Empirical Analysis of Ipv4 and Ipv6 Networks Through Dual-Stack Sites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 10: Switching & Internetworking
Lecture 10: Switching & Internetworking CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY Lecture 10 Overview ● Bridging & switching ◆ Spanning Tree ● Internet Protocol ◆ Service model ◆ Packet format CSE 123 – Lecture 10: Internetworking 2 Selective Forwarding ● Only rebroadcast a frame to the LAN where its destination resides ◆ If A sends packet to X, then bridge must forward frame ◆ If A sends packet to B, then bridge shouldn’t LAN 1 LAN 2 A W B X bridge C Y D Z CSE 123 – Lecture 9: Bridging & Switching 3 Forwarding Tables ● Need to know “destination” of frame ◆ Destination address in frame header (48bit in Ethernet) ● Need know which destinations are on which LANs ◆ One approach: statically configured by hand » Table, mapping address to output port (i.e. LAN) ◆ But we’d prefer something automatic and dynamic… ● Simple algorithm: Receive frame f on port q Lookup f.dest for output port /* know where to send it? */ If f.dest found then if output port is q then drop /* already delivered */ else forward f on output port; else flood f; /* forward on all ports but the one where frame arrived*/ CSE 123 – Lecture 9: Bridging & Switching 4 Learning Bridges ● Eliminate manual configuration by learning which addresses are on which LANs Host Port A 1 ● Basic approach B 1 ◆ If a frame arrives on a port, then associate its source C 1 address with that port D 1 ◆ As each host transmits, the table becomes accurate W 2 X 2 ● What if a node moves? Table aging Y 3 ◆ Associate a timestamp with each table entry Z 2 ◆ Refresh timestamp for each -
Traffic Management in Multi-Service Access Networks
MARKETING REPORT MR-404 Traffic Management in Multi-Service Access Networks Issue: 01 Issue Date: September 2017 © The Broadband Forum. All rights reserved. Traffic Management in Multi-Service Access Networks MR-404 Issue History Issue Approval date Publication Date Issue Editor Changes Number 01 4 September 2017 13 October 2017 Christele Bouchat, Original Nokia Comments or questions about this Broadband Forum Marketing Draft should be directed to [email protected] Editors Francois Fredricx Nokia [email protected] Florian Damas Nokia [email protected] Ing-Jyh Tsang Nokia [email protected] Innovation Christele Bouchat Nokia [email protected] Leadership Mauro Tilocca Telecom Italia [email protected] September 2017 © The Broadband Forum. All rights reserved 2 of 16 Traffic Management in Multi-Service Access Networks MR-404 Executive Summary Traffic Management is a widespread industry practice for ensuring that networks operate efficiently, including mechanisms such as queueing, routing, restricting or rationing certain traffic on a network, and/or giving priority to some types of traffic under certain network conditions, or at all times. The goal is to minimize the impact of congestion in networks on the traffic’s Quality of Service. It can be used to achieve certain performance goals, and its careful application can ultimately improve the quality of an end user's experience in a technically and economically sound way, without detracting from the experience of others. Several Traffic Management mechanisms are vital for a functioning Internet carrying all sorts of Over-the-Top (OTT) applications in “Best Effort” mode. Another set of Traffic Management mechanisms is also used in networks involved in a multi-service context, to provide differentiated treatment of various services (e.g. -
Wifi Direct Internetworking
WiFi Direct Internetworking António Teólo∗† Hervé Paulino João M. Lourenço ADEETC, Instituto Superior de NOVA LINCS, DI, NOVA LINCS, DI, Engenharia de Lisboa, Faculdade de Ciências e Tecnologia, Faculdade de Ciências e Tecnologia, Instituto Politécnico de Lisboa Universidade NOVA de Lisboa Universidade NOVA de Lisboa Portugal Portugal Portugal [email protected] [email protected] [email protected] ABSTRACT will enable WiFi communication range and speed even in cases of: We propose to interconnect mobile devices using WiFi-Direct. Hav- network infrastructure congestion, which may happen in highly ing that, it will be possible to interconnect multiple o-the-shelf crowded venues (such as sports and cultural events); or temporary, mobile devices, via WiFi, but without any supportive infrastructure. or permanent, absence of infrastructure, as may happen in remote This will pave the way for mobile autonomous collaborative sys- locations or disaster situations. tems that can operate in any conditions, like in disaster situations, WFD allows devices to form groups, with one of them, called in very crowded scenarios or in isolated areas. This work is relevant Group Owner (GO), acting as a soft access point for remaining since the WiFi-Direct specication, that works on groups of devices, group members. WFD oers node discovery, authentication, group does not tackle inter-group communication and existing research formation and message routing between nodes in the same group. solutions have strong limitations. However, WFD communication is very constrained, current imple- We have a two phase work plan. Our rst goal is to achieve mentations restrict group size 9 devices and none of these devices inter-group communication, i.e., enable the ecient interconnec- may be a member of more than one WFD group. -
