PDF (Thesis020605.Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

PDF (Thesis020605.Pdf) Optical Pulse-Phased Observations of Faint Pulsars with a Phase-Binning CCD Camera Thesis by Brian Kern In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ITUTE O ST F N T I E C A I H N N R 1891 O O L F O I G L Y A C California Institute of Technology Pasadena, California 2002 (Submitted May 29, 2002) ii c 2002 Brian Kern All Rights Reserved iii Abstract We have constructed a phase-binning CCD camera optimized for optical observations of faint pulsars. The phase-binning CCD camera combines the high quantum efficiency of a CCD with a pulse-phased time resolution capable of observing pulsars as fast as 10 ms, with no read noise penalty. The phase- binning CCD can also operate as a two-channel imaging polarimeter, obtaining pulse-phased linear photopolarimetric observations. We have used this phase-binning CCD to make the first measurements of optical pulsations from an anomalous X-ray pulsar. We measured the optical pulse profile of 4U 0142+61, finding a pulsed fraction of 27%, many times larger than the pulsed fraction in X-rays. From this observation, we concluded that 4U 0142+61 must be a magnetar, an ultramagnetized neutron star (B>1014 G). The optical pulse is double-peaked, similar to the soft X-ray pulse profile. We also used the phase-binning CCD to obtain the photometric and polarimetric pulse profiles of PSR B0656+14, a middle-aged isolated rotation-powered pulsar. The optical pulse profile we measured significantly disagrees with the low signal-to-noise profile previously published for this pulsar. Our results show that the optical flux is entirely pulsed, with optical peaks at phases 0.2 and 0.8 with respect to the radio peak, and a bridge of emission between the peaks. The significance of the detection of pulsed polarized flux is low, but the position angles match the extrapolation of the radio polarization profile. The optical data, both photometric and polarimetric, are consistent with the polar cap model of pulsar magnetospheric emission. The fit of the optical data with the competing emission model, the outer gap model, has not yet been determined. We have developed a number of statistical tools, both to estimate the errors in our measurements and to identify systematic errors present in the pulse profiles. The statistical tools, when applied to the data presented here, show that the systematic errors are negligible, bolstering the claims of significance of these results. iv Acknowledgements An instrumentation project, by necessity, involves a number of people who contribute labor, insight, and support, in significant ways that often go unthanked and unrewarded. The person most de- serving of thanks and rewards is Steve Kaye. As an engineer, Steve was not only responsible for a significant effort in designing the electronics that make this instrument get up and go, but also for providing an extra hand when aligning optics, an extra eye when analyzing noise, whether it be on an oscilloscope or, just as likely, generated by the data analysis software itself, an extra ear when trying to sort through complex problems, and an undiscriminating palate when trying to feed our- selves at 4 a.m. the night before packing up to drive to Palomar. For that matter, he also provided his own hallucinations during long, cold winder observing runs. Steve has always been willing to fill whatever roles are in need of filling, and has always stepped up to the task when asked to do so. Perhaps even more importantly, he has been as agreeable and entertaining a friend as I could hope for, whose value cannot be underestimated when trying to keep up the battle after years upon years of failure to get data. Steve deserves everything I can thank him for and more. My advisor, Chris Martin, has provided the idea, the motivation, the support, and the encour- agement to make this project happen, from before the time I even arrived on the scene. He has never lost faith in my abilities and my good sense, even long after I have lost that same faith. With a small number of words, he has been able to maintain my self-confidence and my desire to see this project through. From its inception (as a three-month side project) through the excitement of finally getting real data, Chris has provided the calm dedication and conviction that this would eventually bear fruit. But most importantly, when I am frustrated that things aren’t coming along as I had hoped, Chris shares his understanding that these things are hard; in fact, if they weren’t hard, somebody else would have already done it. Many of the people that provide the support needed to keep this project moving never receive any feedback at all. The machinists in the Physics Shop deserve an enormous amount of credit and thanks for putting up with me when I want something by, “hmm ... How about tomorrow?” Just as