Spacecraft Navigation Using X-Ray Pulsars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDF (Thesis020605.Pdf)
Optical Pulse-Phased Observations of Faint Pulsars with a Phase-Binning CCD Camera Thesis by Brian Kern In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ITUTE O ST F N T I E C A I H N N R 1891 O O L F O I G L Y A C California Institute of Technology Pasadena, California 2002 (Submitted May 29, 2002) ii c 2002 Brian Kern All Rights Reserved iii Abstract We have constructed a phase-binning CCD camera optimized for optical observations of faint pulsars. The phase-binning CCD camera combines the high quantum efficiency of a CCD with a pulse-phased time resolution capable of observing pulsars as fast as 10 ms, with no read noise penalty. The phase- binning CCD can also operate as a two-channel imaging polarimeter, obtaining pulse-phased linear photopolarimetric observations. We have used this phase-binning CCD to make the first measurements of optical pulsations from an anomalous X-ray pulsar. We measured the optical pulse profile of 4U 0142+61, finding a pulsed fraction of 27%, many times larger than the pulsed fraction in X-rays. From this observation, we concluded that 4U 0142+61 must be a magnetar, an ultramagnetized neutron star (B>1014 G). The optical pulse is double-peaked, similar to the soft X-ray pulse profile. We also used the phase-binning CCD to obtain the photometric and polarimetric pulse profiles of PSR B0656+14, a middle-aged isolated rotation-powered pulsar. The optical pulse profile we measured significantly disagrees with the low signal-to-noise profile previously published for this pulsar. -
Basic Principles of Celestial Navigation James A
Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig. -
25 Years of Indian Remote Sensing Satellite (IRS)
2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B • -
Optical Observations of Pulsars: the ESO Contribution R.P
Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed. -
The Space-Based Global Observing System in 2010 (GOS-2010)
WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available. -
Design of the Wavefront Sensor Unit of ARGOS, the LBT Laser Guide Star System
UNIVERSITA` DEGLI STUDI DI FIRENZE Dipartimento di Fisica e Astronomia Scuola di Dottorato in Astronomia Ciclo XXIV - FIS05 Design of the wavefront sensor unit of ARGOS, the LBT laser guide star system Candidato: Marco Bonaglia arXiv:1203.5081v1 [astro-ph.IM] 22 Mar 2012 Tutore: Prof. Alberto Righini Cotutore: Dott. Simone Esposito A common use for a glass plate is as a beam splitter, tilted at an angle of 45◦ [:::] Since this can severely degrade the image, such plate beam splitters are not recommended in convergent or divergent beams. W. J. Smith, Modern Optical Engineering. Contents 1 Introduction 1 1.1 The Large Binocular Telescope . 2 1.2 LUCI . 4 1.3 First Light AO system . 5 1.3.1 Angular anisoplanatism . 8 1.4 Wide field AO correction . 9 1.5 Laser guide star AO . 10 1.5.1 Limits of LGS AO . 11 1.5.2 Rayleigh LGS . 13 1.6 LGS-GLAO facilities . 14 1.6.1 GLAS . 15 1.6.2 The MMT GLAO system . 15 1.6.3 SAM . 18 2 ARGOS: a laser guide star AO system for the LBT 21 2.1 System design . 22 2.2 Study of ARGOS performance . 29 2.2.1 The simulation code . 30 2.2.2 Results of ARGOS end-to-end simulations . 36 3 The wavefront sensor dichroic 43 3.1 Effects of a window in a convergent beam . 43 3.2 Aberration compensation with window shape . 47 3.2.1 Effects of a wedge between surfaces . 48 3.2.2 Effects of a cylindrical surface . -
+ Return to Flight Implementation Plan -- 12Th Edition (8.4 Mb PDF)
NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond A periodically updated document demonstrating our progress toward safe return to flight and implementation of the Columbia Accident Investigation Board recommendations June 20, 2006 Volume 1, Twelfth Edition An electronic version of this implementation plan is available at www.nasa.gov NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond June 20, 2006 Twelfth Edition Change June 20, 2006 This 12th revision to NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond provides updates to three Columbia Accident Investigation Board Recommendations that were not fully closed by the Return to Flight Task Group, R3.2-1 External Tank (ET), R6.4-1 Thermal Protection System (TPS) On-Orbit Inspection and Repair, and R3.3-2 Orbiter Hardening and TPS Impact Tolerance. These updates reflect the latest status of work being done in preparation for the STS-121 mission. Following is a list of sections updated by this revision: Message from Dr. Michael Griffin Message from Mr. William Gerstenmaier Part 1 – NASA’s Response to the Columbia Accident Investigation Board’s Recommendations 3.2-1 External Tank Thermal Protection System Modifications (RTF) 3.3-2 Orbiter Hardening (RTF) 6.4-1 Thermal Protection System On-Orbit Inspect and Repair (RTF) Remove Pages Replace with Pages Cover (Feb 17, 2006) Cover (Jun. 20, 2006 ) Title page (Feb 17, 2006) Title page (Jun. 20, 2006) Message From Michael D. Griffin Message From Michael D. Griffin (Feb 17, 2006) -
