Observations of Crab Nebula and Pulsar with VERITAS

Total Page:16

File Type:pdf, Size:1020Kb

Observations of Crab Nebula and Pulsar with VERITAS University of California Los Angeles Observations of Crab Nebula and Pulsar with VERITAS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Ozlem¨ C¸elik 2008 c Copyright by Ozlem¨ C¸elik 2008 The dissertation of Ozlem¨ C¸elik is approved. Katsushi Arisaka Ferdinand Coroniti Kevin McKeegan Ren´eOng, Committee Chair University of California, Los Angeles 2008 ii To my parents . for their endless love and support at all times. iii Table of Contents 1 Gamma-Ray Astronomy ........................ 1 1.1 Introduction.............................. 1 1.2 GammaRays ............................. 2 1.3 MotivationsforGamma-RayAstronomy . 4 1.4 Gamma-RayDetectors ........................ 6 1.4.1 Space-BasedDetectors . 6 1.4.2 Ground-basedDetectors . 12 1.4.3 AlternativeDetectors. 16 1.5 Gamma-RaySources ......................... 16 1.5.1 GalacticSources ....................... 17 1.5.2 ExtragalacticSources. 21 1.6 GuidetoThesis............................ 24 2 Pulsars and Their Nebulae ...................... 25 2.1 Birth of the PWNe Complex: Supernovae . 26 2.2 ThePulsarStar............................ 29 2.2.1 ConnectiontoNeutronStars. 29 2.2.2 CharacteristicsofPulsars . 30 2.2.3 Non-Thermal Radiation Mechanisms at Work in PWNe . 33 2.2.4 PulsedEmission. .. .. 38 2.2.5 HE Pulsed Emission Models . 40 iv 2.2.6 Predictions of HE Emission Models . 44 2.2.7 VHE gamma-ray Observations of Pulsed Emission . 50 2.3 PulsarWindNebulae......................... 52 2.3.1 RegionsinaPWN ...................... 52 2.3.2 The Central Pulsar: The Energy Source . 53 2.3.3 Pulsar Winds: Energy Transport between Pulsar and Nebula 55 2.3.4 The Wind Termination Shock . 57 2.3.5 The Nebular Emission . 57 2.4 CrabPulsarandNebula . .. .. 61 2.4.1 ObservationsoftheCrabNebula . 62 2.4.2 ObservationsoftheCrabPulsar . 65 2.4.3 Significance of Observations of the Crab with VERITAS . 66 3 The Ground-Based Detection of Gamma Rays .......... 70 3.1 Introduction.............................. 70 3.2 PropagationofGammaRaysInSpace . 71 3.3 Interactions of Gamma Rays and Cosmic Rays with the Atmosphere 73 3.3.1 Gamma-Ray Induced Air Showers . 73 3.3.2 Cosmic Ray Induced Air Showers . 75 3.4 Cherenkov Radiation from Air Showers . 79 3.4.1 Production of Cherenkov Radiation . 79 3.4.2 Properties of Cherenkov Radiation from Extensive Air Show- ers ............................... 83 v 3.5 Differences between Gamma-Ray and Cosmic-Ray Air Showers.. 86 3.6 Imaging Atmospheric Cherenkov Technique . 90 3.6.1 ACherenkovTelescope. 90 3.6.2 ImagingTechnique . 93 4 The VERITAS Observatory ...................... 97 4.1 The Positioner and Optical Support Structure . .. 98 4.1.1 Positioner ........................... 99 4.1.2 OpticalSupportStructure . 99 4.2 TheMirrors .............................. 100 4.2.1 Alignment of Mirrors and Optical Corrections . 102 4.3 Camera ................................ 105 4.3.1 LightCones .......................... 105 4.3.2 PhotomultiplierTubes . 106 4.3.3 HighVoltageSystem . 108 4.3.4 Preamplifiers ......................... 109 4.3.5 CurrentMonitorSystem . 111 4.3.6 TheChargeInjectionSystem . 112 4.4 Trigger................................. 113 4.4.1 LevelOneTrigger . 113 4.4.2 LevelTwoTrigger . 115 4.4.3 LevelThreeTrigger. 116 4.5 DataAcquisition ........................... 122 vi 4.5.1 FADCBoards......................... 123 4.5.2 VMEDataAcquisition . 124 4.5.3 Event-Builder . 126 4.5.4 Harvester ........................... 126 4.5.5 ArrayControl......................... 127 4.6 CalibrationoftheInstrument . 128 4.6.1 BiasCurveMeasurements . 128 4.6.2 NightlyLaserRuns . 