Fish Communities and Life History Attributes of English Sole (Pleuronectes Vetulus)In Vancouver Harbour

Total Page:16

File Type:pdf, Size:1020Kb

Fish Communities and Life History Attributes of English Sole (Pleuronectes Vetulus)In Vancouver Harbour Marine Environmental Research 57 (2003) 103–120 www.elsevier.com/locate/marenvrev Fish communities and life history attributes of English sole (Pleuronectes vetulus)in Vancouver Harbour Colin Levings*, Stacey Ong Fisheries and Oceans Canada, Science Branch, West Vancouver Laboratory, 4160 Marine Drive, West Vancouver, British Columbia, Canada V7V 1N6 Abstract Data on demersal fish abundance, distribution, and spatial variation in community composition are given for Vancouver harbour and a far field reference station in outer Howe Sound. Flatfish (F. Pleuronectidae) were the dominant taxa in the trawl sampling, with the English sole (Pleuronectes vetulus) one of the most abundant species, especially in Port Moody Arm. Cluster and ordination analyses suggested a different community in Port Moody Arm relative to the outer harbour and the reference site. Length data from English sole suggested the Vancouver harbour fish may be from a different population relative to the far field reference station, with more juveniles in the harbour. Both male and female English sole were older and larger in Port Moody Arm and females were more common in this area. Growth rates of female English sole were slower at Port Moody and Indian Arm in comparison to the central harbour. Feeding habits of English sole were different at various parts of the harbour, with possible implications for con- taminant uptake. The diet of English sole was dominated by polychaetes in Port Moody Arm and by bivalve molluscs at the far field reference station. Fish from the middle and outer harbour fed on a mixture of polychaetes, bivalve molluscs, and crustaceans enabling multiple pathways for bioaccumulation of pollutants. # 2003 Published by Elsevier Ltd. Keywords: Fish; Feeding; Habitat; Life history; Sediments; Pollution tolerance; Chemical pollution; Community function * Corresponding author. Fax: +1-604-666-3497. E-mail address: [email protected] (C. Levings). 0141-1136/$ - see front matter # 2003 Published by Elsevier Ltd. doi:10.1016/S0141-1136(03)00063-1 104 C. Levings, S. Ong / Marine Environmental Research 57 (2003) 103–120 1. Introduction The species composition of fish communities has been proposed as a key variable to assess the biological integrity of estuarine ecosystems (Deegan, Finn, Ayvazian, Ryder-Kieffer, & Buonaccorsi, 1997) and can also be used as a monitoring variable to detect changes in coastal water quality (Horn, 1979). In this paper, we describe the spatial changes and relative abundance of demersal fish in Vancouver harbour caught during the PICES Workshop and provide an analysis of fish community variation in this area. Demersal fish are bottom dwelling species which are in contact with the seafloor, and their biological characteristics are thought to reflect sediment conditions such as the presence of contaminants and changes in fish food inverte- brates. There are some baseline data available on demersal fish communities in Vancouver Harbour collected in 1985 (Goyette & Thomas, 1987), but in general the ecology of this taxocene is poorly documented in Vancouver Harbour. English sole (Pleuronectes vetulus) was identified as a dominant demersal species and was used as an indicator species in earlier work in the harbour by Goyette and Boyd (1989) and in several recent studies in Puget Sound (Collier, Johnson, Stehr, Meyers, & Stein, 1998). The physiological and health status of individual English sole was studied extensively by other investigators in the PICES Workshop (Bolton, Stehr, Boyd, Burrows, Tkalin, & Lishavskaya, 2003; Miller, Addison, & Bandiera, 2003; Stehr, Myers, Johnson, Spencer, & Stein, 2003). To complement their work, and to gain an insight into possible modes of contaminant effects on English sole basic information on length, weight, age, feeding, and growth was obtained from autopsied specimens. 2. Methods 2.1. Field sampling A small otter trawl (mesh size in body/wing 38 mm, 3.2 mm in codend; width of opening estimated 4.9 m) was towed by the NOAA vessel HAROLDW. STRE- ETER at five stations, on a presumed pollution gradient from the inner to outer Vancouver Harbour and into Howe Sound (Levings, Stein, Stehr, & Samis, 2003). Station T-38 was considered representative of Port Moody Arm; Station T-48 of the Indian Arm location; T-11B of the central harbour; T-49 of the outer harbour; and T-50 of the far field reference location in Thornbrough Channel. Each station was sampled between three and seven times. The net was towed between 5 and 10 min, and sampled an estimated area of between 1643 and 8570 m2 in each trawl (Table 1). Coordinates of the trawl locations and other basic sampling data are given by Stehr and Horiguchi (2001). The total catch from each trawl was sorted by species, then