Flowering Plant Systematics

Total Page:16

File Type:pdf, Size:1020Kb

Flowering Plant Systematics Angiosperm Phylogeny Flowering Plant Systematics woody; vessels lacking dioecious; flw T5–8, A∞, G5–8, 1 ovule/carpel, embryo sac 9-nucleate 1 species, New Caledonia 1/1/1 Amborellaceae AMBORELLALES G A aquatic, herbaceous; cambium absent; aerenchyma; flw T4–12, A1–∞, embryo sac 4-nucleate seeds operculate with perisperm but endosperm reduced or small R mucilage; alkaloids (no benzylisoquinolines) 3/6/74 YMPHAEALES Cabombaceae Hydatellaceae Nymphaeaceae A N N woody, vessels solitary D flw T>10, A , G ca.9, embryo sac 4-nucleate ∞ Austrobaileyaceae Schisandraceae (incl. Illiciaceae) Trimeniaceae tiglic acid, aromatic terpenoids 3/5/100 E AUSTROBAILEYALES A lvs opposite, interpetiolar stipules flw small T0–3, A1–5, G1, 1 apical ovule/carpel A 1/4/75 Chloranthaceae E nodes swollen CHLORANTHALES N woody; foliar sclereids A K and C distinct G aromatic terpenoids 2/10/125 CANELLALES Canellaceae Winteraceae R idioblasts spherical in I nodes trilacunar ± herbaceous; lvs two-ranked, leaf base sheathing single adaxial prophyll L Aristolochiaceae (incl. Hydnoraceae) Piperaceae Saururaceae O nodes swollen 4/17/4170 IPERALES P Y sesquiterpenes S woody; lvs opposite flw with hypanthium, staminodes frequent Calycanthaceae Hernandiaceae Monimiaceae tension wood + wood tension (pellucid dots) (pellucid ethereal oils ethereal P anthers often valvate; carpels with 1 ovule; embryo large 7/91/2858 AURALES Gomortegaceae Lauraceae Siparunaceae L E MAGNOLIIDS woody; pith septate; lvs two-ranked ovules with obturator Annonaceae Eupomatiaceae Magnoliaceae endosperm ruminate R features as in 6/128/3140 MAGNOLIALES Degeneriaceae Himantandraceae Myristicaceae “Early Angiosperms” infl spadix with spathe; lvs axils with mucilaginous intravaginal squamules M ovules atropous, seeds with epidermal perisperm and copious endosperm ethereal oils 1/1/2-4 Acoraceae S ACORALES mostly herbs and aquatics; rhizomatous; hydrophilous; intravaginal squamules woody infl ± scapose; flw G apocarpous; placentation often laminar Alismataceae Butomaceae Posidoniaceae Scheuchzeriaceae vessels absent endosperm helobial; embryo large/green Aponogetonaceae Hydrocharitaceae Potamogetonaceae Tofieldiaceae 14/166/4660 ALISMATALES eustele Araceae Juncaginaceae Ruppiaceae Zosteraceae sieve tube plastids twining vines (often); lvs often reticulate endosperm triploid endosperm embryo sac 8-nucleate sac embryo with starch grains alkaloids benzylisoquinoline ovary often inferior, style short, branched steroidal sapogenins/alkaloids 5/21/1050 lvs simple, persistent, entire DIOSCOREALES Burmanniaceae Dioscoreaceae Nartheciaceae Taccaceae Thismiaceae flw strobilar, perfect, parts free MONOCOTS Ca oxalate P parts varying, often in threes, raphides some woody (with terminally tufted lvs) scattered bundles in stem weakly differentiated infl sometimes with spathe + spadix 5/36/1345 no secondary thickening endosperm Cyclanthaceae Pandanaceae Triuridaceae Velloziaceae anthers tetrasporangiate nuclear PANDANALES mostly herbaceous stamen with broad filaments helobial often geophytes (bulbs, tubers, rhizomes); leaf bases often not sheathing pollen monosulcate pollen monosulcate flw T sometimes spotted, nectaries on T, anthers extrorse sieve tube plastids with seeds many Alstroemeriaceae Corsiaceae Melanthiaceae