important, the friendly and supportive environment provided when I’m working in the shop along with them is another way this project kept moving along. Rick, Terry, Richard, Armando, Ram´on, Isaac, Stan, Jos´e, Phil, and Nathaniel deserve far more credit than they generally receive for Caltech continuing to plod along in its pursuit of new goodies. Likewise, without the Palomar Observatory staff making that big telescope swing when we ask it to, without dropping our instrument, none of this would mean anything. v Through my embarrassingly long stay as a grad student at Caltech, a number of people have donated pieces of themselves to my experience here. My contemporaries, Brad Behr, Ben Oppen- heimer, Roy Gal, Marc Kushner, and Andrew Baker, were good people to share offices and years with as we assimilated into Caltech life. Dave Schiminovich, Ryan McLean, John Klemic, Mark Mechtlen, and Rev. Jim have been daily components of my more recent years’ experience, and have all added something extra to my understanding or enjoyment, or both. Dave deserves enormous thanks for donating a week of sleepless days and nights in our largely unsuccessful Chile camapaign. I have Bob Rutledge to thank for teaching me everything there is to know about X-ray astronomy (or, at least, everything I know about X-ray astronomy). Professional associations aside, my deep personal thanks go to to my father, who armed me with a solid education and instilled in me the self-confidence and the drive to find my own way in this world. His unswerving confidence in me was the extra push I needed at several points in my wanderings. More importantly, he taught me that it doesn’t mean much unless you enjoy life along the way. I wish there were a way to share my feelings with my mother, and for her to know I’ve followedinherfootsteps. I also single out my brother for credit, for the odd reason that I always want to tell him interesting things about what I’m working on. Is that brotherly or just competitive? Despite the magnitude of thanks I owe to everyone else, the one person to whom I owe the biggest debt is Genna, my fianc´ee. Every single night of every year, whether I was frustrated by mechanical or software problems, returning from observing through clouds or 5 arcsec seeing, Genna welcomed me home and warmed my heart. It is not possible for me to imagine making it through every day without the uncomplicated love she shows me. vi Contents Abstract iii Acknowledgements iv 1 Introduction 1 1.1OpticalPulsarObservations................................ 1 1.2ScientificFramework.................................... 3 1.3HistoryofThisEffort................................... 5 1.4OrganizationoftheThesis................................. 7 2 Instrumentation 8 2.1 Principles of Operation . 8 2.1.1 Phase Binning . 8 2.1.2 Timing....................................... 9 2.1.3 Systematic errors . 11 2.1.4 Polarization capabilities . 13 2.1.5 Nonperiodicshort-exposureimaging....................... 14 2.2Optical/Mechanical..................................... 16 2.2.1 Overview...................................... 16 2.2.2 Wide-fieldopticallayout.............................. 17 2.2.3 Dual-channelpolarimeteropticallayout..................... 18 2.2.4 Thermal....................................... 20 2.3Electronics......................................... 20 2.3.1 Overview...................................... 20 2.3.2 GPSSystem.................................... 20 2.3.3 DAQSystem.................................... 22 2.3.4 CCDLogicSystem................................. 22 2.3.5 CameraHead.................................... 23 2.3.6 CCD......................................... 25 2.4Software........................................... 25 2.5Performance......................................... 28 vii 3 Data Analysis 31 3.1BiasandFlat-FieldCorrection.............................. 31 3.2 Error Estimation and Statistics of Correlated Image Wander . 38 3.3StatisticsofPolarization.................................. 48 3.4StatisticsofPulsedFraction................................ 53 4 4U 0142+61 57 4.1 Nature paper on 4U 0142+61 . 57 5 PSR B0656+14 64 5.1 Astrophysical Journal submission on PSR B0656+14 . 64 5.1.1 Introduction.................................... 65 5.1.2 Observations.................................... 66 5.1.3 Dataanalysis.................................... 67 5.1.4 Discussion...................................... 70 5.2EmissionModels...................................... 76 6 Low-Mass X-ray Binaries and Cataclysmic Variables 80 7 Conclusions 82 Appendix A 84 Bibliography 101 viii List of Figures 2.1 CCD illumination schematic . 9 2.2Wide-fieldphaseoffsetandditherschematic....................... 13 2.3 Polarization illumination
Recommended publications
  • Optical Observations of Pulsars: the ESO Contribution R.P
    Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed.
