Drosophila Species Management YER 2014

Total Page:16

File Type:pdf, Size:1020Kb

Drosophila Species Management YER 2014 1H - Drosophila Species Management YER 2014 CHAPTER 5: DROSOPHILA SPECIES MANAGEMENT 5.1 BACKGROUND Fourteen species of Hawaiian picture wing Drosophila flies are currently listed as threatened or endangered. Six of these are endemic to Oahu, and three – D. montgomeryi, D. obatai, and D. substenoptera – are currently known to occur on Army lands. OANRP work on Drosophila began in March 2013, and until recently has focused mainly on monitoring known populations and surveying for new ones. This report presents the first three-year plans for the two species currently under management, D. montgomeryi and D. substenoptera, drafted based on our survey results and in consultation with the weed control and restoration specialists. Results are also reported for D. obatai, which is not currently under management but will be formally included following consultation with USFWS. This is the first full year of Drosophila management for OANRP, and the first time systematic monitoring of Drosophila populations has been carried out on Oahu. Prior to this time, all surveys were done sporadically, and few sites were visited more often than quarterly. 5.2 SURVEY METHODS Many species of Hawaiian Drosophila, including the picture wing group to which all of the endangered species belong, are readily attracted to baits of fermented banana and mushrooms. Both baits are spread on a cellulose sponge which is hung from a tree in a cool, shaded, sheltered site, and checked for flies after about an hour. Depending on the quality of the site (number and size of host plants, and microclimate) and the density of baiting spots, surveys typically consist of setting out 16-32 sponges, in groups of four or eight with groups separated by 20-100 m. Baits are checked at least every hour, as flies do not necessarily stay at baits for long periods; number and species of all picture wings on each sponge are recorded at each check. The greatest activity is typically during the cooler hours before 10 AM and after 2 PM, but flies may appear at any time. Direct quantification of Drosophila populations is extremely tenuous, as populations may fluctuate not only seasonally but from day to day. However, repeated surveys may yield useful data on long-term trends. Abundance numbers are reported as the maximum number of individuals observed on a survey day (compiled by adding the maximum observed at each discrete group of bait sponges at any one time, assuming that the same individual flies may move between sponges within a group but are unlikely to be seen at two different sponge groups), since numbers fluctuate through the day. Known, significant populations of D. montgomeryi at Kaluaa MU and D. substenoptera at Palikea, where flies occur relatively consistently, were monitored monthly in order to determine approximate population trends through the year. Other known populations were visited periodically through the year. New populations of endangered Drosophila were searched for by looking in similar habitat both in areas suggested by other staff as having host plants, at historic collecting localities, and in new sites where surveys have been minimal. 5.3 RESULTS 5.3.1 Drosophila montgomeryi Drosophila montgomeryi is a small yellow-brown species which breeds in rotting bark of Urera kaalae and Urera glabra (opuhe). During the last reporting period (March – October 2013), it was found at three sites which we consider to be two population units (PUs; see section 5.4). Conducting additional surveys during a productive winter wet season in this reporting period has increased this to nine sites at four PUs, effectively covering nearly its entire historic range in the Waianae mountains (Figure 1). 2014 Makua and Oahu Implementation Plan Status Report 203 1H - Drosophila Species Management YER 2014 Chapter 5 Drosophila Figure 1. Distribution of Drosophila montgomeryi observations in 2014, with known Urera spp. sites and all survey points in the Waianae range. Kaluaa & Waieli MU Three sites in this MU – Puu Hapapa, North Kaluaa, and Central Kaluaa gulch 1 – have been monitored monthly since June 2013 (though not every site was visited each month) over a total of 32 survey days. Abundance of D. montgomeryi increased dramatically in the winter, with increasing rain and as treefalls from storms caused death or branch breakage of Urera near monitoring sites. Numbers were moderate to high at all sites between November 2013 and July 2014. However, month-to-month fluctuations were extremely high, particularly in North Kaluaa; these large swings were strongly correlated with those of some other species, including the common D. ambochila, D. crucigera, and D. inedita, but not D. punalua or the rare D. divaricata, suggesting that the effect was independent of at least host