enumerated by species and weight. The larger invertebrates such as Dungeness crab (Cancer magister), tan- ner crab (Chionocetes tanneri), anemone (Metridium spp.) and a few species of bivalve molluscs were also enumerated and weighed. Fish catch data were standardized to C. Levings, S. Ong / Marine Environmental Research 57 (2003) 103–120 105 Table 1 Number of trawls, depth ranges, and estimated sample area for trawl samples in Vancouver harbour and Thornbrough Channel Site name Station name No. of trawls Depth range (m) Sample area (m2) Port Moody T-38 3 11–14 10896 Indian Arm T-48 3 26–30 15224 Central harbour T-11B 4 24–26 23642 Outer harbour T-49 6 30–45 38359 Thornbrough Channel T-50 3 55–73 12131 100 m2 using the sample areas shown in Table 1. When available, the total length (mm) of about 100 English sole from each station was obtained. We refer to these data as the general population length data. Data on weight, stomach content, and age were obtained for each English sole specimen autopsied by Stehr et al. (2003) for physiological condition and histopathology. The minimum size for the latter studies was 25 cm, the approximate length of sexual maturity for this species. After autopsy, the stomach was removed from each fish and preserved in 10.0% formalin. For aging, the right otolith was removed and placed in a glycerol-thymol mixture. The raw data from each trawl catch, fish ages, and stomach content data are presented elsewhere (Stehr & Horiguchi, 2001). 2.2. Laboratory methods Contents of a random sample of ten English sole stomachs from each station were examined in the laboratory. A Wild M-5 Stereomicroscope was used to enumerate organisms, which were identified to the major group level. Ages were determined by the Fish Aging Unit, DFO Science Branch, Pacific Biological Station, Nanaimo. Condition factor was computed using Fulton’s K where K=wt/l3Â105. 2.3. Statistical methods Parametric tests, primarily ANOVA analyses were used to determine the sig- nificance of biological parameters such as abundance, length, and age distributions, with chi-square used for proportion data. A cluster analysis using the weighted pair group average linkage method (Statistica, Statsoft, Tulsa, OK) was used to investi- gate community structure using standardized numerical catch data from each of the five stations, averaged over all the replicate trawls. The latter data were also used in a principal component analysis. The Shannon index of species diversity (H0) and evenness (E) for each station was calculated using the formulae: s 0 H ¼ -fg sum pilogpi i¼1 106 C. Levings, S. Ong / Marine Environmental Research 57 (2003) 103–120 Where i is the proportion of the total sample belonging to ith species (average numerical data) and E ¼ H0=ln S Where ln S is the natural logarithm of the total number of species found at a station. 3. Results 3.1. Fish community data Mean number of species obtained in each trawl ranged from 11Æ0.5 (Mean- ÆSEM) at Port Moody Arm to 12.2Æ0.2 at the outer harbour (Fig. 1a). However based on the total number of species caught in the trawls at a particular site, the fish community at the central harbour was most diverse (19 species), and Port Moody Arm least diverse (12 species). The other stations showed intermediate values in number of species: Indian Arm, 16 species; the outer harbour, 17 species; and Thornbrough Channel, 17 species. Mean biomass ranged from 0.65Æ0.1 kg.100 mÀ2 (meanÆSEM) at Port Moody Arm to 0.15Æ0.1 kg.100 mÀ2 at the Central Harbour, and number of individuals 10Æ5.100 mÀ2 (meanÆSEM) to 2Æ0.3.100 mÀ2 at the latter two stations (Fig. 1b and c). Twenty-nine different fish species were obtained in the trawls (Tables 2 and 3, Appendix A). Flatfish (Pleuronectidae and Bothidae) were the most common spe- cies, especially English sole (P. vetulus), Starry flounder (Platichthys stellatus), Flat- head sole (Hippoglossoides elassodon), Dover sole (Microstomus pacificus), Rex sole (Errex zachirus), Slender sole (Lyopsetta exilis) and Rock sole (Pleuronectes bilinea- tus). Flatfish were the dominant taxa at the Port Moody Arm station accounting for more than 50% of the fish caught there. Other dominant species were the Pacific tomcod (Microgadus proximus) at Port Moody Arm, Indian Arm and the Central Harbour. The Blackbelly eelpout (Lycodes pacificus) was the most abundant species at the outer harbour. The latter species was the only dominant species that was not caught at Port Moody Arm (Table 2). Percentage species composition at the five sites differed significantly (P<0.05) after testing with w2. Species diversity ranged from about 1.4029 at Port Moody to 1.8261 at the outer harbour, and evenness showed a narrower range, from approxi- mately 0.5843 to 0.7337 (Fig. 2). Neither statistic showed significant statistical var- iation over the five sampling stations (P>0.05). Results of the cluster analysis showed that the fish community at Port Moody Arm was the least similar (3%) relative to the cluster of the other locations.