Philesiaceae G apocarpous (style short in most) protein crystals phytomelan lacking; fructans in stems, chelidonic acid 10/67/1558 ILIALES compitum (if present) extragynoecial L Colchicaceae Liliaceae Petermanniaceae Smilacaceae sympodial branching nectaries absent stem with ring of bundles lvs parallel-veined, entire siphonogamy fr follicle no glandular teeth 1/2/3 double fertilization > endosperm East Asia Petrosaviaceae flw pentacyclic PETROSAVIALES embryo very small P 3-merous, A opp. P often geophytes Amaryllidaceae (incl. Agapanthaceae, Alliaceae) Hypoxidaceae Iridaceae filaments narrow fr capsule or berry anthers broadly attached seed coat obliterated or with phytomelan Asparagaceae (incl. Agavaceae, Hyacinthaceae, Ruscaceae) Lanariaceae Orchidaceae 14/1122/36205 ASPARAGALES septal nectary woody, often monopodial Tecophilaeaceae Asphodelaceae (incl. Xanthorrhoeaceae, Hemerocallidaceae) single cotyledon lvs often palmately or pinnately pseudocompound, reduplicate-plicate extrafloral nectaries extrafloral radicle not persistent intense primary growth, large apical meristem, infl often with spathe 1/188/2585 Arecaceae Dasypogonaceae stem-borne roots numerous alkaloids ARECALES mostly herbaceous; lvs grassy; epidermis siliceous mycorrhiza – (in most) Bromeliaceae Eriocaulaceae Poaceae Restionaceae Xyridaceae flw often anemophilous, minute, chaffy, without nectaries 15/997/18875 (incl. Sparganiaceae) POALES Cyperaceae Juncaceae Rapateaceae Typhaceae flw monosymmetric or not, few fertile stamens infl thyrsus of scorpioid cymes Commelinaceae Haemodoraceae Hanguanaceae COMMELINIDS phenylphenalenones 5/68/812 COMMELINALES Philydraceae Pontederiaceae UV-fluorescing cell walls rhizomatous, large-leafed herbs; pseudostem common (ferulic/coumaric acids) flw irregular/monosymmetric, septal nectaries silicic acid in leaves A often strongly modified/reduced, G inferior; seeds often arillate Cannaceae Heliconiaceae Marantaceae Strelitziaceae cuticular waxes often in rodlets silicic acid 8/92/~2500 INGIBERALES aggregated into scallops Z Costaceae Lowiaceae Musaceae Zingiberaceae aquatic; herbaceous; monoecious lvs whorled, no pellucid dots; vessels lacking flw T0 or 9–10*, A1, G1, 1 apical ovule/carpel 1/1/6 Ceratophyllaceae pollen inaperturate, pollen tube branched, hydrophilous CERATOPHYLLALES lvs often divided flw parts whorled, P single or multiple whorls Berberidaceae Eupteleaceae Menispermaceae G apocarpous/paracarpous, superior Ranunculaceae ethereal berberines 7/199/4510 RANUNCULALES Circaeasteraceae Lardizabalaceae Papaveraceae oils mostly woody not in flw T often 4-merous Nelumbonaceae Platanaceae Proteaceae Sabiaceae idioblasts A epitepalous, connectives sometimes with apical appendage 4/85/1750 PROTEALES woody; vessels lacking flw T missing, ∞A , G>5 laterally connate with abaxial nectaries 1/2/2 Trochodendraceae recepta- fr aggregate of follicles TROCHODENDRALES cular E nectary mostly woody; lvs evergreen, stomata cyclocytic mostly monoecious, flw unisexual, T ± uniform or missing common 1/7/120 Buxaceae (incl. Haptanthaceae) U pregnane pseudoalkaloids BUXALES D lvs toothed, sec. veins palmate I dioecious, flw unisexual, T small to lacking 2/2/50 UNNERALES Gunneraceae Myrothamnaceae C ellagic acid G O absent mostly woody; lvs if veins strong, proceed to apex of teeth flw mostly K5, persisting, mostly ∞A , G mostly slightly connate