plant. There was also no obvious difference in weather or bait quality from high-abundance days that would explain the low numbers. A fourth site for D. montgomeryi in this PU, Moho Gulch, was discovered in March 2014. It has a small exclosure built for Urera kaalae, but the fence has been heavily damaged by rockslides and is not being maintained. At present there is only one living mature U. kaalae (outplanted) and one large U. glabra, with several smaller U. glabra (all wild). A single natural seedling of U. kaalae was also seen. Direct access is limited due to intensive use of South Range for live-fire training, though it may be reached via Puu Hapapa as well. 2014 Makua and Oahu Implementation Plan Status Report 204 1H - Drosophila Species Management YER 2014 Chapter 5 Drosophila Drosophila montgomeryi monitoring 35 30 25 20 Hapapa North 15 Central Palikea 10 5 0 May-13 Jul-13 Sep-13 Nov-13 Jan-14 Mar-14 May-14 Jul-14 Sep-14 Figure 2. Drosophila montgomeryi numbers during monthly monitoring at three sites in Kaluaa PU (Puu Hapapa, North Kaluaa, and Central Kaluaa) and Palikea. Y axis is the maximum number observed across the entire site on the survey day (see Survey Methods, section 5.2). Pualii This site was surveyed for the first time this year. At the time of the first visit, the last wild Urera kaalae tree in North Pualii Gulch had recently fallen and the decaying trunk was supporting a large number of D. montgomeryi. Flies were still present at a followup visit two months later, after the tree was fully rotted out and dried. Only seven U. kaalae (all outplanted), and no U. glabra, remain at the site; with no reproduction currently occurring among U. kaalae, it will not remain a viable population of D. montgomeryi without management intervention. Nevertheless, it is an area of high-quality native habitat, both in the immediate vicinity and further downslope in the gulch. Site Days Max No. Kaluaa - Central 8 23 Palikea Kaluaa - North 10 17 Despite continuous monitoring here since May 2013 (targeting D. Puu Hapapa 10 34 substenoptera, which is consistently found in the area), D. Moho Gulch 2 3 montgomeryi was not detected until May 2014. The numbers Pualii 2 6 were relatively low (one individual in May, and five in July), but Palikea 11 5 they occurred during a time when the species was on a seasonal Waianae 4 86 decline at other sites. The area where they were found is already Kawaiu 2 0 a target for weed management and restoration, and has high potential for management to benefit D. montgomeryi (see Makaha 5 0 Management Plan below). Urera kaalae is absent, but Urera Pahole 3 0 glabra has already begun to increase naturally as weed control has Palawai 1 0 reduced alien cover. Lihue 5 0 Table 1. Survey effort for D. Waianae Kai montgomeryi across all potential sites in During explorations for new sites, a large population of D. 2014 reporting year, in survey days. montgomeryi was discovered in the northeastern subgulches of 2014 Makua and Oahu Implementation Plan Status Report 205 1H - Drosophila Species Management YER 2014 Chapter 5 Drosophila Drosophila montgomeryi laying eggs in a rotting trunk of Urera kaalae, Pualii. Kumaipo stream, Waianae Valley. Three sites have been discovered so far, all at the base of Mt. Kaala and consisting of small patches (~0.5 ha) of diverse native forest constrained by alien-dominated vegetation above and below. Only Urera glabra is present, indicating that D. montgomeryi can thrive on it alone (U. kaalae was also found in nearby South Kumaipo Gulch as recently as 1995, but no longer occurs in the valley). All are located on or just below steep slopes that are vulnerable to landslides, which may preclude fencing as a matter of practicality. The middle gulch, where D. montgomeryi was found to be extraordinarily abundant during visits in January and February (Table 1) and is currently the only known site for the critically imperiled D. kinoole (see Other Species below), was impacted by boulders from ongoing severe erosion of the ridge to the north prior to a followup visit in May. Although originating about 200 meters away, a number of boulders rolled directly through the site and smashed several large Urera trees. During baiting at the time, many D. montgomeryi were observed resting on branches, though few were attracted to baits. The long-term impact on the population is uncertain; Urera glabra has a high capacity to regrow from damage such as this. Only three survey days have been spent in the valley to date, all focused in a relatively small area, so other sites may exist. Lihue The original rediscovery of D. montgomeryi was at Schofield West Range, South Haleauau Gulch near Puu Kalena in 2008. This site was revisited once in late 2013, but none were found. Access is difficult and it is probably still inhabited by the species, given the usual population fluctuations seen at other sites.