    [Show full text]
  • The G292. 0+ 1.8 Pulsar Wind Nebula in the Mid-Infrared
    Astronomy & Astrophysics manuscript no. 13164man c ESO 2018 November 8, 2018 The G292.0+1.8 pulsar wind nebula in the mid-infrared D.A. Zyuzin1,2, A.A. Danilenko1, S.V. Zharikov3, and Yu.A. Shibanov1 1 Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg, 194021, Russia 2 Academical Physical Techonological University, Khlopina 2-8, St. Petersburg, 194021, Russia 3 Observatorio Astron´omico Nacional SPM, Instituto de Astronom´ıa, UNAM, Ensenada, BC, Mexico Preprint online version: November 8, 2018 ABSTRACT Context. G292.0+1.8 is a Cas A-like supernova remnant that contains the young pulsar PSR J1124-5916 powering a compact torus- like pulsar wind nebula visible in X-rays. A likely counterpart to the nebula has been detected in the optical VRI bands. Aims. To confirm the counterpart candidate nature, we examined archival mid-infrared data obtained with the Spitzer Space Telescope. Methods. Broad-band images taken at 4.5, 8, 24, and 70 µm were analyzed and compared with available optical and X-ray data. Results. The extended counterpart candidate is firmly detected in the 4.5 and 8 µm bands. It is brighter and more extended in the bands than in the optical, and its position and morphology agree well with the coordinates and morphology of the torus-like pulsar wind nebula in X-rays. The source is not visible in 24 and 70 µm images, which are dominated by bright emission from the remnant shell and filaments. We compiled the infrared fluxes of the nebula, which probably contains a contribution from an unresolved pulsar in its center, with the optical and X-ray data.
    [Show full text]
  • Observations of Crab Nebula and Pulsar with VERITAS
    University of California Los Angeles Observations of Crab Nebula and Pulsar with VERITAS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Ozlem¨ C¸elik 2008 c Copyright by Ozlem¨ C¸elik 2008 The dissertation of Ozlem¨ C¸elik is approved. Katsushi Arisaka Ferdinand Coroniti Kevin McKeegan Ren´eOng, Committee Chair University of California, Los Angeles 2008 ii To my parents . for their endless love and support at all times. iii Table of Contents 1 Gamma-Ray Astronomy ........................ 1 1.1 Introduction.............................. 1 1.2 GammaRays ............................. 2 1.3 MotivationsforGamma-RayAstronomy . 4 1.4 Gamma-RayDetectors ........................ 6 1.4.1 Space-BasedDetectors . 6 1.4.2 Ground-basedDetectors . 12 1.4.3 AlternativeDetectors. 16 1.5 Gamma-RaySources ......................... 16 1.5.1 GalacticSources ....................... 17 1.5.2 ExtragalacticSources. 21 1.6 GuidetoThesis............................ 24 2 Pulsars and Their Nebulae ...................... 25 2.1 Birth of the PWNe Complex: Supernovae . 26 2.2 ThePulsarStar............................ 29 2.2.1 ConnectiontoNeutronStars. 29 2.2.2 CharacteristicsofPulsars . 30 2.2.3 Non-Thermal Radiation Mechanisms at Work in PWNe . 33 2.2.4 PulsedEmission. .. .. 38 2.2.5 HE Pulsed Emission Models . 40 iv 2.2.6 Predictions of HE Emission Models . 44 2.2.7 VHE gamma-ray Observations of Pulsed Emission . 50 2.3 PulsarWindNebulae......................... 52 2.3.1 RegionsinaPWN ...................... 52 2.3.2 The Central Pulsar: The Energy Source . 53 2.3.3 Pulsar Winds: Energy Transport between Pulsar and Nebula 55 2.3.4 The Wind Termination Shock . 57 2.3.5 The Nebular Emission .
