The Crab Nebula: History and Phenomena
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDF (Thesis020605.Pdf)
Optical Pulse-Phased Observations of Faint Pulsars with a Phase-Binning CCD Camera Thesis by Brian Kern In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ITUTE O ST F N T I E C A I H N N R 1891 O O L F O I G L Y A C California Institute of Technology Pasadena, California 2002 (Submitted May 29, 2002) ii c 2002 Brian Kern All Rights Reserved iii Abstract We have constructed a phase-binning CCD camera optimized for optical observations of faint pulsars. The phase-binning CCD camera combines the high quantum efficiency of a CCD with a pulse-phased time resolution capable of observing pulsars as fast as 10 ms, with no read noise penalty. The phase- binning CCD can also operate as a two-channel imaging polarimeter, obtaining pulse-phased linear photopolarimetric observations. We have used this phase-binning CCD to make the first measurements of optical pulsations from an anomalous X-ray pulsar. We measured the optical pulse profile of 4U 0142+61, finding a pulsed fraction of 27%, many times larger than the pulsed fraction in X-rays. From this observation, we concluded that 4U 0142+61 must be a magnetar, an ultramagnetized neutron star (B>1014 G). The optical pulse is double-peaked, similar to the soft X-ray pulse profile. We also used the phase-binning CCD to obtain the photometric and polarimetric pulse profiles of PSR B0656+14, a middle-aged isolated rotation-powered pulsar. The optical pulse profile we measured significantly disagrees with the low signal-to-noise profile previously published for this pulsar. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Optical Observations of Pulsars: the ESO Contribution R.P
Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed. -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Eagle Nebula Star Formation Region
Eagle Nebula Star Formation Region AST 303: Chapter 17 1 The Formation of Stars (2) • A cloud of gas and dust must collapse if stars are to be formed. • The self-gravity of the cloud will tend to cause it to collapse. • Radiation pressure from nearby hot stars may do the same. • The passage of a shock wave from a nearby supernova blast or some other source (such as galactic shock waves) may do the same. – Note: The “sonic boom” of a jet plane is an example of a shock wave. • When two clouds collide, they may cause each other to collapse. AST 303: Chapter 17 2 Trifid Nebula AST 303: Chapter 17 3 Trifid Nebula Stellar Nursery Revealed AST 303: Chapter 17 4 Young Starburst Cluster Emerges from Cloud AST 303: Chapter 17 5 The Formation of Stars (3) • The gas in the collapsing cloud probably becomes turbulent. • This would tend to fragment the collapsing gas, producing condensations that would be the nuclei of new stars. • There is abundant evidence that shows that the stars in a cluster are all about the same age. For a young cluster, many stars have not yet reached the main sequence: ! Isochron Luminosity "Temperature AST 303: Chapter 17 6 The Formation of Stars (4) • The evolutionary paths of young stars on the H-R diagram look like this. Note the T Tauri stars, long thought to be young stars. • Theory says that these stars use convection as the main method of transporting energy to their surfaces. ! T Tauri Stars Luminosity "Temperature AST 303: Chapter 17 7 The Search for Stellar Precursors • Astronomers have long been fascinated by very dark, dense regions seen outlined against bright gas, called globules. -
Probing Physical Conditions in the Crab Nebula with Emission Line Analysis
University of Kentucky UKnowledge Theses and Dissertations--Physics and Astronomy Physics and Astronomy 2016 PROBING PHYSICAL CONDITIONS IN THE CRAB NEBULA WITH EMISSION LINE ANALYSIS Xiang Wang University of Kentucky, [email protected] Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.109 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Wang, Xiang, "PROBING PHYSICAL CONDITIONS IN THE CRAB NEBULA WITH EMISSION LINE ANALYSIS" (2016). Theses and Dissertations--Physics and Astronomy. 36. https://uknowledge.uky.edu/physastron_etds/36 This Doctoral Dissertation is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physics and Astronomy by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Universe Discovery Guides: December — Crab Nebula