Recommended publications
  • Department of the Interior Fish and Wildlife Service
    Thursday, February 27, 2003 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Final Designation or Nondesignation of Critical Habitat for 95 Plant Species From the Islands of Kauai and Niihau, HI; Final Rule VerDate Jan<31>2003 13:12 Feb 26, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\27FER2.SGM 27FER2 9116 Federal Register / Vol. 68, No. 39 / Thursday, February 27, 2003 / Rules and Regulations DEPARTMENT OF THE INTERIOR units designated for the 83 species. This FOR FURTHER INFORMATION CONTACT: Paul critical habitat designation requires the Henson, Field Supervisor, Pacific Fish and Wildlife Service Service to consult under section 7 of the Islands Office at the above address Act with regard to actions carried out, (telephone 808/541–3441; facsimile 50 CFR Part 17 funded, or authorized by a Federal 808/541–3470). agency. Section 4 of the Act requires us SUPPLEMENTARY INFORMATION: RIN 1018–AG71 to consider economic and other relevant impacts when specifying any particular Background Endangered and Threatened Wildlife area as critical habitat. This rule also and Plants; Final Designation or In the Lists of Endangered and determines that designating critical Nondesignation of Critical Habitat for Threatened Plants (50 CFR 17.12), there habitat would not be prudent for seven 95 Plant Species From the Islands of are 95 plant species that, at the time of species. We solicited data and Kauai and Niihau, HI listing, were reported from the islands comments from the public on all aspects of Kauai and/or Niihau (Table 1).
    [Show full text]
  • Keauhou Bird Conservation Center
    KEAUHOU BIRD CONSERVATION CENTER Discovery Forest Restoration Project PO Box 2037 Kamuela, HI 96743 Tel +1 808 776 9900 Fax +1 808 776 9901 Responsible Forester: Nicholas Koch [email protected] +1 808 319 2372 (direct) Table of Contents 1. CLIENT AND PROPERTY INFORMATION .................................................................... 4 1.1. Client ................................................................................................................................................ 4 1.2. Consultant ....................................................................................................................................... 4 2. Executive Summary .................................................................................................. 5 3. Introduction ............................................................................................................. 6 3.1. Site description ............................................................................................................................... 6 3.1.1. Parcel and location .................................................................................................................. 6 3.1.2. Site History ................................................................................................................................ 6 3.2. Plant ecosystems ............................................................................................................................ 6 3.2.1. Hydrology ................................................................................................................................
    [Show full text]
  • 2017 City of York Biodiversity Action Plan
    CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley.
    [Show full text]
  • Museum of Natural History
    p m r- r-' ME FYF-11 - - T r r.- 1. 4,6*. of the FLORIDA MUSEUM OF NATURAL HISTORY THE COMPARATIVE ECOLOGY OF BOBCAT, BLACK BEAR, AND FLORIDA PANTHER IN SOUTH FLORIDA David Steffen Maehr Volume 40, No. 1, pf 1-176 1997 == 46 1ms 34 i " 4 '· 0?1~ I. Al' Ai: *'%, R' I.' I / Em/-.Ail-%- .1/9" . -_____- UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA MUSEUM OF NATURAL HISTORY am published at irregular intervals Volumes contain about 300 pages and are not necessarily completed in any one calendar year. JOHN F. EISENBERG, EDITOR RICHARD FRANZ CO-EDIWR RHODA J. BRYANT, A£ANAGING EMOR Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor. Bulletin; Florida Museum of Natural Histoty, University of Florida P. O. Box 117800, Gainesville FL 32611-7800; US.A This journal is printed on recycled paper. ISSN: 0071-6154 CODEN: BF 5BAS Publication date: October 1, 1997 Price: $ 10.00 Frontispiece: Female Florida panther #32 treed by hounds in a laurel oak at the site of her first capture on the Florida Panther National Wildlife Refuge in central Collier County, 3 February 1989. Photograph by David S. Maehr. THE COMPARATIVE ECOLOGY OF BOBCAT, BLACK BEAR, AND FLORIDA PANTHER IN SOUTH FLORIDA David Steffen Maehri ABSTRACT Comparisons of food habits, habitat use, and movements revealed a low probability for competitive interactions among bobcat (Lynx ndia). Florida panther (Puma concotor cooi 1 and black bear (Urns amencanus) in South Florida. All three species preferred upland forests but ©onsumed different foods and utilized the landscape in ways that resulted in ecological separation.