129 4.7 ObservingModes ........................... 131 4.8 TheCrabOpticalPulsarHardware . 133 5 The Crab Observations ......................... 137 5.1 StandardDetectorConfiguration . 138 5.2 CrabDataSet............................. 139 5.3 RunQualityDiagnostics . 140 5.3.1 Hardware and Observing Problems . 140 5.3.2 FIR .............................. 141 5.3.3 TriggerRates ......................... 142 5.4 QualitySelectedCrabDataset . 143 5.5 Simulations .............................. 146 6 Data Analysis ............................... 149 6.1 TheVERITASData ......................... 151 6.2 FADCTrace/PixelAnalysis . 152 vii 6.2.1 SignalWindowDetermination . 153 6.2.2 ChargeIntegration . 156 6.2.3 TimingDetermination . 156 6.3 DataCalibration ........................... 156 6.3.1 PedestalRemoval . 157 6.3.2 FADCTimingCalibration . 160 6.3.3 RelativeGainCalibration . 164 6.3.4 Pixel Status Assessment . 167 6.4 Single Telescope Parameterization . 170 6.4.1 Cleaning............................ 171 6.4.2 HillasParameterization. 171 6.5 StereoParameterization . 174 6.5.1 Event Quality Selection . 176 6.5.2 Shower Direction Reconstruction . 178 6.5.3 ShowerCoreReconstruction . 180 6.5.4 MeanScaledParameters . 182 6.5.5 EnergyReconstruction . 184 6.5.6 LookupTables ........................ 187 6.6 GammaHadronSeparation . 189 6.7 BackgroundEstimation. 190 6.7.1 Reflected Background Region Model . 190 6.7.2 RingBackgroundRegionModel . 191 6.8 SourceDetection ........................... 191 viii 6.9 SpectrumReconstruction. 195 6.10 TheTimingAnalysis . 198 6.10.1 EventSelectionCriteria . 199 6.10.2 EpochFolding. 199 6.10.3 Barycentering . 201 6.10.4 PulseProfile. .. .. 206 7 Results ................................... 208 7.1 DetectionoftheCrabNebula . 208 7.1.1 One-Dimensional Analysis . 209 7.1.2 Two-Dimensional Analysis . 210 7.1.3 Discussion ........................... 213 7.2 Differential Energy Spectrum of the Crab Nebula . 216 7.2.1 EstimationofSystematicErrors . 225 7.3 The Detection of Optical Pulsed Emission From the Crab Pulsar . 229 7.4 The Search for Gamma-Ray Pulsed Emission from the Crab Pulsar 232 8 Summary and Interpretation of the Results ............ 240 8.1 DetectionoftheCrabNebula . 240 8.2 Differential Energy Spectrum of the Crab Nebula . 242 8.3 Upper Limit on the Pulsed Emission from the Crab Pulsar . 246 8.4 Future Directions for the Studies of Pulsed Emission from Pulsars 249 8.4.1 Resolving the Puzzle on Location of Pulsed-Emission Sites 250 8.4.2 Identify the Spectral Characteristics . 250 ix 8.4.3 PopulationStudies . 251 A Crab Data Set .............................. 253 References ................................... 268 x List of Figures 1.1 The various wavelength, frequency and energy bands of the elec- tromagneticspectrumareshown. 3 1.2 The main components of a space-based detector are shown for the modeloftheLATdetectorforFGST.. 7 1.3 The results of the EGRET experiment, the point sources in the third EGRET source catalog and the all-sky diffuse emission map, areshown................................ 10 1.4 Illustrations of space-based telescopes, CGRO and FGST, are shown with their different instruments labeled. 11 1.5 The sources in the current VHE gamma-ray sky are shown. .. 17 2.1 The components of a remnant after the supernova explosion are shownwithadiagram. ........................ 27 2.2 The diagram showing the instantaneous cone of the synchrotron radiation emitted by a relativistic electron moving in a magnetic fieldregion. .............................. 35 2.3 Diagram illustrating the inverse-Compton scattering is given. 37 2.4 The charge deficit regions for acceleration of particles and emission of pulsed radiation are shown for different high-energy models. 