Dilleniaceae T seeds often with aril; fr usually follicles 1/10/300 DILLENIALES S lvs with glandular teeth; often hypanthium, apically unfused carpels, stigma decurrent Altingiaceae Cynomoriaceae Haloragaceae Peridiscaceae fr mostly dry, dehiscent pollen tricolpate myricetin, flavonols Cercidiphyllaceae Daphniphyllaceae Hamamelidaceae Paeoniaceae protandry common 15/112/2500 SAXIFRAGALES flw K/C/P opp A Crassulaceae Grossulariaceae Iteaceae Saxifragaceae filaments rather narrow often tendrillar vines; lvs often divided and with glandular teeth nodes 3:3 A epipetalous, 2 ovules per carpel; raphides, pearl glands benzylisoquinolines berries stomata anomocytic 1/14/850 ITALES Vitaceae microsporogenesis V simultaneous cork origin deep-seated endosperm lacking resinous, lignans/neolignans, harman alkaloids Krameriaceae Zygophyllaceae 2/24/345 ZYGOPHYLLALES lvs often compound, pulvini (sleep movement) stipules flw A5 or multiple, branched style common Brunelliaceae Connaraceae Elaeocarpaceae mucilage cells Oxalidaceae oxalates 7/60/1845 OXALIDALES Cephalotaceae Cunoniaceae Huaceae gallic acids gallic S and infl cymose, flw small G often 3-merous, nectary often intrastaminal disk U COM clade seeds often arillate (red-orange) or winged Celastraceae (incl. Hippocrateaceae, Brexiaceae, Parnassiaceae) Lepidobotryaceae P 2/94/1355 ELASTRALES C ellagic ellagic E habits and habitats extremely diverse Achariaceae Euphorbiaceae Rafflesiaceae Ochnaceae Podostemaceae R F lvs margins toothed Chrysobalanaceae Hypericaceae Passifloraceae Rhizophoraceae flw G often tricarpellate C E R A 36/716/16065 MALPIGHIALES Clusiaceae Linaceae Phyllanthaceae Salicaceae U O B flwoften “papilionaceous”: wing, standard, keel, C clawed, G1 (most), A10 (most) Erythroxylaceae Malpighiaceae Picrodendraceae Violaceae O fr pod D S R I symbiosis with root nodule bacteria R 4/754/20140 I I O D diverse alkaloids, NP amino acids, lectins (in Fabaceae) FABALES Fabaceae Polygalaceae Quillajaceae Surianaceae E S lvs mostly simple with stipules C D S flw K valvate (and hypanthium) persisting Barbeyaceae Elaeagnaceae Rosaceae O S I carpels with 1 ovule, stigma dry Cannabaceae Moraceae Ulmaceae D N fix dihydroflavonols 9/261/7725 OSALES T R Dirachmaceae Rhamnaceae Urticaceae (incl. Cecropiaceae) S embryo large lvs mostly alternate S endosperm scanty flw often unisexual, G mostly inferior parietal placentation Apodanthaceae Begoniaceae Corynocarpaceae Datiscaceae cucurbitacins 7/109/2935 CUCURBITALES Anisophyllaceae Coriariaceae Cucurbitaceae Tetramelaceae mostly trees; lvs mostly undivided; flw small, unisexual anemophilous, thus T reduced or lacking, G mostly inferior Betulaceae Fagaceae Myricaceae infl spikes or catkins; fr 1-seeded, mostly nuts Ticodendraceae ectomycorrhiza; tannins, dihydroflavonols 7/33/1005 FAGALES Casuarinaceae Juglandaceae Nothofagaceae stems sometimes jointed at nodes; lvs with glandular
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Western Madagascan Vegetation