TCP Over Wireless Multi-Hop Protocols: Simulation and Experiments
TCP over Wireless Multi-hop Protocols: Simulation and Experiments Mario Gerla, Rajive Bagrodia, Lixia Zhang, Ken Tang, Lan Wang {gerla, rajive, lixia, ktang, lanw}@cs.ucla.edu Wireless Adaptive Mobility Laboratory Computer Science Department University of California, Los Angeles Los Angeles, CA 90095 http://www.cs.ucla.edu/NRL/wireless Abstract include mobility, unpredictable wireless channel such as fading, interference and obstacles, broadcast medium shared In this study we investigate the interaction between TCP and by multiple users and very large number of heterogeneous MAC layer in a wireless multi-hop network. This type of nodes (e.g., thousands of sensors). network has traditionally found applications in the military To these challenging physical characteristics of the ad-hoc (automated battlefield), law enforcement (search and rescue) network, we must add the extremely demanding requirements and disaster recovery (flood, earthquake), where there is no posed on the network by the typical applications. These fixed wired infrastructure. More recently, wireless "ad-hoc" include multimedia support, multicast and multi-hop multi-hop networks have been proposed for nomadic computing communications. Multimedia (voice, video and image) is a applications. Key requirements in all the above applications are reliable data transfer and congestion control, features that are must when several individuals are collaborating in critical generally supported by TCP. Unfortunately, TCP performs on applications with real time constraints. Multicasting is a wireless in a much less predictable way than on wired protocols. natural extension of the multimedia requirement. Multi- Using simulation, we provide new insight into two critical hopping is justified (among other things) by the limited problems of TCP over wireless multi-hop. -
Analysing TCP Performance When Link Experiencing Packet Loss
Analysing TCP performance when link experiencing packet loss Master of Science Thesis [in the Programme Networks and Distributed System] SHAHRIN CHOWDHURY KANIZ FATEMA Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Göteborg, Sweden, October 2013 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Analysing TCP performance when link experiencing packet loss SHAHRIN CHOWDHURY, KANIZ FATEMA © SHAHRIN CHOWDHURY, October 2013. © KANIZ FATEMA, October 2013. Examiner: TOMAS OLOVSSON Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 Department of Computer Science and Engineering Göteborg, Sweden October 2013 Acknowledgement We are grateful to our supervisor and examiner Tomas Olovsson for his valuable time and assistance in compilation for this thesis. -
Configuring Ipv6 First Hop Security
Configuring IPv6 First Hop Security This chapter describes how to configure First Hop Security (FHS) features on Cisco NX-OS devices. This chapter includes the following sections: • About First-Hop Security, on page 1 • About vPC First-Hop Security Configuration, on page 3 • RA Guard, on page 6 • DHCPv6 Guard, on page 7 • IPv6 Snooping, on page 8 • How to Configure IPv6 FHS, on page 9 • Configuration Examples, on page 17 • Additional References for IPv6 First-Hop Security, on page 18 About First-Hop Security The Layer 2 and Layer 3 switches operate in the Layer 2 domains with technologies such as server virtualization, Overlay Transport Virtualization (OTV), and Layer 2 mobility. These devices are sometimes referred to as "first hops", specifically when they are facing end nodes. The First-Hop Security feature provides end node protection and optimizes link operations on IPv6 or dual-stack networks. First-Hop Security (FHS) is a set of features to optimize IPv6 link operation, and help with scale in large L2 domains. These features provide protection from a wide host of rogue or mis-configured users. You can use extended FHS features for different deployment scenarios, or attack vectors. The following FHS features are supported: • IPv6 RA Guard • DHCPv6 Guard • IPv6 Snooping Note See Guidelines and Limitations of First-Hop Security, on page 2 for information about enabling this feature. Configuring IPv6 First Hop Security 1 Configuring IPv6 First Hop Security IPv6 Global Policies Note Use the feature dhcp command to enable the FHS features on a switch. IPv6 Global Policies IPv6 global policies provide storage and access policy database services. -