41 2.5 Phase plots of the pulsed emission light profiles and sketches of the relevant acceleration regions for typical inclination angles for polarcapandslotgapmodelsareshown. 45 xi 2.6 Phase plots of the pulsed emission light profiles and the sketches of the relevant acceleration regions for typical inclination angles foroutergapmodelareshown. 46 2.7 The predicted spectra of the Vela pulsar for the polar cap and outer gap models and simulated data points for those models are shown[1]. ............................... 48 2.8 The pulse profiles of the seven gamma-ray pulsars in six energy bands[2]. ............................... 51 2.9 A sketch showing the main regions in a PWN complex and the emittedradiationfromtheseregions[3]. 52 2.10 The broadband spectrum of the non-thermal emission from the Crab Nebula from radio to very-high-energy gamma rays is shown [4]. 59 2.11 Images of the Crab Nebula in different wavelengths are given [5]. 63 2.12 The pulse profile of the Crab Pulsar detected by EGRET above 100MeV[6]............................... 66 2.13 The EGRET data points, and the pulsed spectrum according to the predictions of polar cap and outer gap models along with the various upper limits attained from the observations of ground- basedtelescopesareshown. 67 2.14 The spectrum of the Crab Nebula measured by the Whipple [7] and EGRET [8] experiments are compared with the predicted IC spectrum [9] for three different magnetic field strengths [7]. ... 68 3.1 Interactionsofagammaray-I . 73 3.2 Interactionsofagammaray-II . 74 xii 3.3 Schematic diagram of the generation of a gamma-ray induced ex- tensiveairshower[10]. 76 3.4 Schematic diagram of a cosmic-ray induced extensive air shower; three different components are labeled. 78 3.5 Diagrams illustrating the production of Cherenkov Radiation. 80 3.6 The Cherenkov angle can be deduced from the diagram using simple geometric arguments. See the text for explanation of the derivation................................ 81 3.7 The intrinsic spectrum of Cherenkov radiation and the spectrum of the transmitted Cherenkov radiation is plotted. .. 83 3.8 Various parameters of the Cherenkov light emitted from an exten-
Recommended publications
  • PDF (Thesis020605.Pdf)
    Optical Pulse-Phased Observations of Faint Pulsars with a Phase-Binning CCD Camera Thesis by Brian Kern In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ITUTE O ST F N T I E C A I H N N R 1891 O O L F O I G L Y A C California Institute of Technology Pasadena, California 2002 (Submitted May 29, 2002) ii c 2002 Brian Kern All Rights Reserved iii Abstract We have constructed a phase-binning CCD camera optimized for optical observations of faint pulsars. The phase-binning CCD camera combines the high quantum efficiency of a CCD with a pulse-phased time resolution capable of observing pulsars as fast as 10 ms, with no read noise penalty. The phase- binning CCD can also operate as a two-channel imaging polarimeter, obtaining pulse-phased linear photopolarimetric observations. We have used this phase-binning CCD to make the first measurements of optical pulsations from an anomalous X-ray pulsar. We measured the optical pulse profile of 4U 0142+61, finding a pulsed fraction of 27%, many times larger than the pulsed fraction in X-rays. From this observation, we concluded that 4U 0142+61 must be a magnetar, an ultramagnetized neutron star (B>1014 G). The optical pulse is double-peaked, similar to the soft X-ray pulse profile. We also used the phase-binning CCD to obtain the photometric and polarimetric pulse profiles of PSR B0656+14, a middle-aged isolated rotation-powered pulsar. The optical pulse profile we measured significantly disagrees with the low signal-to-noise profile previously published for this pulsar.