    [Show full text]
  • Investigation of Matrilineal Relationships Via Mitochondrial
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 2003 Investigation of Matrilineal Relationships via Mitochondrial DNA in the Southeastern Yellowjacket (Vespula squamosa) Anthony Deets Eastern Illinois University This research is a product of the graduate program in Biological Sciences at Eastern Illinois University. Find out more about the program. Recommended Citation Deets, Anthony, "Investigation of Matrilineal Relationships via Mitochondrial DNA in the Southeastern Yellowjacket (Vespula squamosa)" (2003). Masters Theses. 1488. https://thekeep.eiu.edu/theses/1488 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS/FIELD EXPERIENCE PAPER REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is receiving a number of request from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's
    [Show full text]
  • Puaiohi Or Small Kaua‘I Thrush (Myadestes Palmeri)
    Hawaiian Bird Conservation Action Plan Focal Species: Puaiohi or Small Kaua‘i Thrush (Myadestes palmeri) Synopsis: The Puaiohi is endemic to Kaua’i and is restricted to remote areas of the rugged ‘Alaka’i Plateau. It nests in hollows or on ledges of fern-covered cliffs along narrow streams. The species may always have been rare, and availability of suitable nest sites may limit the range and population size. Habitat management to prevent degradation by non-native plants and feral ungulates is a key to long-term conservation. Artificial nest structures are being investigated as a way of increasing nest site availability and decreasing nest predation. Puaiohi at nest. Photo Eric VanderWerf Typical Puaiohi nesting habitat. Photo KFBRP Geographic region: Kaua‘i, Hawaiian Islands Group: Forest Birds Federal Status: Endangered State status: Endangered IUCN status: Critically Endangered Conservation score, rank: 18/20, At-risk Watch List 2007 Score: RED Juvenile Puaiohi. Photo Eric VanderWerf Climate Change Vulnerability: High Population Size and Trend: The Puaiohi population was estimated to be about 500 birds in 2006 (range 200-1,000; Kaua’i Forest Bird Recovery Project [KFBRP] unpubl. data). The habitat used by Puaiohi is difficult to survey and calculating an accurate population estimate has been challenging. The population trend appears to be stable. In 2011, a new survey method (occupancy modeling; Mackenzie et al. 2006) was field tested and it is hoped that this method will yield a more precise population estimate and provide a more robust method for monitoring trends. Range: The breeding population is restricted to an area of < 20 km2 on the ‘Alaka’i Plateau, and 75% of the population is estimated to occur in just 10 km2 (KFBRP unpubl.
    [Show full text]
  • Comparative Seasonality and Diets of German (Vespula Germanica) and Common (V. Vulgaris) Wasp Colonies in Manawatu, New Zealand
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. COMPARATfVE SEASONALITY AND DIETS OF GERMAN (Vespula germanica) AND COMMON (V. rnlgaris) WASP COLONIES IN MANA WA TU, NEW ZEALAND A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University Peter Lance Godfrey 1995 FRONTISPIECE: overwintering German nest found near Bulls on March 2 1994. Extracted on March 24 1994, the nest contained an 570,500 worker/male cells and 32,500 queen cells (R. J. Harris, pers. comm.). ABSTRACT German wasp ( Vespu!a gemw11ica) and common wasp ( V. l'lllgaris) colonies were studied in urban and rural habitats in Manawatu, from January to August 1993. Relative abundance of colonies, nest site preferences, colony dynamics, phenology and diet are described. Data quantifying vespulid wasp nest abundance in Manawatu between 1991-1994 were sourced from pest control companies and the Manawatu­ Wanganui Regional Council. These data were compared with rainfall records for the same period. Over 75 % of nests examined in urban and rural Manawatu were built by common wasps. This trend persisted through the season with German wasps accounting for no more than 28 % of nests reported in any one month. Most reports of wasps were made in January, with February and March also being high. Heavy rainfall in spring appeared to promote colony formation in the following year.