    [Show full text]
  • Pulsar Characteristics Across the Energy Spectrum
    Pulsar Characteristics Across The Energy Spectrum Agnieszka Slo wikowska Nicolaus Copernicus Astronomical Center Department of Astrophysics in Torun´ Ph. D. Thesis written under the supervision of Dr. Bronis law Rudak Warsaw 2006 I dedicate this thesis to my husband Acknowledgements I am deeply grateful to many people for their help and support during my studies. In particular, I would like to thank Dr. Bronis law Rudak for giving me the opportunity to work as a member of a pulsar group at Copernicus Astronomical Center, and for supervising my PhD thesis. I am grateful to the Director of CAMK for offering me the fellowship, support, and excellent conditions to study and work. I am grateful to both, the European Association for Research in Astronomy Marie Curie Training Site and Deutsche Akademischer Austausch Dienst for the EARASTAR- GAL and DAAD fellowships, respectively. This work was also supported by KBN grant 2P03D.004.24. I am very grateful to Bronek Rudak for all his help, support and advice during my PhD. I would especially like to thank him for reading the thesis and for giving me comments and advice on how to significantly improve it. I appreciate very much his help in organising the formal preparation of getting the degree. I am thankful for financial support, for sending letters of recommendation, and for allowing me to present my work at various conferences and meetings. Additionally, for encouraging me to apply for different fellowships and for giving me opportunities to work outside Poland. I am most grateful for his friendship. I would like to thank Gottfried Kanbach, Axel Jessner, Lucien Kuiper, Wim Hermsen, Roberto Mignani and Werner Becker for giving me the possibilities to work with them.
    [Show full text]
  • Spacecraft Navigation Using X-Ray Pulsars
    JOURNAL OF GUIDANCE,CONTROL, AND DYNAMICS Vol. 29, No. 1, January–February 2006 Spacecraft Navigation Using X-Ray Pulsars Suneel I. Sheikh∗ and Darryll J. Pines† University of Maryland, College Park, Maryland 20742 and Paul S. Ray,‡ Kent S. Wood,§ Michael N. Lovellette,¶ and Michael T. Wolff∗∗ U.S. Naval Research Laboratory, Washington, D.C. 20375 The feasibility of determining spacecraft time and position using x-ray pulsars is explored. Pulsars are rapidly rotating neutron stars that generate pulsed electromagnetic radiation. A detailed analysis of eight x-ray pulsars is presented to quantify expected spacecraft position accuracy based on described pulsar properties, detector parameters, and pulsar observation times. In addition, a time transformation equation is developed to provide comparisons of measured and predicted pulse time of arrival for accurate time and position determination. This model is used in a new pulsar navigation approach that provides corrections to estimated spacecraft position. This approach is evaluated using recorded flight data obtained from the unconventional stellar aspect x-ray timing experiment. Results from these data provide first demonstration of position determination using the Crab pulsar. Introduction sources, including neutron stars, that provide stable, predictable, and HROUGHOUT history, celestial sources have been utilized unique signatures, may provide new answers to navigating through- T for vehicle navigation. Many ships have successfully sailed out the solar system and beyond. the Earth’s oceans using only these celestial aides. Additionally, ve- This paper describes the utilization of pulsar sources, specifically hicles operating in the space environment may make use of celestial those emitting in the x-ray band, as navigation aides for spacecraft.
    [Show full text]
  • The Crab Nebula: History and Phenomena
    The Crab Nebula: History and Phenomena Trevor Weekes Whipple Observatory History Reference: “The Crab Nebula”, Simon Mitton, Cambridge University Press,1978 NASA Lewes Workshop June 2012 2 Mimbres Pottery “Time of the Two Suns” Broken Pot Rabbit represents Moon Mimbres Tribe in Southwest ~1000-1100 A.D. Visible in Daylight for 23 days When Crab Nebula exploded, it was close to waning moon NASA Lewes Workshop June 2012 3 Other depictions of same event in Southwest Pictographs in: Navajo Canyon White Mesa NASA Lewes Workshop June 2012 4 NASA Lewes Workshop June 2012 5 Chaco Canyon, New Mexico Exploding Star Crescent Moon Hand NASA Lewes Workshop June 2012 6 NASA Lewes Workshop June 2012 7 Supernova observed in Far East Chinese, Japanese and Korean emperors had court astronomers (astrologers) to observe the night-sky and report any phenomena Comets, nova, eclipses, etc, carefully observed and interpreted Interpretations had political significance 1n 1054 A.D. guest star reported Visible in day (23 days); visible at night (2 years) Was it seen elsewhere in world? NASA Lewes Workshop June 2012 8 NASA Lewes Workshop June 2012 9 NASA Lewes Workshop June 2012 10 Crab light-curve NASA Lewes Workshop June 2012 11 Telescope Era Crab rediscovered? NASA Lewes Workshop June 2012 12 Rediscovery After two years could no longer be seen with naked eye at night After invention of telescope, six centuries later, Crab Nebula detected as fuzzy object by Bevis Many Nebula had been found…origin, nature unknown NASA Lewes Workshop June 2012 13 NASA Lewes