    [Show full text]
  • R-Process Elements from Magnetorotational Hypernovae
    r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13.
    [Show full text]
  • Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Xxneutron-Star Binaries: X-Ray Bursters
    Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 XXNeutron-Star Binaries: X-ray bursters [Look at the slides and the pictures in your book, but I won’t test you on this in detail, and we may skip altogether in class.] 22.4 Gamma-Ray Bursts 22.5 Black Holes 22.6 XXEinstein’s Theories of Relativity Special Relativity 22.7 Space Travel Near Black Holes 22.8 Observational Evidence for Black Holes Tests of General Relativity Gravity Waves: A New Window on the Universe Neutron Stars and Pulsars (sec. 22.1, 2 in textbook) 22.1 Neutron Stars According to models for stellar explosions: After a carbon detonation supernova (white dwarf in binary), little or nothing remains of the original star. After a core collapse supernova, part of the core may survive. It is very dense—as dense as an atomic nucleus—and is called a neutron star. [Recall that during core collapse the iron core (ashes of previous fusion reactions) is disintegrated into protons and neutrons, the protons combine with the surrounding electrons to make more neutrons, so the core becomes pure neutron matter. Because of this, core collapse can be halted if the core’s mass is between 1.4 (the Chandrasekhar limit) and about 3-4 solar masses, by neutron degeneracy.] What do you get if the core mass is less than 1.4 solar masses? Greater than 3-4 solar masses? 22.1 Neutron Stars Neutron stars, although they have 1–3 solar masses, are so dense that they are very small.
    [Show full text]
  • Optical Observations of Pulsars: the ESO Contribution R.P
    Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed.
    [Show full text]
  • Searching for Gravitational Waves
    Astronomy group seminar, University of Southampton, Jan 2015 LIGO-DCC G1500072 1. Gravitational wave (GW) background What are gravitational waves? • Gravitational waves are a direct prediction of Einstein’s General Theory of Relativity • Solutions to (weak field) Einstein equations in vacuum are wave equations 휕2 − + 훻2 ℎ휇휈 = −16휋푇휇휈 휕푡 2 Vacuum so stress- energy tensor 2 휕 푇휇휈 = 0 − + 훻2 ℎ휇휈 = 0 휕푡 2 휇휈 휇휈 휇 ℎ = 퐴 exp 푘휇 푥 • “Ripples in space-time” What are GWs? • Einstein first predicted GWs in 1916 paper • This had a major error – the waves carried no energy! Einstein, “Näherungsweise Integration der Feldgleichungen der Gravitation“, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 1916 What are GWs? • Corrected in 1918 paper which introduced the now famous “quadrupole formula” Einstein, “Über Gravitationswellen“, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 1918 What are GWs Source: Bulk Motion Oscillating Tidal Field Observer Detects Produces Changing Tidal Field Propagates (Unobstructed) Distortion Strain to Observer 푙 + Δ푙 푙 Δ푙 Strain: ℎ = 푙 2 퐺 mass quadruple Quadrupole ℎ(푡) = 퐼( 푡) formula: 푟 푐4 -45 source distance (1/r - ~ 8x10 small number! amplitude not power!) What are GWs? For two 1.4 M⊙ neutron stars 2 퐺 mass near coalescence at a distance of ℎ(푡) = 퐼( 푡) quadruple 10 Mpc ℎ~1.4 × 10−22 푟 푐4 -45 Displacement measured by 4km long ~ 8x10 detector ~5.6 × 10−19m - about 1/10000th source distance (1/r - amplitude not power!) diameter of a proton, or measuring change in distance to α Centauri to ~1/10th diameter of a human hair! • Detectable gravitational waves (GWs) will only come from the most massive and energetic systems in the universe e.g.