    Plant Formations in the Western Madagascan BioProvince Peter Martin Rhind Western Madagascan Dry Deciduous Forests of Lateritic Clay These soils support the most luxuriant forests of east Madagascar and are usually characterized by endemic species such as Cordyla madagascariensis and Givotia madagascariensis, and a variety of endemic species of the genera Dalbergia and Ravensara. Other important trees include Stereospermum euphorioides and Xylia hildebrandtii. Most of the lianas belong to the Asclepiadaceae or genera such as Combretum, Dichapetalum, Landolphia and Tetracena, while most of the under story is characterized by species of the Euphorbiaceae, Fabaceae and Rubiaceae. A feature unique to these forests is the presence of a species Dracaena and a bamboo that have deciduous leaves. Western Madagascan Dry Deciduous Forests of Sandy Soils The soils of these forests are derived from Jurassic and Cretaceous sandstones, but where they are very dry the forests are reduced to thicket. In the more fully developed forests the arborescent species usually display a three-layered structure. The upper layer or canopy consists of trees taller than 12 m, but comparatively few species are capable of reaching these heights. They normally include mainly endemic species such as Adansonia grandidieri, A. rubrostipa, A. za, (Malvaceae), Capurodendron greveanum (Sapotaceae), Cedrelopsis grevei (Rutaceae), Commiphora arafy, C. mafaidoha (Burseraceae), Cordyla madagascariensis (Fabaceae), Dalbergia purpuresens (Fabaceae), Delonix boiviniana (Fabaceae) and Hazomalania voyroni (Hernandiaceae). The middle layer grows to between 6-21 m high and frequently includes a number of evergreen species. Among the common taxa are endemic species such as Cedrelopsis gracilos, C. microfoliolata (Rutaceae), Fernandoa madagascariensis (Bignoniaceae), Operculicarya gummifera (Anacardiaceae) and Tetrapterocarpon geayi (Fabaceae).
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • Biochemical Profile of Apacheria Chiricahuensis (Crossosomataceae) Ron Scogin
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 9 | Issue 3 Article 7 1979 Biochemical Profile of Apacheria chiricahuensis (Crossosomataceae) Ron Scogin Alicia Tatsuno Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Scogin, Ron and Tatsuno, Alicia (1979) "Biochemical Profile of Apacheria chiricahuensis (Crossosomataceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 9: Iss. 3, Article 7. Available at: http://scholarship.claremont.edu/aliso/vol9/iss3/7 ALISO 9(3), 1979, pp. 481-482 BIOCHEMICAL PROFILE OF APACHERIA CHIRICAHUENSIS (CROSSOSOMATACEAE) Ron Scogin and Alicia Tatsuno Introduction Apacheria C.T. Mason is a monotypic genus cons1stmg of the single species A. chiricahuensis C.T. Mason. Apacheria was first described by Mason (1975) and was placed in the family Crossosomataceae based upon morphological, habitat, and pollen ultrastructural similarities to Crossosoma bigelovii Wats. Alternative systematic affiliations considered by Mason for this genus included Saxifragaceae and Rosaceae. Chemical investigations were initiated to test the accuracy of placement of this new genus in the family Crossosomataceae. Materials and Methods Dried plant materials for this investigation were generously supplied by Dr. C. T. Mason, Jr. Analytical methods were the same as reported by Tatsuno and Scogin (1978) for studies of Crossosoma. Results The chemical constituents of Apacheria chiricahuensis are shown in Ta­ ble 1. Also shown for comparison are the corresponding constituents from Crossosoma species reported by Tatsuno and Scogin (1978). Flavonoid compounds (flavones and flavonols) are notably absent from the leaves and flowers of Apacheria, an unusual characteristic shared with both species of Crossosoma.