Recommended publications
  • Winter Flounder Pseudopleuronectes Americanus Stock Enhancement in New Hampshire: Developing Optimal Release Strategies
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2002 Winter flounder Pseudopleuronectes americanus stock enhancement in New Hampshire: Developing optimal release strategies Elizabeth Alden Fairchild University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Fairchild, Elizabeth Alden, "Winter flounder Pseudopleuronectes americanus stock enhancement in New Hampshire: Developing optimal release strategies" (2002). Doctoral Dissertations. 62. https://scholars.unh.edu/dissertation/62 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Status of the Fisheries Report an Update Through 2008
    STATUS OF THE FISHERIES REPORT AN UPDATE THROUGH 2008 Photo credit: Edgar Roberts. Report to the California Fish and Game Commission as directed by the Marine Life Management Act of 1998 Prepared by California Department of Fish and Game Marine Region August 2010 Acknowledgements Many of the fishery reviews in this report are updates of the reviews contained in California’s Living Marine Resources: A Status Report published in 2001. California’s Living Marine Resources provides a complete review of California’s three major marine ecosystems (nearshore, offshore, and bays and estuaries) and all the important plants and marine animals that dwell there. This report, along with the Updates for 2003 and 2006, is available on the Department’s website. All the reviews in this report were contributed by California Department of Fish and Game biologists unless another affiliation is indicated. Author’s names and email addresses are provided with each review. The Editor would like to thank the contributors for their efforts. All the contributors endeavored to make their reviews as accurate and up-to-date as possible. Additionally, thanks go to the photographers whose photos are included in this report. Editor Traci Larinto Senior Marine Biologist Specialist California Department of Fish and Game [email protected] Status of the Fisheries Report 2008 ii Table of Contents 1 Coonstripe Shrimp, Pandalus danae .................................................................1-1 2 Kellet’s Whelk, Kelletia kelletii ...........................................................................2-1
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Yellowfin Trawling Fish Images 2013 09 16
    Fishes captured aboard the RV Yellowfin in otter trawls: September 2013 Order: Aulopiformes Family: Synodontidae Species: Synodus lucioceps common name: California lizardfish Order: Gadiformes Family: Merlucciidae Species: Merluccius productus common name: Pacific hake Order: Ophidiiformes Family: Ophidiidae Species: Chilara taylori common name: spotted cusk-eel plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman Order: Gasterosteiformes Family: Syngnathidae Species: Syngnathus leptorynchus common name: bay pipefish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes semicinctus common name: halfbanded rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes dalli common name: calico rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes saxicola common name: stripetail rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes diploproa common name: splitnose rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes rosenblatti common name: greenblotched rockfish juvenile Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes levis common name: cowcod Order:
    [Show full text]
  • Fisheries Update for Monday August 26, 2019 Groundfish Harvests
    Fisheries Update for Monday August 26, 2019 Groundfish Harvests through 8/17/2019, IFQ Halibut/Sablefish & Crab Harvests through 8/26/2019 Fishing activity in the Bering Sea /Aleutian Islands A season Groundfish Fisheries for the week ending on August 17, 2019, last week's Pollock harvest slowed down with an 8,000MT reduction from the previous week. The Pollock 8 season harvest is 60% completed thru last week. Last week's B season Pollock harvest came in at 48, 126MT fishing has .slowed down last week. The total groundfish harvest last week was 58,255MT (130million pounds). We are seeing increased effort in the Aleutian Islands on Pacific Ocean Perch last week's harvest of 1 ,938MT and Atka mackerel1 ,816MT. Halibut and Sablefish harvest statewide continues to see increased harvests, The Halibut harvest is 11.8 million pounds harvested 67% of the allocation has been taken. The Sablefish IFQ harvest is at 13.8 million pounds landed, the season is 53% of the allocation has been completed; Unalaska has had 46 landings for 820, 1171bs of Sablefish. Aleutian Island Golden King Crab allocation opened on July 15th with and allocation of 7.1 million pounds we have 4 vessels registered to fish the allocation. The Eastern District allocation is set at 4.4 million pounds and has had 7 landing for and estimated total of 600,000 to 800,000 harvested. The Western District at 2.7 million pounds there have been 5 landings for and estimated 200,000 to 250,0001bs harvested. For the week ending August 17, 2019 the Groundfish landings, showed a harvest of 58,255MT landed (130million pounds) most of last week's harvest was Pollock 48, 126MT (107 million pounds).