    [Show full text]
  • Central Engines and Environment of Superluminous Supernovae
    Central Engines and Environment of Superluminous Supernovae Blinnikov S.I.1;2;3 1 NIC Kurchatov Inst. ITEP, Moscow 2 SAI, MSU, Moscow 3 Kavli IPMU, Kashiwa with E.Sorokina, K.Nomoto, P. Baklanov, A.Tolstov, E.Kozyreva, M.Potashov, et al. Schloss Ringberg, 26 July 2017 First Superluminous Supernova (SLSN) is discovered in 2006 -21 1994I 1997ef 1998bw -21 -20 56 2002ap Co to 2003jd 56 2007bg -19 Fe 2007bi -20 -18 -19 -17 -16 -18 Absolute magnitude -15 -17 -14 -13 -16 0 50 100 150 200 250 300 350 -20 0 20 40 60 Epoch (days) Superluminous SN of type II Superluminous SN of type I SN2006gy used to be the most luminous SN in 2006, but not now. Now many SNe are discovered even more luminous. The number of Superluminous Supernovae (SLSNe) discovered is growing. The models explaining those events with the minimum energy budget involve multiple ejections of mass in presupernova stars. Mass loss and build-up of envelopes around massive stars are generic features of stellar evolution. Normally, those envelopes are rather diluted, and they do not change significantly the light produced in the majority of supernovae. 2 SLSNe are not equal to Hypernovae Hypernovae are not extremely luminous, but they have high kinetic energy of explosion. Afterglow of GRB130702A with bumps interpreted as a hypernova. Alina Volnova, et al. 2017. Multicolour modelling of SN 2013dx associated with GRB130702A. MNRAS 467, 3500. 3 Our models of LC with STELLA E ≈ 35 foe. First year light ∼ 0:03 foe while for SLSNe it is an order of magnitude larger.
    [Show full text]
  • Modeling Hyperenergetic and Superluminous Supernovae
    Modeling hyperenergetic and superluminous supernovae Philipp Mösta Einstein fellow @ UC Berkeley [email protected] Roland Haas, Goni Halevi, Christian Ott, Sherwood Richers, Luke Roberts, Erik Schnetter BlueWaters symposium 2017 May 17, 2017 Astrophysics of core-collapse supernovae M82/Chandra/NASA ~ Galaxy evolution/feedback Heavy element nucleosynthesis Birth sites of black holes / neutron stars 2 Neutrinos New era of transient science • Current (PTF, DeCAM, ASAS-SN) and upcoming wide-field time domain astronomy (ZTF, LSST, …) -> wealth of data • adv LIGO / gravitational waves detected • Computational tools at dawn of new exascale era Image: PTF/ZTF/COO Image: LSST 3 New era of transient science • Current (PTF, DeCAM, ASAS-SN) and upcoming wide-field time domain astronomy (ZTF, LSST, …) -> wealth of data • adv LIGO / gravitational waves detected • Computational tools at dawn of new exascale era Transformative years ahead for our understanding of these events Image: PTF/ZTF/COO Image: LSST 4 Hypernovae & GRBs • 11 long GRB – core-collapse supernova associations. • All GRB-SNe are stripped envelope, show outflows v~0.1c • But not all stripped-envelope supernovae come with GRBs • Trace low metallicity and low redshift Neutrino mechanism is inefficient; can’t deliver a hypernova 5 Superluminous supernovae Some events: stripped envelope no interaction 45 Elum ~ 10 erg 52 Erad up to 10 erg Gal-Yam+12 6 Superluminous / hyperenergetic supernovae SLSN Ic lGRBs SN Ic-bl Common engine? 7 Core collapse basics Iron core Protoneutron star r~30km
    [Show full text]
  • Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae
    SLAC-PUB-12126 astro-ph/0601111 September 2006 Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae Shigehiro Nagataki1,2, Akira Mizuta3, Katsuhiko Sato4,5 ABSTRACT Two-dimensional hydrodynamic simulations are performed to investigate ex- plosive nucleosynthesis in a collapsar using the model of MacFadyen and Woosley (1999). It is shown that 56Ni is not produced in the jet of the collapsar suffi- ciently to explain the observed amount of a hypernova when the duration of the explosion is ∼10 sec, which is considered to be the typical timescale of explosion in the collapsar model. Even though a considerable amount of 56Ni is synthesized if all explosion energy is deposited initially, the opening angles of the jets become too wide to realize highly relativistic outflows and gamma-ray bursts in such a case. From these results, it is concluded that the origin of 56Ni in hypernovae associated with GRBs is not the explosive nucleosynthesis in the jet. We consider that the idea that the origin is the explosive nucleosynthesis in the accretion disk is more promising. We also show that the explosion becomes bi-polar naturally due to the effect of the deformed progenitor. This fact suggests that the 56Ni synthesized in the accretion disk and conveyed as outflows are blown along to the rotation axis, which will explain the line features of SN 1998bw and double peaked line features of SN 2003jd. Some fraction of the gamma-ray lines from 56Ni decays in the jet will appear without losing their energies because the jet becomes optically thin before a considerable amount of 56Ni decays as long as the jet is a relativistic flow, which may be observed as relativistically Lorentz boosted line profiles in future.
    [Show full text]
  • The G292. 0+ 1.8 Pulsar Wind Nebula in the Mid-Infrared
    Astronomy & Astrophysics manuscript no. 13164man c ESO 2018 November 8, 2018 The G292.0+1.8 pulsar wind nebula in the mid-infrared D.A. Zyuzin1,2, A.A. Danilenko1, S.V. Zharikov3, and Yu.A. Shibanov1 1 Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg, 194021, Russia 2 Academical Physical Techonological University, Khlopina 2-8, St. Petersburg, 194021, Russia 3 Observatorio Astron´omico Nacional SPM, Instituto de Astronom´ıa, UNAM, Ensenada, BC, Mexico Preprint online version: November 8, 2018 ABSTRACT Context. G292.0+1.8 is a Cas A-like supernova remnant that contains the young pulsar PSR J1124-5916 powering a compact torus- like pulsar wind nebula visible in X-rays. A likely counterpart to the nebula has been detected in the optical VRI bands. Aims. To confirm the counterpart candidate nature, we examined archival mid-infrared data obtained with the Spitzer Space Telescope. Methods. Broad-band images taken at 4.5, 8, 24, and 70 µm were analyzed and compared with available optical and X-ray data. Results. The extended counterpart candidate is firmly detected in the 4.5 and 8 µm bands. It is brighter and more extended in the bands than in the optical, and its position and morphology agree well with the coordinates and morphology of the torus-like pulsar wind nebula in X-rays. The source is not visible in 24 and 70 µm images, which are dominated by bright emission from the remnant shell and filaments. We compiled the infrared fluxes of the nebula, which probably contains a contribution from an unresolved pulsar in its center, with the optical and X-ray data.
