Observations of Crab Nebula and Pulsar with VERITAS
Total Page:16
File Type:pdf, Size:1020Kb
University of California Los Angeles Observations of Crab Nebula and Pulsar with VERITAS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Ozlem¨ C¸elik 2008 c Copyright by Ozlem¨ C¸elik 2008 The dissertation of Ozlem¨ C¸elik is approved. Katsushi Arisaka Ferdinand Coroniti Kevin McKeegan Ren´eOng, Committee Chair University of California, Los Angeles 2008 ii To my parents . for their endless love and support at all times. iii Table of Contents 1 Gamma-Ray Astronomy ........................ 1 1.1 Introduction.............................. 1 1.2 GammaRays ............................. 2 1.3 MotivationsforGamma-RayAstronomy . 4 1.4 Gamma-RayDetectors ........................ 6 1.4.1 Space-BasedDetectors . 6 1.4.2 Ground-basedDetectors . 12 1.4.3 AlternativeDetectors. 16 1.5 Gamma-RaySources ......................... 16 1.5.1 GalacticSources ....................... 17 1.5.2 ExtragalacticSources. 21 1.6 GuidetoThesis............................ 24 2 Pulsars and Their Nebulae ...................... 25 2.1 Birth of the PWNe Complex: Supernovae . 26 2.2 ThePulsarStar............................ 29 2.2.1 ConnectiontoNeutronStars. 29 2.2.2 CharacteristicsofPulsars . 30 2.2.3 Non-Thermal Radiation Mechanisms at Work in PWNe . 33 2.2.4 PulsedEmission. .. .. 38 2.2.5 HE Pulsed Emission Models . 40 iv 2.2.6 Predictions of HE Emission Models . 44 2.2.7 VHE gamma-ray Observations of Pulsed Emission . 50 2.3 PulsarWindNebulae......................... 52 2.3.1 RegionsinaPWN ...................... 52 2.3.2 The Central Pulsar: The Energy Source . 53 2.3.3 Pulsar Winds: Energy Transport between Pulsar and Nebula 55 2.3.4 The Wind Termination Shock . 57 2.3.5 The Nebular Emission . 57 2.4 CrabPulsarandNebula . .. .. 61 2.4.1 ObservationsoftheCrabNebula . 62 2.4.2 ObservationsoftheCrabPulsar . 65 2.4.3 Significance of Observations of the Crab with VERITAS . 66 3 The Ground-Based Detection of Gamma Rays .......... 70 3.1 Introduction.............................. 70 3.2 PropagationofGammaRaysInSpace . 71 3.3 Interactions of Gamma Rays and Cosmic Rays with the Atmosphere 73 3.3.1 Gamma-Ray Induced Air Showers . 73 3.3.2 Cosmic Ray Induced Air Showers . 75 3.4 Cherenkov Radiation from Air Showers . 79 3.4.1 Production of Cherenkov Radiation . 79 3.4.2 Properties of Cherenkov Radiation from Extensive Air Show- ers ............................... 83 v 3.5 Differences between Gamma-Ray and Cosmic-Ray Air Showers.. 86 3.6 Imaging Atmospheric Cherenkov Technique . 90 3.6.1 ACherenkovTelescope. 90 3.6.2 ImagingTechnique . 93 4 The VERITAS Observatory ...................... 97 4.1 The Positioner and Optical Support Structure . .. 98 4.1.1 Positioner ........................... 99 4.1.2 OpticalSupportStructure . 99 4.2 TheMirrors .............................. 100 4.2.1 Alignment of Mirrors and Optical Corrections . 102 4.3 Camera ................................ 105 4.3.1 LightCones .......................... 105 4.3.2 PhotomultiplierTubes . 106 4.3.3 HighVoltageSystem . 108 4.3.4 Preamplifiers ......................... 109 4.3.5 CurrentMonitorSystem . 111 4.3.6 TheChargeInjectionSystem . 112 4.4 Trigger................................. 113 4.4.1 LevelOneTrigger . 113 4.4.2 LevelTwoTrigger . 115 4.4.3 LevelThreeTrigger. 116 4.5 DataAcquisition ........................... 122 vi 4.5.1 FADCBoards......................... 123 4.5.2 VMEDataAcquisition . 124 4.5.3 Event-Builder . 126 4.5.4 Harvester ........................... 126 4.5.5 ArrayControl......................... 127 4.6 CalibrationoftheInstrument . 128 4.6.1 BiasCurveMeasurements . 128 4.6.2 NightlyLaserRuns . 129 4.7 ObservingModes ........................... 131 4.8 TheCrabOpticalPulsarHardware . 133 5 The Crab Observations ......................... 137 5.1 StandardDetectorConfiguration . 138 5.2 CrabDataSet............................. 139 5.3 RunQualityDiagnostics . 140 5.3.1 Hardware and Observing Problems . 140 5.3.2 FIR .............................. 141 5.3.3 TriggerRates ......................... 142 5.4 QualitySelectedCrabDataset . 143 5.5 Simulations .............................. 146 6 Data Analysis ............................... 149 6.1 TheVERITASData ......................... 151 6.2 FADCTrace/PixelAnalysis . 152 vii 6.2.1 SignalWindowDetermination . 153 6.2.2 ChargeIntegration . 156 6.2.3 TimingDetermination . 156 6.3 DataCalibration ........................... 156 6.3.1 PedestalRemoval . 157 6.3.2 FADCTimingCalibration . 160 6.3.3 RelativeGainCalibration . 164 6.3.4 Pixel Status Assessment . 167 6.4 Single Telescope Parameterization . 170 6.4.1 Cleaning............................ 171 6.4.2 HillasParameterization. 171 6.5 StereoParameterization . 174 6.5.1 Event Quality Selection . 