National Aeronautics and Space Administration UNIVERSE DISCOVERY GUIDES December CRAB NEBULA In this Hubble close-up of the Crab Nebula, various chemical elements have been detected in the expanding gas, including hydrogen (orange), nitrogen (red), sulfur (pink), and oxygen (green). Some of these elements are newly generated during the life and the explosive death of the star and now blasted back into space. These chemical elements will eventually be incorporated into new stars and planets. Credit: NASA, STScI/AURA More details: http://hubblesite.org/ newscenter/archive/releases/2000/15/ image/a/ The Crab Nebula: The remains of a star that exploded as a supernova about one thousand years ago. Credit: European Southern Observatory (ESO) IN THIS GUIDE » CHILDREN OF THE STARS » SKY FEATURE: CRAB NEBULA » TRY THIS! » ACTIVITY: A UNIVERSE WITHOUT SUPERNOVAE » CONNECT TO NASA SCIENCE » Acknowledgements » Appendix: December Star Map Published 2013. The universe is a place of change. NASA missions advance our understanding of the changing universe. www.nasa.gov 2 CHILDREN OF THE STARS Where did the calcium to build your bones come from? How about the iron in your blood or the oxygen in the air we breathe? You may have seen the table of the elements — these are the atoms which are the building blocks that make up everything we see, including us. Some of those atoms combine to make molecules, like water (consisting of hydrogen and oxygen) and sugars (consisting of carbon, hydrogen and oxygen) — ingredients for supporting life. The number of protons in the atom’s nucleus determine which element it is. For example, hydrogen has one proton; helium has two protons; carbon has six protons; iron has twenty-six protons. -
The G292. 0+ 1.8 Pulsar Wind Nebula in the Mid-Infrared
Astronomy & Astrophysics manuscript no. 13164man c ESO 2018 November 8, 2018 The G292.0+1.8 pulsar wind nebula in the mid-infrared D.A. Zyuzin1,2, A.A. Danilenko1, S.V. Zharikov3, and Yu.A. Shibanov1 1 Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg, 194021, Russia 2 Academical Physical Techonological University, Khlopina 2-8, St. Petersburg, 194021, Russia 3 Observatorio Astron´omico Nacional SPM, Instituto de Astronom´ıa, UNAM, Ensenada, BC, Mexico Preprint online version: November 8, 2018 ABSTRACT Context. G292.0+1.8 is a Cas A-like supernova remnant that contains the young pulsar PSR J1124-5916 powering a compact torus- like pulsar wind nebula visible in X-rays. A likely counterpart to the nebula has been detected in the optical VRI bands. Aims. To confirm the counterpart candidate nature, we examined archival mid-infrared data obtained with the Spitzer Space Telescope. Methods. Broad-band images taken at 4.5, 8, 24, and 70 µm were analyzed and compared with available optical and X-ray data. Results. The extended counterpart candidate is firmly detected in the 4.5 and 8 µm bands. It is brighter and more extended in the bands than in the optical, and its position and morphology agree well with the coordinates and morphology of the torus-like pulsar wind nebula in X-rays. The source is not visible in 24 and 70 µm images, which are dominated by bright emission from the remnant shell and filaments. We compiled the infrared fluxes of the nebula, which probably contains a contribution from an unresolved pulsar in its center, with the optical and X-ray data. -
Measurement of the Crab Nebula Spectrum Over Three Decades In
Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes J. Aleksi´ca, S. Ansoldib, L. A. Antonellic, P. Antoranzd, A. Babice, P. Bangalef, J. A. Barriog, J. Becerra Gonz´alezh,aa, W. Bednareki, E. Bernardinij, B. Biasuzzib, A. Bilandk, O. Blancha, S. Bonnefoyg, G. Bonnolic, F. Borraccif, T. Bretzl,ab, E. Carmonam, A. Carosic, P. Colinf, E. Colomboh, J. L. Contrerasg, J. Cortinaa, S. Covinoc, P. Da Velad, F. Dazzif, A. De Angelisb, G. De Canevaj, B. De Lottob, E. de O˜na Wilhelmin, C. Delgado Mendezm, M. Doerto, D. Dominis Prestere, D. Dornerl, M. Dorop, S. Eineckeo, D. Eisenacherl, D. Elsaesserl, M. V. Fonsecag, L. Fontq, K. Frantzeno, C. Fruckf, D. Galindor, R. J. Garc´ıa L´opezh, M. Garczarczykj, D. Garrido Terratsq, M. Gaugq, N. Godinovi´ce, A. Gonz´alez