    [Show full text]
  • Pulsar Characteristics Across the Energy Spectrum
    Pulsar Characteristics Across The Energy Spectrum Agnieszka Slo wikowska Nicolaus Copernicus Astronomical Center Department of Astrophysics in Torun´ Ph. D. Thesis written under the supervision of Dr. Bronis law Rudak Warsaw 2006 I dedicate this thesis to my husband Acknowledgements I am deeply grateful to many people for their help and support during my studies. In particular, I would like to thank Dr. Bronis law Rudak for giving me the opportunity to work as a member of a pulsar group at Copernicus Astronomical Center, and for supervising my PhD thesis. I am grateful to the Director of CAMK for offering me the fellowship, support, and excellent conditions to study and work. I am grateful to both, the European Association for Research in Astronomy Marie Curie Training Site and Deutsche Akademischer Austausch Dienst for the EARASTAR- GAL and DAAD fellowships, respectively. This work was also supported by KBN grant 2P03D.004.24. I am very grateful to Bronek Rudak for all his help, support and advice during my PhD. I would especially like to thank him for reading the thesis and for giving me comments and advice on how to significantly improve it. I appreciate very much his help in organising the formal preparation of getting the degree. I am thankful for financial support, for sending letters of recommendation, and for allowing me to present my work at various conferences and meetings. Additionally, for encouraging me to apply for different fellowships and for giving me opportunities to work outside Poland. I am most grateful for his friendship. I would like to thank Gottfried Kanbach, Axel Jessner, Lucien Kuiper, Wim Hermsen, Roberto Mignani and Werner Becker for giving me the possibilities to work with them.
    [Show full text]
  • PHYS 231 Lecture Notes – Week 7
    PHYS 231 Lecture Notes { Week 7 Reading from Maoz (2nd edition): • Sections 4.1{4.5 Again, a lot of the material presented in class this week is well covered in Maoz, and we simply reference the book, with additional comments and derivations as needed. References to slides on the web page are in the format \slidesx.y/nn," where x is week, y is lecture, and nn is slide number. 7.1 High-Mass Stars See Maoz x4.3.1 High-mass stars don't have degeneracy problems that limit their ability to burn heavier elements. As described in the text, they carbon and oxygen into neon, magnesium, silicon, and all the way up to iron. Fusion occurs principally by alpha capture (because of the lower coulomb barrier), bur C-C and other relatively low-mass reactions also occur. The process accelerates greatly as heavier and heavier elements are produced. The core of the star develops a layered structure, with shells of lighter elements surrounding a non-burning and growing nickel-iron core (see slides7.2/15,16). The star now has a new problem. Up to now, this scenario would have led to a new round of fusion in the core and a temporary restoration of stability, but not in this case. Elements in the so-called iron group (with A ≈ 56) have the largest binding energy per nucleon of all elements (see slides7.2/19). Simply put, fusing lighter elements (H, He, C, etc.) will increase the total binding energy, creating more tightly bound elements and releasing energy.
    [Show full text]
  • Spacecraft Navigation Using X-Ray Pulsars
    JOURNAL OF GUIDANCE,CONTROL, AND DYNAMICS Vol. 29, No. 1, January–February 2006 Spacecraft Navigation Using X-Ray Pulsars Suneel I. Sheikh∗ and Darryll J. Pines† University of Maryland, College Park, Maryland 20742 and Paul S. Ray,‡ Kent S. Wood,§ Michael N. Lovellette,¶ and Michael T. Wolff∗∗ U.S. Naval Research Laboratory, Washington, D.C. 20375 The feasibility of determining spacecraft time and position using x-ray pulsars is explored. Pulsars are rapidly rotating neutron stars that generate pulsed electromagnetic radiation. A detailed analysis of eight x-ray pulsars is presented to quantify expected spacecraft position accuracy based on described pulsar properties, detector parameters, and pulsar observation times. In addition, a time transformation equation is developed to provide comparisons of measured and predicted pulse time of arrival for accurate time and position determination. This model is used in a new pulsar navigation approach that provides corrections to estimated spacecraft position. This approach is evaluated using recorded flight data obtained from the unconventional stellar aspect x-ray timing experiment. Results from these data provide first demonstration of position determination using the Crab pulsar. Introduction sources, including neutron stars, that provide stable, predictable, and HROUGHOUT history, celestial sources have been utilized unique signatures, may provide new answers to navigating through- T for vehicle navigation. Many ships have successfully sailed out the solar system and beyond. the Earth’s oceans using only these celestial aides. Additionally, ve- This paper describes the utilization of pulsar sources, specifically hicles operating in the space environment may make use of celestial those emitting in the x-ray band, as navigation aides for spacecraft.
    [Show full text]