176 6.5.2 Shower Direction Reconstruction . 178 6.5.3 ShowerCoreReconstruction . 180 6.5.4 MeanScaledParameters . 182 6.5.5 EnergyReconstruction . 184 6.5.6 LookupTables ........................ 187 6.6 GammaHadronSeparation . 189 6.7 BackgroundEstimation. 190 6.7.1 Reflected Background Region Model . 190 6.7.2 RingBackgroundRegionModel . 191 6.8 SourceDetection ........................... 191 viii 6.9 SpectrumReconstruction. 195 6.10 TheTimingAnalysis . 198 6.10.1 EventSelectionCriteria . 199 6.10.2 EpochFolding. 199 6.10.3 Barycentering . 201 6.10.4 PulseProfile. .. .. 206 7 Results ................................... 208 7.1 DetectionoftheCrabNebula . 208 7.1.1 One-Dimensional Analysis . 209 7.1.2 Two-Dimensional Analysis . 210 7.1.3 Discussion ........................... 213 7.2 Differential Energy Spectrum of the Crab Nebula . 216 7.2.1 EstimationofSystematicErrors . 225 7.3 The Detection of Optical Pulsed Emission From the Crab Pulsar . 229 7.4 The Search for Gamma-Ray Pulsed Emission from the Crab Pulsar 232 8 Summary and Interpretation of the Results ............ 240 8.1 DetectionoftheCrabNebula . 240 8.2 Differential Energy Spectrum of the Crab Nebula . 242 8.3 Upper Limit on the Pulsed Emission from the Crab Pulsar . 246 8.4 Future Directions for the Studies of Pulsed Emission from Pulsars 249 8.4.1 Resolving the Puzzle on Location of Pulsed-Emission Sites 250 8.4.2 Identify the Spectral Characteristics . 250 ix 8.4.3 PopulationStudies . 251 A Crab Data Set .............................. 253 References ................................... 268 x List of Figures 1.1 The various wavelength, frequency and energy bands of the elec- tromagneticspectrumareshown. 3 1.2 The main components of a space-based detector are shown for the modeloftheLATdetectorforFGST.. 7 1.3 The results of the EGRET experiment, the point sources in the third EGRET source catalog and the all-sky diffuse emission map, areshown................................ 10 1.4 Illustrations of space-based telescopes, CGRO and FGST, are shown with their different instruments labeled. 11 1.5 The sources in the current VHE gamma-ray sky are shown. .. 17 2.1 The components of a remnant after the supernova explosion are shownwithadiagram. ........................ 27 2.2 The diagram showing the instantaneous cone of the synchrotron radiation emitted by a relativistic electron moving in a magnetic fieldregion. .............................. 35 2.3 Diagram illustrating the inverse-Compton scattering is given. 37 2.4 The charge deficit regions for acceleration of particles and emission of pulsed radiation are shown for different high-energy models. 41 2.5 Phase plots of the pulsed emission light profiles and sketches of the relevant acceleration regions for typical inclination angles for polarcapandslotgapmodelsareshown. 45 xi 2.6 Phase plots of the pulsed emission light profiles and the sketches of the relevant acceleration regions for typical inclination angles foroutergapmodelareshown. 46 2.7 The predicted spectra of the Vela pulsar for the polar cap and outer gap models and simulated data points for those models are shown[1]. ............................... 48 2.8 The pulse profiles of the seven gamma-ray pulsars in six energy bands[2]. ............................... 51 2.9 A sketch showing the main regions in a PWN complex and the emittedradiationfromtheseregions[3]. 52 2.10 The broadband spectrum of the non-thermal emission from the Crab Nebula from radio to very-high-energy gamma rays is shown [4]. 59 2.11 Images of the Crab Nebula in different wavelengths are given [5]. 63 2.12 The pulse profile of the Crab Pulsar detected by EGRET above 100MeV[6]............................... 66 2.13 The EGRET data points, and the pulsed spectrum according to the predictions of polar cap and outer gap models along with the various upper limits attained from the observations of ground- basedtelescopesareshown. 67 2.14 The spectrum of the Crab Nebula measured by the Whipple [7] and EGRET [8] experiments are compared with the predicted IC spectrum [9] for three different magnetic field strengths [7]. ... 68 3.1 Interactionsofagammaray-I . 73 3.2 Interactionsofagammaray-II . 74 xii 3.3 Schematic diagram of the generation of a gamma-ray induced ex- tensiveairshower[10]. 76 3.4 Schematic diagram of a cosmic-ray induced extensive air shower; three different components are labeled. 78 3.5 Diagrams illustrating the production of Cherenkov Radiation. 80 3.6 The Cherenkov angle can be deduced from the diagram using simple geometric arguments. See the text for explanation of the derivation................................ 81 3.7 The intrinsic spectrum of Cherenkov radiation and the spectrum of the transmitted Cherenkov radiation is plotted. .. 83 3.8 Various parameters of the Cherenkov light emitted from an exten-