    [Show full text]
  • Yellowjackets and Hornets, Vespula and Dolichovespula Spp. (Insecta: Hymenoptera: Vespidae)1 E
    EENY-081 Yellowjackets and Hornets, Vespula and Dolichovespula spp. (Insecta: Hymenoptera: Vespidae)1 E. E. Grissell and Thomas R. Fasulo2 Introduction Distribution Only two of the 18 Nearctic species of Vespula are known Vespula maculifrons is found in eastern North America, from Florida (Miller 1961). These are the two yellowjackets: while Vespula squamosa is found in the eastern United eastern yellowjacket, V. maculifrons (Buysson) and the States and parts of Mexico and Central America. The southern yellowjacket, V. squamosa (Drury). One species baldfaced hornet, Dolichovespula maculata, is found of Dolichovespula is also present: the baldfaced hornet, throughout most of the Nearctic region. D. maculata (Linnaeus). The baldfaced hornet is actually a yellowjacket. It receives its common name of baldfaced Identification from its largely black color but mostly white face, and that The three species of Florida yellowjackets are readily of hornet because of its large size and aerial nest. In general, separated by differences in body color and pattern. Identi- the term “hornet” is used for species which nest above fication is possible without a hand lens or microscope, and, ground and the term “yellowjacket” for those which make for this reason, a simple pictorial key is all that is necessary. subterranean nests. All species are social, living in colonies Color patterns are relatively stable, and their use is further of hundreds to thousands of individuals. strengthened by morphological characters (Miller 1961). Queens and workers may be separated by abdominal pat- terns; males have seven abdominal segments while females have only six. Biology Colonies are founded in the spring by a single queen that mated the previous fall and overwintered as an adult, usually under the bark of a log.
    [Show full text]
  • The Invasion of Two Species of Social Wasps (Hymenoptera, Vespidae) to the Faroe Islands
    BioInvasions Records (2019) Volume 8, Issue 3: 558–567 CORRECTED PROOF Rapid Communication The invasion of two species of social wasps (Hymenoptera, Vespidae) to the Faroe Islands Sjúrður Hammer1,* and Jens-Kjeld Jensen2 1Environment Agency, FO-165, Argir, Faroe Islands 2Í Geilini 37, FO-270 Nólsoy, Faroe Islands Author e-mails: [email protected] (SH), [email protected] (JKJ) *Corresponding author Citation: Hammer S and Jensen J-K (2019) The invasion of two species of Abstract social wasps (Hymenoptera, Vespidae) to the Faroe Islands. BioInvasions Records Two species of social wasps have established in the Faroe Islands in 1999 – common 8(3): 558–567, https://doi.org/10.3391/bir. wasp Vespula vulgaris and German wasp Vespula germanica. The population 2019.8.3.11 growth, and dispersal in the Faroes has been followed in detail through Received: 9 January 2019 correspondence and contact with local residents and authorities throughout the Accepted: 10 June 2019 Faroes. Collected wasps have been identified, and nest eradication data from the Published: 12 August 2019 local municipalities is also presented. In total there have been 1.222 nests located and destroyed, mostly in Tórshavn, where they were first introduced, but nests have Handling editor: Tim Adriaens also been found on neighbouring islands. Both the introduction and the spread Thematic editor: Stelios Katsanevakis within the Faroes suggest a strong relationship with human settlements and travel. Copyright: © Hammer S and Jensen J-K Social wasps have established on four out of 18 islands – all of which are This is an open access article distributed under terms connected by land, suggesting that their spread within the islands is also human of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0).
    [Show full text]
  • Auwahi: Ethnobotany of a Hawaiian Dryland Forest
    AUWAHI: ETHNOBOTANY OF A HAWAIIAN DRYLAND FOREST. A. C. Medeiros1, C.F. Davenport2, and C.G. Chimera1 1. U.S. Geological Survey, Biological Resources Division, Haleakala Field Station, P.O. Box 369, Makawao, HI 96768 2. Social Sciences Department, Maui Community College, 310 Ka’ahumanu Ave., Kahului, HI 96732 ABSTRACT Auwahi district on East Maui extends from sea level to about 6800 feet (1790 meters) elevation at the southwest rift of leeward Haleakal¯a volcano. In botanical references, Auwahi currently refers to a centrally located, fairly large (5400 acres) stand of diverse dry forest at 3000-5000 feet (915- 1525 meters) elevation surrounded by less diverse forest and more open-statured shrubland on lava. Auwahi contains high native tree diversity with 50 dryland species, many with extremely hard, durable, and heavy wood. To early Hawaiians, forests like Auwahi must have seemed an invaluable source of unique natural materials, especially the wide variety of woods for tool making for agriculture and fishing, canoe building, kapa making, and weapons. Of the 50 species of native trees at Auwahi, 19 species (38%) are known to have been used for medicine, 13 species (26%) for tool-making, 13 species (26%) for canoe building 13 species (26%) for house building, 8 species (16%) for tools for making kapa, 8 species (16%) for weapons 8 species (16%) for fishing, 8 species (16%) for dyes, and 7 species (14 %) for religious purposes. Other miscellaneous uses include edible fruits or seeds, bird lime, cordage, a fish narcotizing agent, firewood, a source of "fireworks", recreation, scenting agents, poi boards, and h¯olua sled construction.