    [Show full text]
  • Using Ecologically Based Relationships to Predict Distribution of Flathead Sole Hippoglossoides Elassodon in the Eastern Bering Sea
    MARINE ECOLOGY PROGRESS SERIES Vol. 290: 251–262, 2005 Published April 13 Mar Ecol Prog Ser Using ecologically based relationships to predict distribution of flathead sole Hippoglossoides elassodon in the eastern Bering Sea Christopher N. Rooper*, Mark Zimmermann, Paul D. Spencer Alaska Fisheries Science Center, National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, Washington 98115-6349, USA ABSTRACT: This study describes a method for modeling and predicting, from biological and physi- cal variables, habitat use by a commercially harvested groundfish species. Models for eastern Bering Sea flathead sole Hippoglossoides elassodon were developed from 3 relationships describing the response of organism abundance along a resource continua. The model was parameterized for 1998 to 2000 trawl survey data and tested on 2001 and 2002 data. Catch per unit effort (CPUE) of flathead sole had a curvilinear relationship with depth, peaking at 140 m, a proportional relationship with bot- tom water temperature, a positive curvilinear relationship with potential cover (invertebrate shelter- ing organisms such as anemones, corals, sponges, etc.), a negative relationship with increasing mud:sand ratio in the sediment, and an asymptotic relationship with potential prey abundance. The predicted CPUE was highly correlated (r2 = 0.63) to the observations (1998 to 2000) and the model accurately predicted CPUE (r2 = 0.58) in the test data set (2001 and 2002). Because this method of developing habitat-based abundance models is founded on ecological relationships, it should be more robust for predicting fish distributions than statistically based models. Thus, the model can be used to examine the consequences of fishing activity (e.g.
    [Show full text]
  • In the Eye of Arrowtooth Flounder, Atherestes Stomias, and Rex Sole, Glyptocephalus Zachirus, from British Columbia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2005 The Pathologic Copepod Phrixocephalus cincinnatus (Copepoda: Pennellidae) in the Eye of Arrowtooth Flounder, Atherestes stomias, and Rex Sole, Glyptocephalus zachirus, from British Columbia Reginald B. Blaylock Gulf Coast Research Laboratory, [email protected] Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Alexandra B. Morton Raincoast Research Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Blaylock, Reginald B.; Overstreet, Robin M.; and Morton, Alexandra B., "The Pathologic Copepod Phrixocephalus cincinnatus (Copepoda: Pennellidae) in the Eye of Arrowtooth Flounder, Atherestes stomias, and Rex Sole, Glyptocephalus zachirus, from British Columbia" (2005). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 458. https://digitalcommons.unl.edu/parasitologyfacpubs/458 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bull. Eur. Ass. Fish Pathol., 25(3) 2005, 116 The pathogenic copepod Phrixocephalus cincinnatus (Copepoda: Pennellidae) in the eye of arrowtooth flounder, Atherestes stomias, and rex sole, Glyptocephalus zachirus, from British Columbia R.B. Blaylock1*, R.M. Overstreet1 and A. Morton2 1 Gulf Coast Research Laboratory, The University of Southern Mississippi, P.O. Box 7000, Ocean Springs, MS 39566-7000; 2 Raincoast Research, Simoom Sound, BC, Canada V0P 1S0.
