle Sprays You Love! SILAGE BAGS: ȏ 9x250 AT Films ....................$569.16 PIT COVERS: ȏ 8x100 AT Films ....................$207.61 ȏ 9x300 AT Films ..................
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Corporate Profile
    2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense.
    [Show full text]
  • Redalyc.Status and Trends of Smallsats and Their Launch Vehicles
    Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Wekerle, Timo; Bezerra Pessoa Filho, José; Vergueiro Loures da Costa, Luís Eduardo; Gonzaga Trabasso, Luís Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Journal of Aerospace Technology and Management, vol. 9, núm. 3, julio-septiembre, 2017, pp. 269-286 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309452133001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v9i3.853 Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Timo Wekerle1, José Bezerra Pessoa Filho2, Luís Eduardo Vergueiro Loures da Costa1, Luís Gonzaga Trabasso1 ABSTRACT: This paper presents an analysis of the scenario of small satellites and its correspondent launch vehicles. The INTRODUCTION miniaturization of electronics, together with reliability and performance increase as well as reduction of cost, have During the past 30 years, electronic devices have experienced allowed the use of commercials-off-the-shelf in the space industry, fostering the Smallsat use. An analysis of the enormous advancements in terms of performance, reliability and launched Smallsats during the last 20 years is accomplished lower prices. In the mid-80s, a USD 36 million supercomputer and the main factors for the Smallsat (r)evolution, outlined.
    [Show full text]
  • 5.0 Launch Vehicle Performance
    Final Design Report on Converting the Minuteman Missile into a Small Satellite Launch System Submitted to Dr. George W. Botbyl USRA Design Professor Department of Aerospace Engineering The University of Texas at Austin by The Minotaur Design Team Rodrick McHaty - Team Leader Rodolfo Gonzalez - Chief Engineer Vu Pham - Chief Administrative Officer Engineers: Gordon MacKay Greg Humble Bill Alexander November 24, 1993 EXECUTIVE SUMMARY m Introduction Due to the Strategic Arms Reduction Talks (START) treaty between the United States and Ex-Soviet Union, 450 Stage III Minuteman II (MMII) missiles were -q recently taken out of service. Minotaur Designs Incorporated (MDI) intends to StagelI convert the MMII ballistic missile from a "" nuclear" warhead carrier into a small- "] L__________ satellite launcher. MDI will perform this conversion by acquiring the Minuteman Stage I stages, purchasing currently available control wafers, and designing a new ] shroud and interfaces for the satellite. Figure 1. MDI missile MDI is also responsible for properly integrating all systems. The new MDI system still System Description incorporates the original range-safety raceway and attitude-control actuators. MDI plans to purchase the 52 inch Figure 1 shows a representation of diameter avionics, range-safety, and the MDI missile. The stages that MDI attitude-control wafers from Martin will acquire from the Air Force are the Marietta's Multi-Service Launch System MMII stage I and II, and the MMIII stage (MSLS), "D" configuration missile, III. These stages define the propulsion which is currently under development. system of the MDI missile, and an MDI has designed a mechanical analysis of attainable orbits is performed.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Small Satellite Access to ESPA Standard Service
    SSC10-IX-1 Small Satellite Access to ESPA Standard Service Mr. Ted Marrujo DoD Space Test Program (STP), Mission Design 3548 Aberdeen Ave. SE, Kirtland AFB NM 87117; (505) 853-3338 Ted. [email protected] Lt Jake Mathis Space and Missile Systems Center, Launch and Range Systems Wing, Engineering 483 N. Aviation Blvd, Los Angeles AFB, CA; (310) 653-3392 [email protected] Mr. Caleb C. Weiss United Launch Alliance, Mission Integration 12257 S. Wadsworth Blvd, TSB-B7140, Littleton, CO 80125; (303) 977-0843 [email protected] ABSTRACT The DoD Space Test Program (STP), the Air Force Launch and Range Systems Wing (LRSW), and United Launch Alliance (ULA) are teaming up to provide a rideshare service to small satellites (<400lb) using an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA). This rideshare service is an opportunity on EELV missions with margin to carry auxiliary payloads (APLs). This paper will define the ESPA, the standard rideshare service provided to APLs, and how APLs can access this service. We will discuss the roles and responsibilities the different government organizations, ULA, and the small satellite provider have in accessing and implementing ESPA Standard Service. In brief, ULA builds the EELV and performs the launch service, LRSW is responsible for developing and acquiring EELVs from ULA, and STP is responsible for identifying and manifesting APLs that meet ESPA Standard Service requirements. We will further define the processes and procedures required to implement ESPA Standard Service to include: how a particular EELV mission is selected to host ESPA Standard Service, the selection process for auxiliary satellites to utilize the capability, the requirements and timelines small satellites must meet to qualify, and the scope of services provided by ULA as part of Standard Service.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • Successful Launch of the First Epsilon Launch Vehicle
    Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014) 59 Contribution to Japan's Flagship Launch Vehicle – part 2 -Successful Launch of the first Epsilon Launch Vehicle- TATSURU TOKUNAGA*1 NOBUHIKO KOHARA*2 KATSUYA HAKOH*3 TSUTOMU TAKAI*4 KYOICHI UI*5 TETSUYA ONO*6 On September 14, 2013, the first Epsilon Launch Vehicle was launched from (Independent Administrative Institution) Japan Aerospace Exploration Agency (JAXA) Uchinoura Space Center, and succeeded in properly injecting a satellite into orbit. In Epsilon Launch Vehicle development, we participate in the development/manufacture of the second-stage reaction control system(RCS) and modification maintenance of the launcher for the Epsilon launch system. The development/maintenance details and launch results are introduced in this report. |1. Introduction JAXA started development of the Epsilon Launch Vehicle in 2010, going through the stages of vehicle development, manufacturing, and maintenance of launch-related facilities, until the first Epsilon Launch Vehicle was launched from Uchinoura Space Center in 2013. We contributed to the successful launch of the first Epsilon Launch Vehicle through development of the second-stage reaction control system, which was equipped onto the launch vehicle, and modification maintenance of the launcher. Details of the development/maintenance and the launch results are introduced here. |2. Approach to Epsilon Launch Vehicle Development 2.1 General The Epsilon Launch Vehicle is the three-staged solid rocket developed by JAXA since 2010, and is the successor to the M-V launch vehicle technology, which completed operations in 2006, and develops to organize technical application/commonality of the H-IIA launch vehicle.