Mu˜noza, S. R. Gozzinij, D. Hadaschn,ae, Y. Hanabatas, M. Hayashidas, J. Herrerah, D. Hildebrandk, J. Hosef, D. Hrupece, W. Ideci, V. Kadeniusu, H. Kellermannf, K. Kodanis, Y. Konnos, J. Krausef, H. Kubos, J. Kushidas, A. La Barberac, D. Lelase, N. Lewandowskal, E. Lindforsu,ac, S. Lombardic, M. L´opezg, R. L´opez-Cotoa, A. L´opez-Oramasa, E. Lorenzf, I. Lozanog, M. Makarievv, K. Mallotj, G. Manevav, N. Mankuzhiyilb,ad, K. Mannheiml, L. Maraschic, B. Marcoter, M. Mariottip, M. Mart´ıneza, D. Mazinf,ai, U. Menzelf, J. M. Mirandad, R. Mirzoyanf, A. Moralejoa, P. Munar-Adroverr, D. Nakajimas, A. Niedzwieckii, K. Nilssonu,ac, K. Nishijimas, K. Nodaf, N. Nowakf, R. Oritos, A. Overkempingo, S. Paianop, M. Palatiellob, D. Panequef, R. -
Observations of Crab Nebula and Pulsar with VERITAS
University of California Los Angeles Observations of Crab Nebula and Pulsar with VERITAS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Ozlem¨ C¸elik 2008 c Copyright by Ozlem¨ C¸elik 2008 The dissertation of Ozlem¨ C¸elik is approved. Katsushi Arisaka Ferdinand Coroniti Kevin McKeegan Ren´eOng, Committee Chair University of California, Los Angeles 2008 ii To my parents . for their endless love and support at all times. iii Table of Contents 1 Gamma-Ray Astronomy ........................ 1 1.1 Introduction.............................. 1 1.2 GammaRays ............................. 2 1.3 MotivationsforGamma-RayAstronomy . 4 1.4 Gamma-RayDetectors ........................ 6 1.4.1 Space-BasedDetectors . 6 1.4.2 Ground-basedDetectors . 12 1.4.3 AlternativeDetectors. 16 1.5 Gamma-RaySources ......................... 16 1.5.1 GalacticSources ....................... 17 1.5.2 ExtragalacticSources. 21 1.6 GuidetoThesis............................ 24 2 Pulsars and Their Nebulae ...................... 25 2.1 Birth of the PWNe Complex: Supernovae . 26 2.2 ThePulsarStar............................ 29 2.2.1 ConnectiontoNeutronStars. 29 2.2.2 CharacteristicsofPulsars . 30 2.2.3 Non-Thermal Radiation Mechanisms at Work in PWNe . 33 2.2.4 PulsedEmission. .. .. 38 2.2.5 HE Pulsed Emission Models . 40 iv 2.2.6 Predictions of HE Emission Models . 44 2.2.7 VHE gamma-ray Observations of Pulsed Emission . 50 2.3 PulsarWindNebulae......................... 52 2.3.1 RegionsinaPWN ...................... 52 2.3.2 The Central Pulsar: The Energy Source . 53 2.3.3 Pulsar Winds: Energy Transport between Pulsar and Nebula 55 2.3.4 The Wind Termination Shock . 57 2.3.5 The Nebular Emission . -
The Messier Catalog
The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier -
Pulsar Characteristics Across the Energy Spectrum
Pulsar Characteristics Across The Energy Spectrum Agnieszka Slo wikowska Nicolaus Copernicus Astronomical Center Department of Astrophysics in Torun´ Ph. D. Thesis written under the supervision of Dr. Bronis law Rudak Warsaw 2006 I dedicate this thesis to my husband Acknowledgements I am deeply grateful to many people for their help and support during my studies. In particular, I would like to thank Dr. Bronis law Rudak for giving me the opportunity to work as a member of a pulsar group at Copernicus Astronomical Center, and for supervising my PhD thesis. I am grateful to the Director of CAMK for offering me the fellowship, support, and excellent conditions to study and work. I am grateful to both, the European Association for Research in Astronomy Marie Curie Training Site and Deutsche Akademischer Austausch Dienst for the EARASTAR- GAL and DAAD fellowships, respectively. This work was also supported by KBN grant 2P03D.004.24. I am very grateful to Bronek Rudak for all his help, support and advice during my PhD. I would especially like to thank him for reading the thesis and for giving me comments and advice on how to significantly improve it. I appreciate very much his help in organising the formal preparation of getting the degree. I am thankful for financial support, for sending letters of recommendation, and for allowing me to present my work at various conferences and meetings. Additionally, for encouraging me to apply for different fellowships and for giving me opportunities to work outside Poland. I am most grateful for his friendship. I would like to thank Gottfried Kanbach, Axel Jessner, Lucien Kuiper, Wim Hermsen, Roberto Mignani and Werner Becker for giving me the possibilities to work with them.