    [Show full text]
  • Using Stable Isotopes to Discern Mechanisms of Connectivity in Estuarine Detritus-Based Food Webs
    Vol. 518: 13–29, 2015 MARINE ECOLOGY PROGRESS SERIES Published January 7 doi: 10.3354/meps11066 Mar Ecol Prog Ser Using stable isotopes to discern mechanisms of connectivity in estuarine detritus-based food webs Emily R. Howe*, Charles A. Simenstad University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA 98195-5020, USA ABSTRACT: In this paper, we focus on 2 mechanisms of cross-boundary food web connectivity in Puget Sound estuaries: passive transport of water-advected organic matter (OM) and active move- ment of organisms. Both mechanisms serve as potential vectors of food web connectivity, but little research has investigated whether landscape setting changes the dominance of one mechanism over another, or whether the influence of organism movement on food web connectivity can be detected in estuarine systems. We use fish diets, stable isotopes and Bayesian mixing models to identify differences in OM sources assimilated by estuarine fishes, testing whether increased organism mobility or increased fluvial influence results in greater food web connectivity. We com- pare food web connectivity in 2 different estuaries, one displaying limited freshwater inputs, and the other the terminus of a major river system. Within each estuary, we investigate whether differ- ences in behavioral life history traits correspond to differences in the diets, isotopic signatures and OM assimilation of 2 fish species: bay pipefish Syngnathus leptorhynchus, which displays site fidelity to eelgrass beds, and the more transitory juvenile English sole Parophrys vetulus, which moves throughout estuarine deltas during the early demersal growth stage. Our results show water advection plays a dominant role in large-scale OM transport and delivery to adjoining eco- systems in the fluvial estuary, while organism movement provides the more important mechanism of food web connectivity in the estuary exhibiting minor fluvial discharge.
    [Show full text]
  • Fisheries and Marine Service Data Report No. 77
    1 DFO Library/Millièque 12035879 A Summary of Sablefish Tagging r Studies Conducted During 1977 by the Pacific Biological Station R. J. Beamish, C. Wood, and C. Houle Department of Fisheries and the Environment Fisheries and Marine Service Resource Services Branch Pacific Biological Station Nanaimo, British Columbia V9R 5K6 June 1978 'Fisheries & Marine Service Data Report No. 77 u. QH 90.5 C33 no. 77 JC Fisheries and Marine Service Data Reports These reports provide a medium for filing and archiving data compilations where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of Data Reports reflects the broad interestsand policies of the Fisheries and Marine Service, namely, fisheries management, technology and development, ocean sciences and aquatic environments relevant to Canada. Numbers 1-25 in this series were issued as Fisheries and Marine Service Data Records by the Pacific Biological Station, Nanaimo, B.C. The series name was changed with report number 26. Data Reports are not intended for general distribution and the contents must not be referred to in other publications without prior written clearance from the issuing establishment. The correct citation appears above the abstract or each report. Service des pêches et des sciences de la mer Rapports statistiques Ces rapports servent de base à la compilation des données de classement et d'archives pour lesquelles il y a peu ou point d'analyse. Cette compilation aura d'ordinaire été préparée pour appuyer d'autres publications ou rapports. Les sujets des Rapports statistiques reflètent la vaste gamme des intérêts et politiques du Service des pêches et de la mer, notamment gestion des pêches, techniques et développement, sciences océaniques et environnements aquatiques, au Canada.
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Pictorial Guide to the Gill Arches of Gadids and Pleuronectids in The
    Alaska Fisheries Science Center National Marine Fisheries Service U.S. DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 91.15 Pictorial Guide to the G¡ll Arches of Gadids and Pleuronectids in the Eastern Bering Sea May 1991 This report does not const¡Ute a publicalion and is for lnformation only. All data herein are to be considered provisional. ERRATA NOTICE This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format. Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document. Pictorial Guide to the ciII Arches of Gadids and Pleuronectids in the Eastern Beri-ng Sea Mei-Sun Yang Alaska Fisheries Science Center National Marine Fisheries Se:nrice, NoAÀ 7600 Sand Point Way NE, BIN C15700 Seattle, lÍA 98115-0070 May 1991 11I ABSTRÀCT The strrrctures of the gill arches of three gadids and ten pleuronectids were studied. The purPose of this study is, by using the picture of the gill arches and the pattern of the gi[- rakers, to help the identification of the gadids and pleuronectids found Ín the stomachs of marine fishes in the eastern Bering Sea. INTRODUCTION One purjose of the Fish Food Habits Prograrn of the Resource Ecology and FisherY Managenent Division (REF![) is to estimate predation removals of cornmercially inportant prey species by predatory fish (Livingston et al. 1986).
    [Show full text]