    [Show full text]
  • / Semi-Annual Technical Report for Nagw-1618
    / / i f L i CAL- 1793 National Aeronautics and Space Administration SEMI-ANNUAL TECHNICAL REPORT FOR NAGW-1618 Submitted to: Nati9nal Aeronautics and Space Administration tt]gh Energy Astrophysics Division Attention: Dr. Louis Kaluzienski Code EZ NASA Headquarters _ton, DC 20546 Submitted by: The Trustees of Columbia University in the City of New York Box 20, Low Memorial Library New York, New York 10027 Prepared by: Columbia Astrophysics Laboratory Departments of Astronomy and Physics Columbia University 538 West 120 th Street New York, New York 10027 Title of Research: "Physics of Systems Containing Neutron Stars" Principal Investigator: Jacob Shaham Professor of Physics Reporting Period: 1 M_arch 1989 - 3! August 1989 (NASA-CR-18600Z) PHYSICS OF SYSTEMS Nq0-22467 CnNTAINING NEUTRON STARS Semiannual --fHRU-- Technical Report t I Mar. - 31 Aug. 1929 N90-22470 (Columbia Univ.) 34 _ CSCL 03A Unclas G3/_9 0239322 Novcmbcr I989 A. Progress Report for Grant NAGW°1618 The years during which my research was supported by NASA saw the birth, within these research grants, of the accretion-spin-up model for Millisecond Pulsars (mPSRs), of the Beat-Frequency (BF) model for horizontal branch QPOs and of the wind-driven-accretion model for Very Low Mass X-ray Binaries (LMXBs) and millisecond pulsars (presentations 1, 2). All of these were important milestones on the road towards understanding the evolution from LMXBs to millisecond pulsars. Clearly, there is still a lot to be done, notably understanding of other branch QPOs and of the full machinery of QPO sources and understanding of magnetic field decay in neutron stars vs.
    [Show full text]
  • Old and New Neutron Stars*
    SLAC -PUB - 3458 September 1984 T/E OLD AND NEW NEUTRON STARS* t M. RUDERMAN Stanford Linear Accelerator Center Stanford University, Stanford, California, 94305 Invited review presented at the Cornell Symposium on New Directions in Astrophysics to honor Edwin Salpeter on his 60th birthday, Ithaca, New York, October 3, 1984 * Work supported by the Department of Energy, contract DE - AC03 - 76SF 005 15 t On leave from the Department of Physics, Columbia University. Work also supported in part by the National Science Foundation. :. * ABSTRACT The youngest known radiopulsar is the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (- 1038s-1 of 1012 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the lo8 old “dead” pulsars in the Galaxy are the most probable source for the isotropically distributed r-ray bursts detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. :. * 2 1. Ancient Historynl Six thousand years ago a massive star in our Galaxy came to the end of its life in a gigantic explosion.
    [Show full text]
  • Simulated Low-Intensity Optical Pulsar Observation with Single-Photon Detector (Research Note)
    A&A 574, A9 (2015) Astronomy DOI: 10.1051/0004-6361/201424480 & c ESO 2015 Astrophysics Simulated low-intensity optical pulsar observation with single-photon detector (Research Note) W. R. Leeb1, J. Alves2, S. Meingast2, and M. Brunner2 1 Institute of Telecommunications, Vienna University of Technology, Gusshausstrasse 25, 1040 Wien, Austria e-mail: [email protected] 2 Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Wien, Austria Received 26 June 2014 / Accepted 27 November 2014 ABSTRACT Context. Optical radiation of pulsars offers valuable clues to the physics of neutron stars, which are our only probes of the most extreme states of matter in the present-day universe. Still, only about 1% of all cataloged pulsars have known optical counterparts. Aims. The goal of this work is to develop an observational method optimized for discovering faint optical pulsars. Methods. A single-photon detector transforms the signal received by the telescope into a pulse sequence. The events obtained are time tagged and transformed into a histogram of event time differences. The histogram envelope presents the autocorrelation of the recorded optical signal and thus displays any periodicity of the input signal. Results. Simulations show that faint pulsars radiating in the optical regime can be detected in a straightforward way. As an example, a fictitious pulsar with a V-magnitude of 24.6 mag and a signature like the Crab pulsar can be discovered within one minute using an 8-m class telescope. At the detector’s peak sensitivity the average optical flux density would then amount to Fν = 0:63 µJy.