    [Show full text]
  • NEC Space Business
    Japan Space industry Workshop in ILA Berlin Airshow 2014 NEC Space Business May 22nd, 2014 NEC Corporation Kentaro (Kent) Sakagami (Mr.) General Manager Satellite Systems and Equipment, Global Business Unit E-mail: [email protected] NEC Corporate Profile Company Name: NEC Corporation Established: July 17, 1899 Kaoru Yano Nobuhiro Endo Chairman of the Board: Kaoru Yano President: Nobuhiro Endo Capital: ¥ 397.2 billion (As of Mar. 31, 2013) Consolidated Net Sales: ¥ 3,071.6 billion (FY ended Mar. 31, 2013) Employees: 102,375 (As of Mar. 31, 2013) Consolidated Subsidiaries: 270 (As of Mar. 31, 2013) Financial results are based on accounting principles generally accepted in Japan Page 2 © NEC Corporation 2014 NEC Worldwide: “One NEC” formation in 5 regions Marketing & Service affiliates 77 in 32 countries Manufacturing affiliates 8 in 5 countries Liaison Offices 7 in 7 countries Branch Offices 7 in 7 countries Laboratories 4 in 3 countries North America Greater China NECJ EMEA APAC Latin America (As of Apr. 1, 2014) Page 3 © NEC Corporation 2014 NEC in EMEA 1 NEC in Germany NEC Deutschland GmbH NEC Display Solutions Europe NEC Laboratories Europe (Internal division of NEC Europe Ltd.) NEC Tokin Europe NEC Scandinavia AB in Espoo, 2 NEC in Netherlands Finland NEC Logistics Europe NEC Nederland B.V. NEC Neva Communications Systems NEC Scandinavia AB in Oslo, Norway NEC in the U.K. 3 NEC Scandinavia AB NEC Europe Ltd. NEC Capital (UK) plc NEC in the UK NEC Technologies (UK) NEC in Netherlands NEC Telecom MODUS Limited 3 2 NEC (UK) Ltd.
    [Show full text]
  • The Pentagon
    THE PENTAGON Volume XK Fall, 1959 Number 1 CONTENTS Page National Officers 2 The Tree of Mathematics in the Light of Group Theory By Patricia Nask 3 Business Discovers Probability By Julian H. Toulouse 11 A Brief Study of Finite and Infinite Matrices from a Set-Theoretic Viewpoint By Phillip A. Griffitlis 23 The Four-Dimensional Cube By Norman Sellers 30 The Problem Corner 38 The Mathematical Scrapbook 45 The Book Shelf 51 Installation of New Chapters 55 Kappa Mu Epsilon News 58 National Officers Carl V. Fronabarger President Southwest Missouri State College, Springfield, Missouri R. G. Smith Vice-President Kansas State Teachers College, Pittsburg, Kansas Laura Z. Greene ----- Secretary Washburn Municipal University, Topeka, Kansas Walter C. Butler Treasurer Colorado State University, FortCollins, Colorado Frank C. Gentry ----- Historian University of New Mexico, Albuquerque, New Mexico C. C. Richtmeyer Past President Central Michigan University, Mt. Pleasant, Michigan Kappa Mu Epsilon, national honorary mathematics society, was founded in 1931. The object of the fraternity is fourfold: to further the interests of mathematics in those schools which place their primary emphasis on the undergraduate program; to help the undergraduate realize the important role that mathematics has played in the develop ment of western civilization; to develop an appreciation of the power and beauty possessed by mathematics, due, mainly, to its demands for logical and rigorous modes of thought; and to provide a society for the recognition of outstanding achievements in the study of mathe matics at the undergraduate level. The official journal, THE PENTA GON, is designed to assist in achieving these objectives as well as to aid in establishing fraternal ties between the chapters.
    [Show full text]