    [Show full text]
  • Population Ecology of Black Bears in the Okefenokee-Osceola Ecosystem
    Final Report to Study Cooperators Population Ecology of Black Bears in the Okefenokee-Osceola Ecosystem Prepared by: Steven Dobey1, Darrin V. Masters2, Brian K. Scheick2, Joseph D. Clark3, Michael R. Pelton1, and Mel Sunquist2 September 30, 2002 1 Department of Forestry, Wildlife and Fisheries, University of Tennessee 2 Department of Wildlife Ecology and Conservation, University of Florida 3 USGS, Southern Appalachian Field Laboratory, University of Tennessee ii Population Ecology of Black Bears in the Okefenokee-Osceola Ecosystem Abstract: We studied black bears (Ursus americanus) on 2 study areas in the Okefenokee-Osceola ecosystem in north Florida and southeast Georgia from 1995–1999 to determine population characteristics (size, density, relative abundance, distribution, sex and age structure, mortality rates, natality, and recruitment) and habitat needs. We captured 205 different black bears (124M: 81F) 345 times from June 1995 to September 1998. Overall, adult bears on Osceola were 19% heavier than those on Okefenokee (t = 2.96, df = 148, P = 0.0036). We obtained 13,573 radiolocations from 87 (16M:71F) individual bears during the period of study. Seventeen mortalities of radiocollared bears were documented on Okefenokee, with hunting mortality accounting for 70.6% of these deaths. We documented only 2 (8%) mortalities of radiocollared females from Osceola; both were illegally killed. Annual survival rates for radiocollared females were lower on Okefenokee ( x = 0.87, 95% CI = 0.80–0.93) than on Osceola ( x = 0.97, 95% CI = 2 0.92–1.00; 0.05 = 3.98, 1 df, P = 0.0460). Overall, 67 bears (51M:16F) were taken by hunters on the Okefenokee study area from 1995–1999.
    [Show full text]
  • Phylogenetic and Biogeographic Relationships of Cheirodendron
    PHYLOGENETIC AND BIOGEOGRAPHIC RELATIONSHIPS OF CHEIRODENDRON NUTT. EX. SEEMAN (ARALIACEAE) A THESIS SUBMITTED TO THE GRADUATE DIVISON OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANY AUGUST 2014 By Chelsea Osaki Thesis Committee: Clifford Morden, Chairperson Donald Drake David Lorence ACKNOWLEDGEMENTS I would like to acknowledge the following people whom I am grateful for in helping me to complete this project: Dr. Clifford Morden for his patience and kindness with the project and throughout my time as a graduate student; Dr. Donald Drake for his insightful comments on my thesis; and Dr. David Lorence for his knowledge of the Marquesas Islands. I would also like to thank Joel Lau, whose ideas about the evolution and speciation of Cheirodendron have served as the foundations of this project. To Mitsuko Yorkston, who has taught me every lab technique I know. Thank you to Dr. Anthony Mitchell for his comments and suggestions for primers and Dr. Ines Schönberger from Allan Herbarium (CHR) for providing outgroup samples. There were many people who have been involved in field work, collecting specimen, sorting herbarium samples, performing DNA extractions, PCRs, and analyses, whose help I greatly appreciate: Dr. Gregory Plunkett, Dr. Pei-Luen Lu, Dr. Richard Pender, Nipuni Sirimalwatta, Adam Williams, Seana Walsh, Dylan Morden, Wendy Kishida, Steve Perlman, Dr. Timothy Gallaher, Vianca Cao, Jesse Adams, Peter Wiggin, Bao Ying Chen, April Cascasan, Dylan Davis, Jacy Miyaki, Gavin Osaki, Erin Fujimoto, George Akau, Matthew Campbell, Isaiah Smith, Dr. Daniel Rubinoff, Dr. Michael Thomas, and Robert Tamayo.
    [Show full text]