    [Show full text]
  • Chrysobalanaceae
    A peer-reviewed open-access journal PhytoKeys A26: new 71–74 species (2013) of Licania (Chrysobalanaceae) from Cordillera del Cóndor, Ecuador 71 doi: 10.3897/phytokeys.26.4590 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research A new species of Licania (Chrysobalanaceae) from Cordillera del Cóndor, Ecuador Ghillean T. Prance1 1 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK Corresponding author: Ghillean T. Prance ([email protected]) Academic editor: Peter Stevens | Received 27 December 2013 | Accepted 4 September 2013 | Published 27 September 2013 Citation: Prance GT (2013) A new species of Licania (Chrysobalanaceae) from Cordillera del Cóndor, Ecuador. PhytoKeys 26: 71–74. doi: 10.3897/phytokeys.26.4590 Abstract A new mid altitude species of the predominantly lowland genus Licania, L. condoriensis from Ecuador is described and illustrated. Keywords Chrysobalanaceae, Licania, Cordillera del Cóndor, Ecuador Introduction A worldwide monograph of the Chrysobalanaceae was published in 2003 (Prance and Sothers 2003a, b). Some recent collections from Ecuador made in 2005 are of an undescribed species of Licania. This genus of 218 species is predominantly a lowland one and all three collections of this new species, L. condoriensis, are from an altitude of over 1,100 m. Table 1 lists 14 montane and submontane species of Licania that occur mainly at altitudes of over one thousand metres. Copyright Ghillean T. Prance. This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC- BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Erythroxylum Areolatum L. False Cocaine ERYTHROXYLACEAE
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CiteSeerX Erythroxylum areolatum L. false cocaine ERYTHROXYLACEAE Synonyms: none (genus also spelled Erythroxylon) Range.—False cocaine is native to the Bahamas, the Greater Antilles, the Cayman Islands, southern Mexico, and Central America (National Trust for the Cayman Islands 2002, Stevens and others 2001). It is not known to have been planted or naturalized elsewhere. Ecology.—False cocaine grows in areas of Puerto Rico that receive from about 750 to 900 mm of mean annual precipitation at elevations of a few meters above sea level to about 300 m. It grows in gallery forests in Nicaragua from 40 to 380 m elevation, frequently associated with limestone rocks (Stevens and others 2001). False cocaine is common in limited areas but uncommon in most of its range, growing in remnant and middle to late secondary forests. False cocaine grows on deep, medium-textured soil and sandy beach-strand soils (Vásquez and Kolterman 1998). The species is most frequent on limestone parent material, as skeletal rock or porous solid rocks but grows in areas with igneous and metamorphic (including ultramaphic) rocks. It has an intermediate tolerance to shade and will grow in openings or in the understory of medium to low basal area General Description.—False cocaine, also known forests. as redwood, swamp redwood, thin-leafed erythroxylon, indio, palo de hierro, arabo Reproduction.—False cocaine has been observed carbonero, limoncillo, huesito, cocaina falsa, and flowering from October to June in Puerto Rico poirier, is a deciduous shrub or small tree 2 to 7 m (Little and Wadsworth 1964).
    [Show full text]
  • A FIRE TOLERANT SPECIES from CERRADO Alexandre
    IAWA Journal, Vol. 29 (1), 2008: 69–77 STEM PROTECTIVE TISSUE IN ERYTHROXYLUM TORTUOSUM (ERYTHROXYLACEAE), A FIRE TOLERANT SPECIES FROM CERRADO Alexandre Antonio Alonso and Silvia Rodrigues Machado Departamento de Botânica, Universidade Estadual Paulista (UNESP), Botucatu SP, CP 510, CEP 18618-000, Brazil [E-mail: [email protected]] SUMMARY The origin and structure are described of the secondary protective tissue in the stem of Erythorxylum tortuosum Mart., a fire tolerant shrubby species common in Brazilian cerrado. The highly tortuous stems are covered with thick bark which is more developed at the base of the stem. After fire in the cerrado, rhytidome fragments of the burned stem flake off, revealing newly formed cork. The first periderm appears near of the terminal buds and is iniated by periclinal divisions in subepidermal cells giving rise to radial rows of cells. The first phellogen is discernible only after the differentiation of the several radial rows of cork cells. Other phellogens have their origin in successively deeper layers of the cortex. The sucessive periderms are discontinuous around the circumference. The collapsed cells with phenolic substances and the accumulated dead cells cause the formation of discontinuous blackish lines, which delimit the sucessive periderms in the rhytidome. The rhytidome contains large quantities of sclereids developed from cell wall thickening of cortex cells. The occurrence of periderm in the young parts of the stem and of rhytidome in the older parts represents pyrophytic characteristics and may explain, in part, the fire tolerance of this species. Key words: Bark, cerrado, Erythroxylum tortuosum, fire tolerant species, periderm, rhytidome, stem.