The G292. 0+ 1.8 Pulsar Wind Nebula in the Mid-Infrared
Astronomy & Astrophysics manuscript no. 13164man c ESO 2018 November 8, 2018 The G292.0+1.8 pulsar wind nebula in the mid-infrared D.A. Zyuzin1,2, A.A. Danilenko1, S.V. Zharikov3, and Yu.A. Shibanov1 1 Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg, 194021, Russia 2 Academical Physical Techonological University, Khlopina 2-8, St. Petersburg, 194021, Russia 3 Observatorio Astron´omico Nacional SPM, Instituto de Astronom´ıa, UNAM, Ensenada, BC, Mexico Preprint online version: November 8, 2018 ABSTRACT Context. G292.0+1.8 is a Cas A-like supernova remnant that contains the young pulsar PSR J1124-5916 powering a compact torus- like pulsar wind nebula visible in X-rays. A likely counterpart to the nebula has been detected in the optical VRI bands. Aims. To confirm the counterpart candidate nature, we examined archival mid-infrared data obtained with the Spitzer Space Telescope. Methods. Broad-band images taken at 4.5, 8, 24, and 70 µm were analyzed and compared with available optical and X-ray data. Results. The extended counterpart candidate is firmly detected in the 4.5 and 8 µm bands. It is brighter and more extended in the bands than in the optical, and its position and morphology agree well with the coordinates and morphology of the torus-like pulsar wind nebula in X-rays. The source is not visible in 24 and 70 µm images, which are dominated by bright emission from the remnant shell and filaments. We compiled the infrared fluxes of the nebula, which probably contains a contribution from an unresolved pulsar in its center, with the optical and X-ray data. -
Pulsarplane D5.4 Final Report
NLR-CR-2015-243-PT16 PulsarPlane D5.4 Final Report Authors: H. Hesselink, P. Buist, B. Oving, H. Zelle, R. Verbeek, A. Nooroozi, C. Verhoeven, R. Heusdens, N. Gaubitch, S. Engelen, A. Kestilä, J. Fernandes, D. Brito, G. Tavares, H. Kabakchiev, D. Kabakchiev, B. Vasilev, V. Behar, M. Bentum Customer EC Contract number ACP2-GA-2013-335063 Owner PulsarPlane consortium Classification Public Date July 2015 PROJECT FINAL REPORT Grant Agreement number: 335063 Project acronym: PulsarPlane Project title: PulsarPlane Funding Scheme: FP7 L0 Period covered: from September 2013 to May 2015 Name of the scientific representative of the project's co-ordinator, Title and Organisation: H.H. (Henk) Hesselink Sr. R&D Engineer National Aerospace Laboratory, NLR Tel: +31.88.511.3445 Fax: +31.88.511.3210 E-mail: [email protected] Project website address: www.pulsarplane.eu Summary Contents 1 Introduction 4 1.1 Structure of the document 4 1.2 Acknowledgements 4 2 Final publishable summary report 5 2.1 Executive summary 5 2.2 Summary description of project context and objectives 6 2.2.1 Introduction 6 2.2.2 Description of PulsarPlane concept 6 2.2.3 Detection 8 2.2.4 Navigation 8 2.3 Main S&T results/foregrounds 9 2.3.1 Navigation based on signals from radio pulsars 9 2.3.2 Pulsar signal simulator 11 2.3.3 Antenna 13 2.3.4 Receiver 15 2.3.5 Signal processing 22 2.3.6 Navigation 24 2.3.7 Operating a pulsar navigation system 30 2.3.8 Performance 31 2.4 Potential impact and the main dissemination activities and exploitation of results 33 2.4.1 Feasibility 34 2.4.2 Costs, benefits and impact 35 2.4.3 Environmental impact 36 2.5 Public website 37 2.6 Project logo 37 2.7 Diagrams or photographs illustrating and promoting the work of the project 38 2.8 List of all beneficiaries with the corresponding contact names 39 3 Use and dissemination of foreground 41 4 Report on societal implications 46 5 Final report on the distribution of the European Union financial contribution 53 1 Introduction This document is the final report of the PulsarPlane project. -
Observations of Crab Nebula and Pulsar with VERITAS