Junos® OS Protocol-Independent Routing Properties User Guide Copyright © 2021 Juniper Networks, Inc
Junos® OS Protocol-Independent Routing Properties User Guide Published 2021-09-22 ii Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408-745-2000 www.juniper.net Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice. Junos® OS Protocol-Independent Routing Properties User Guide Copyright © 2021 Juniper Networks, Inc. All rights reserved. The information in this document is current as of the date on the title page. YEAR 2000 NOTICE Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036. END USER LICENSE AGREEMENT The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA. iii Table -
The Internet in Transition: the State of the Transition to Ipv6 in Today's
Please cite this paper as: OECD (2014-04-03), “The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4”, OECD Digital Economy Papers, No. 234, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jz5sq5d7cq2-en OECD Digital Economy Papers No. 234 The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4 OECD FOREWORD This report was presented to the OECD Working Party on Communication, Infrastructures and Services Policy (CISP) in June 2013. The Committee for Information, Computer and Communications Policy (ICCP) approved this report in December 2013 and recommended that it be made available to the general public. It was prepared by Geoff Huston, Chief Scientist at the Asia Pacific Network Information Centre (APNIC). The report is published on the responsibility of the Secretary-General of the OECD. Note to Delegations: This document is also available on OLIS under reference code: DSTI/ICCP/CISP(2012)8/FINAL © OECD 2014 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 .......................... 4 -
Latency and Throughput Optimization in Modern Networks: a Comprehensive Survey Amir Mirzaeinnia, Mehdi Mirzaeinia, and Abdelmounaam Rezgui
READY TO SUBMIT TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS JOURNAL 1 Latency and Throughput Optimization in Modern Networks: A Comprehensive Survey Amir Mirzaeinnia, Mehdi Mirzaeinia, and Abdelmounaam Rezgui Abstract—Modern applications are highly sensitive to com- On one hand every user likes to send and receive their munication delays and throughput. This paper surveys major data as quickly as possible. On the other hand the network attempts on reducing latency and increasing the throughput. infrastructure that connects users has limited capacities and These methods are surveyed on different networks and surrond- ings such as wired networks, wireless networks, application layer these are usually shared among users. There are some tech- transport control, Remote Direct Memory Access, and machine nologies that dedicate their resources to some users but they learning based transport control, are not very much commonly used. The reason is that although Index Terms—Rate and Congestion Control , Internet, Data dedicated resources are more secure they are more expensive Center, 5G, Cellular Networks, Remote Direct Memory Access, to implement. Sharing a physical channel among multiple Named Data Network, Machine Learning transmitters needs a technique to control their rate in proper time. The very first congestion network collapse was observed and reported by Van Jacobson in 1986. This caused about a I. INTRODUCTION thousand time rate reduction from 32kbps to 40bps [3] which Recent applications such as Virtual Reality (VR), au- is about a thousand times rate reduction. Since then very tonomous cars or aerial vehicles, and telehealth need high different variations of the Transport Control Protocol (TCP) throughput and low latency communication. -
Adaptive Method for Packet Loss Types in Iot: an Naive Bayes Distinguisher