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Chrysobalanaceae: Traditional Uses, Phytochemistry and Pharmacology Evanilson Alves Feitosa Et Al
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Chrysobalanaceae: traditional uses, 22(5): 1181-1186, Sep./Oct. 2012 phytochemistry and pharmacology Evanilson Alves Feitosa,1 Haroudo Satiro Xavier,1 Karina Perrelli Randau*,1 Laboratório de Farmacognosia, Universidade Federal de Pernambuco, Brazil. Review Abstract: Chrysobalanaceae is a family composed of seventeen genera and about 525 species. In Africa and South America some species have popular indications Received 16 Jan 2012 for various diseases such as malaria, epilepsy, diarrhea, infl ammations and diabetes. Accepted 25 Apr 2012 Despite presenting several indications of popular use, there are few studies confi rming Available online 14 Jun 2012 the activities of these species. In the course of evaluating the potential for future studies, the present work is a literature survey on databases of the botanical, chemical, Keywords: biological and ethnopharmacological data on Chrysobalanaceae species published Hirtella since the fi rst studies that occurred in the 60’s until the present day. Licania Parinari botany ethnopharmacology ISSN 0102-695X http://dx.doi.org/10.1590/S0102- 695X2012005000080 Introduction Small fl owers usually greenish-white, cyclic, zigomorphic, diclamides, with a developed receptacle, sepals and petals Chrysobalanaceae was fi rst described by the free, general pentamers, androecium consists of two botanist Robert Brown in his study “Observations, stamens to many free or more or less welded together; systematical and geographical, on the herbarium collected superomedial ovary, bi to tricarpellate, unilocular, usually by Professor Christian Smith, in the vicinity of the Congo, with only one ovule and fruit usually drupaceous. In the during the expedition to explore that river, under the Brazilian Cerrado and in the Amazonian forests trees from command of Captain Tuckey, in the year 1816” (Salisbury, the species of the genus Licania can be found.
    [Show full text]
  • Antibacterial Activity of the Five South African Erythroxylaceae Species
    African Journal of Biotechnology Vol. 10(55), pp. 11511-11514, 21 September, 2011 Available online at http://www.academicjournals.org/AJB 5hL !W. ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Antibacterial activity of the five South African Erythroxylaceae species De Wet, H. Department of Botany, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa. E-mail: [email protected]. Tel: +27-35-9026108. Fax: +27-35-9026491. Accepted 21 July, 2011 Until recently, no medicinal uses were recorded for the South African Erythroxylaceae species, although, this family is used world wide in traditional medicine. This study reveals for the first time that Erythroxylum delagoense and Erythroxylum pictum roots were used to treat dysentery and diarrhoea and that Erythroxylum emarginatum leaves decoction was used to treat asthma, kidney problems, arthritis, child bearing problems and influenza in South Africa. To validate some of the medicinal uses, antibacterial testing was done for the first time on all five South African species. Leaf and bark extracts of four of the five South African Erythroxylaceae species (E. delagoense, E. emarginatum, E. pictum and Nectaropetalum capense) showed some good antibacterial activities with MIC <1 mg/ml. E. delagoense showed good results against Bacillus subtilis, Klebsiella pneumoniae and Staphylococcus aureus; E. emarginatum against Klebsiella pneumoniae; E. pictum against Bacillus subtilis and Klebsiella pneumonia; N. capense against Klebsiella pneumonia. Key words: Antimicrobial activity, Erythroxylaceae, medicinal uses, South Africa. INTRODUCTION The Erythroxylaceae family comprises four genera and ent-dolabr-4(18)-en-15S,16-diol, ent-5-dolabr-4(18)-en- 260 species.
    [Show full text]