University of California Los Angeles Observations of Crab Nebula and Pulsar with VERITAS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Ozlem¨ C¸elik 2008 c Copyright by Ozlem¨ C¸elik 2008 The dissertation of Ozlem¨ C¸elik is approved. Katsushi Arisaka Ferdinand Coroniti Kevin McKeegan Ren´eOng, Committee Chair University of California, Los Angeles 2008 ii To my parents . for their endless love and support at all times. iii Table of Contents 1 Gamma-Ray Astronomy ........................ 1 1.1 Introduction.............................. 1 1.2 GammaRays ............................. 2 1.3 MotivationsforGamma-RayAstronomy . 4 1.4 Gamma-RayDetectors ........................ 6 1.4.1 Space-BasedDetectors . 6 1.4.2 Ground-basedDetectors . 12 1.4.3 AlternativeDetectors. 16 1.5 Gamma-RaySources ......................... 16 1.5.1 GalacticSources ....................... 17 1.5.2 ExtragalacticSources. 21 1.6 GuidetoThesis............................ 24 2 Pulsars and Their Nebulae ...................... 25 2.1 Birth of the PWNe Complex: Supernovae . 26 2.2 ThePulsarStar............................ 29 2.2.1 ConnectiontoNeutronStars. 29 2.2.2 CharacteristicsofPulsars . 30 2.2.3 Non-Thermal Radiation Mechanisms at Work in PWNe . 33 2.2.4 PulsedEmission. .. .. 38 2.2.5 HE Pulsed Emission Models . 40 iv 2.2.6 Predictions of HE Emission Models . 44 2.2.7 VHE gamma-ray Observations of Pulsed Emission . 50 2.3 PulsarWindNebulae......................... 52 2.3.1 RegionsinaPWN ...................... 52 2.3.2 The Central Pulsar: The Energy Source . 53 2.3.3 Pulsar Winds: Energy Transport between Pulsar and Nebula 55 2.3.4 The Wind Termination Shock . 57 2.3.5 The Nebular Emission . -
Final Report for a Robotic Exploration Mission to Mars and Phobos Argos
NASA-CR-197168 NASw-4435 /'/F/ 4 '_/e'7 t'/-q 1- Final Report for a Robotic Exploration Mission to Mars and Phobos PROJECT AENEAS Response to RFP Number ASE274L.0893 o r,4 u_ 4" submitted to: I ,-- ,0 U i'_ C_ e" 0 Z _ 0 Dr. George Botbyl The University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics Austin, Texas 78712 Z cn _. submitted by: 0 cO_ 0 Argos Space Endeavours 29 November 1993 zxI_f _rOos 8Face _.aea_ours _roJect Aeneas CDestBn _"eam Fall 1993 Chief Executive Officer Justin H. Kerr Chief Engineer Erin Defoss6 Chief Administrator Quang Ho Engineers Emisto Barriga Grant Davis Steve McCourt Matt Smith Aeneas Project Preliminary Design of a Robotic Exploration Mission to Mars and Phobos Approved: Justin H. Kerr CEO, Argos Space Endeavours Approved: Erin Defoss6 Chief Engineer, Argos Space Endeavours Approved: Quang Ho Administrative Officer, Argos Space Endeavours Argos 8pace q .aca ours University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics November 1993 Acknowledgments Argos Space Endeavours would like to thank all personnel at The University and in industry who made Project Aeneas possible. This project was conducted with the support of the NASA/USRA Advanced Design Program. Argos Space Endeavours wholeheartedly thanks the following faculty, staff, and students from the University of Texas at Austin: Dr. Wallace Fowler, Dr. Ronald Stearman, Dr. John Lundberg, Professor Richard Drury, Dr. David Dolling, Ms. Kelly Spears, Mr. Elfego Piton, Mr. Tony Economopoulos, and Mr. David Garza. The support of Project Aeneas from the aerospace industry was overwhelming. -
Celestial Navigation At
Celestial Navigation at Sea Agenda • Moments in History • LOP (Bearing “Line of Position”) -- in piloting and celestial navigation • DR Navigation: Cornerstone of Navigation at Sea • Ocean Navigation: Combining DR Navigation with a fix of celestial body • Tools of the Celestial Navigator (a Selection, including Sextant) • Sextant Basics • Celestial Geometry • Time Categories and Time Zones (West and East) • From Measured Altitude Angles (the Sun) to LOP • Plotting a Sun Fix • Landfall Strategies: From NGA-Ocean Plotting Sheet to Coastal Chart Disclaimer! M0MENTS IN HISTORY 1731 John Hadley (English) and Thomas Godfrey (Am. Colonies) invent the Sextant 1736 John Harrison (English) invents the Marine Chronometer. Longitude can now be calculated (Time/Speed/Distance) 1766 First Nautical Almanac by Nevil Maskelyne (English) 1830 U.S. Naval Observatory founded (Nautical Almanac) An Ancient Practice, again Alive Today! Celestial Navigation Today • To no-one’s surprise, for most boaters today, navigation = electronics to navigate. • The Navy has long relied on it’s GPS-based Voyage Management System. (GPS had first been developed as a U.S. military “tool”.) • If celestial navigation comes to mind, it may bring up romantic notions or longing: Sailing or navigating “by the stars” • Yet, some study, teach and practice Celestial Navigation to keep the skill alive—and, once again, to keep our nation safe Celestial Navigation comes up in literature and film to this day: • Master and Commander with Russell Crowe and Paul Bettany. Film based on: • The “Aubrey and Maturin” novels by Patrick O’Brian • Horatio Hornblower novels by C. S. Forester • The Horatio Hornblower TV series, etc. • Airborne by William F.