    [Show full text]
  • The Optical Polarisation of the Vela Pulsar Revisited
    A&A 467, 1157–1162 (2007) Astronomy DOI: 10.1051/0004-6361:20066026 & c ESO 2007 Astrophysics The optical polarisation of the Vela pulsar revisited R. P. Mignani1, S. Bagnulo2, J. Dyks3, G. Lo Curto2, and A. Słowikowska3,4 1 Mullard Space Science Laboratory, Holmbury St. Mary, Dorking – Surrey, RH5 6NT, UK e-mail: [email protected] 2 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Casilla 19001 Santiago 19, Chile e-mail: [sbagnulo;glocurto]@eso.org 3 Nicolaus Copernicus Astronomical Centre, Rabianska´ 8, 87-100 Torun,´ Poland e-mail: [jinx;aga]@ncac.torun.pl 4 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, Garching, 85748 Germany e-mail: [email protected] Received 12 July 2006 / Accepted 7 February 2007 ABSTRACT Aims. In this work we present a revised measurement of the phase-averaged optical polarisation of the Vela pulsar (PSR B0833-45), for which only one value has been published so far (Wagner & Seifert 2000, ASP Conf. Ser., 202, 315). Methods. Our measurement has been obtained through an accurate reanalysis of archival polarisation observations with the FORS1 instrument at the VLT. ◦ ◦ Results. We measured a phase-averaged linear polarisation degree PL = 9.4% ± 4% and a position angle θ = 146 ± 11 ,veryclose to the ones for the axis of symmetry of the X-ray arcs and jets detected by Chandra and of the pulsar proper motion. Conclusions. We compared the measured phase-averaged optical polarisation with the expectations of different pulsars’ magneto- sphere models. We find that all models consistently predict values of the phase-averaged linear polarisation that are too high with respect to the observed one.
    [Show full text]
  • 2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory
    2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table&of&Contents& 1 Executive Summary ......................................................................................... 1! 2 Introduction and Overview .............................................................................. 4! 3 Science Highlights ........................................................................................... 5! 3.1! First Results using GeMS/GSAOI ..................................................................... 5! 3.2! Gemini NICI Planet-Finding Campaign ............................................................. 6! 3.3! The Sun’s Closest Neighbor Found in a Century ........................................... 7! 3.4! The Surprisingly Low Black Hole Mass of an Ultraluminous X-Ray Source 7! 3.5! GRB 130606A ...................................................................................................... 8! 3.6! Observing the Accretion Disk of the Active Galaxy NGC 1275 ..................... 9! 4 Operations ...................................................................................................... 10! 4.1! Gemini Publications and User Relationships ................................................ 10! 4.2! Operations Summary ....................................................................................... 11! 4.3! Instrumentation ................................................................................................ 11! 4.4!
    [Show full text]
  • Note to Teachers Contents of This Unit
    Note to teachers The overall goal in this exhibit is to give students and teachers a glimpse into a moment of discovery. The discovery of optical pulsars may be the only example of a significant discovery documented by a tape recorder left running for other purposes. The listener is privileged to hear an event as it happened, not the staging of an event. This exhibit allows students and teachers to recognize scientists as people. The thrill of discovery provides a human element to which everyone can relate. As Cocke and Disney check their results and share their excitement, they are people engrossed in science, not humorless, unfeeling machines recording data. This exhibit also provides a compact view of the scientific process in operation. Experimental science is presented in a true context. The astrophysicists are constantly observing, manipulating equipment, and then repeating the observation in order to be certain of their results. Mathematics, data and instruments are all checked. Only after they have tried every way they can think of to make their discovery "go away," and still find it staring at them, are the scientists satisfied. This exhibit can also be an opportunity for professional development. Science teachers can strengthen their background in pulsars and neutron stars -- one of the most fascinating new fields of astronomy -- through self-study of the module and linked Web sites. Teachers can better understand the struggle of scientists to understand the nature of this interaction as they listen to the scientists themselves describe their involvement. In an astronomy course: The unit can be used during a discussion of stellar evolution or at any other point where the topic of pulsars is specifically addressed.
    [Show full text]