electronics Article Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher Yating Chen , Lingyun Lu *, Xiaohan Yu * and Xiang Li School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China; [email protected] (Y.C.); [email protected] (X.L.) * Correspondence: [email protected] (L.L.); [email protected] (X.Y.) Received: 31 December 2018; Accepted: 23 January 2019; Published: 28 January 2019 Abstract: With the rapid development of IoT (Internet of Things), massive data is delivered through trillions of interconnected smart devices. The heterogeneous networks trigger frequently the congestion and influence indirectly the application of IoT. The traditional TCP will highly possible to be reformed supporting the IoT. In this paper, we find the different characteristics of packet loss in hybrid wireless and wired channels, and develop a novel congestion control called NB-TCP (Naive Bayesian) in IoT. NB-TCP constructs a Naive Bayesian distinguisher model, which can capture the packet loss state and effectively classify the packet loss types from the wireless or the wired. More importantly, it cannot cause too much load on the network, but has fast classification speed, high accuracy and stability. Simulation results using NS2 show that NB-TCP achieves up to 0.95 classification accuracy and achieves good throughput, fairness and friendliness in the hybrid network. Keywords: Internet of Things; wired/wireless hybrid network; TCP; naive bayesian model 1. Introduction The Internet of Things (IoT) is a new network industry based on Internet, mobile communication networks and other technologies, which has wide applications in industrial production, intelligent transportation, environmental monitoring and smart homes. -
Empirical Analysis of the Effects and the Mitigation of Ipv4 Address Exhaustion
TECHNISCHE UNIVERSITÄT BERLIN FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK LEHRSTUHL FÜR INTELLIGENTE NETZE UND MANAGEMENT VERTEILTER SYSTEME Empirical Analysis of the Effects and the Mitigation of IPv4 Address Exhaustion vorgelegt von M.Sc. Philipp Richter geboren in Berlin von der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades DOKTOR DER NATURWISSENSCHAFTEN -DR. RER. NAT.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Sebastian Möller, Technische Universität Berlin Gutachterin: Prof. Anja Feldmann, Ph.D., Technische Universität Berlin Gutachter: Prof. Vern Paxson, Ph.D., University of California, Berkeley Gutachter: Prof. Steve Uhlig, Ph.D., Queen Mary University of London Tag der wissenschaftlichen Aussprache: 2. August 2017 Berlin 2017 Abstract IP addresses are essential resources for communication over the Internet. In IP version 4, an address is represented by 32 bits in the IPv4 header; hence there is a finite pool of roughly 4B addresses available. The Internet now faces a fundamental resource scarcity problem: The exhaustion of the available IPv4 address space. In 2011, the Internet Assigned Numbers Authority (IANA) depleted its pool of available IPv4 addresses. IPv4 scarcity is now reality. In the subsequent years, IPv4 address scarcity has started to put substantial economic pressure on the networks that form the Internet. The pools of available IPv4 addresses are mostly depleted and today network operators have to find new ways to satisfy their ongoing demand for IPv4 addresses. Mitigating IPv4 scarcity is not optional, but mandatory: Networks facing address shortage have to take action in order to be able to accommodate additional subscribers and customers. Thus, if not confronted, IPv4 scarcity has the potential to hinder further growth of the Internet. -
Ipv6 Security: Myths & Legends
IPv6 security: myths & legends Paul Ebersman – [email protected] 21 Apr 2015 NANOG on the Road – Boston So many new security issues with IPv6! Or are there… IPv6 Security issues • Same problem, different name • A few myths & misconceptions • Actual new issues • FUD (Fear Uncertainty & Doubt) Round up the usual suspects! Remember these? • ARP cache poisoning • P2p ping pong attacks • Rogue DHCP ARP cache poisoning • Bad guy broadcasts fake ARP • Hosts on subnet put bad entry in ARP Cache • Result: MiM or DOS Ping pong attack • P2P link with subnet > /31 • Bad buy sends packet for addr in subnet but not one of two routers • Result: Link clogs with routers sending packet back and forth Rogue DHCP • Client broadcasts DHCP request • Bad guy sends DHCP offer w/his “bad” router as default GW • Client now sends all traffic to bad GW • Result: MiM or DOS Look similar? • Neighbor cache corruption • P2p ping pong attacks • Rogue DHCP + rogue RA Solutions? • Lock down local wire • /127s for p2p links (RFC 6164) • RA Guard (RFC 6105) And now for something completely different! So what is new? • Extension header chains • Packet/Header fragmentation • Predictable fragment headers • Atomic fragments The IPv4 Packet 14 The IPv6 Packet 15 Fragmentation • Minimum 1280 bytes • Only source host can fragment • Destination must get all fragments • What happens if someone plays with fragments? IPv6 Extension Header Chains • No limit on length • Deep packet inspection bogs down • Confuses stateless firewalls • Fragments a problem • draft-ietf-6man-oversized-header-chain-09