RESEARCH ARTICLE Network trade-offs and homeostasis in Arabidopsis shoot architectures 1 1 2 2 Adam ConnID , Arjun ChandrasekharID , Martin van Rongen , Ottoline LeyserID , 3 1 Joanne ChoryID , Saket NavlakhaID * 1 Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America, 2 Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom, 3 Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America a1111111111 *
[email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract Understanding the optimization objectives that shape shoot architectures remains a critical problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot archi- tectures, including wildtype and 10 mutant strains, and we uncovered a design principle that OPEN ACCESS describes how architectures make trade-offs between competing objectives. First, we used Citation: Conn A, Chandrasekhar A, Rongen Mv, graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal Leyser O, Chory J, Navlakha S (2019) Network that can be captured as maximizing performance in transporting nutrients and minimizing trade-offs and homeostasis in Arabidopsis shoot costs in building the architecture. Second, we identify small sets of genes that can be architectures. PLoS Comput Biol 15(9): e1007325. https://doi.org/10.1371/journal.pcbi.1007325 mutated to shift the weight prioritizing one objective over the other. Third, we show that this prioritization weight feature is significantly less variable across replicates of the same geno- Editor: Giovanni Stracquadanio, University of Oxford, UNITED KINGDOM type compared to other common plant traits (e.g., number of rosette leaves, total volume occupied).