Annual Report 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S. -
Die Woche Spezial
In cooperation with DIE WOCHE SPEZIAL >> Autographs>vs.>#NobelSelfie Special >> Big>Data>–>not>a>big>deal,> Edition just>another>tool >> Why>Don’t>Grasshoppers> Catch>Colds? SCIENCE SUMMIT The>64th>Lindau>Nobel>Laureate>Meeting> devoted>to>Physiology>and>Medicine More than 600 young scientists came to Lindau to meet 37 Nobel laureates CAREER WONGSANIT > Women>to>Women: SUPHAKIT > / > Science>and>Family FOTOLIA INFLAMMATION The>Stress>of>Ageing > FLASHPICS > / > MEETINGS > FOTOLIA LAUREATE > CANCER RESEARCH NOBEL > LINDAU > / > J.>Michael>Bishop>and GÄRTNER > FLEMMING > JUAN > / the>Discovery>of>the>first> > CHRISTIAN FOTOLIA Human>Oncogene EDITORIAL IMPRESSUM Chefredakteur: Prof. Dr. Carsten Könneker (v.i.S.d.P.) Dear readers, Redaktionsleiter: Dr. Daniel Lingenhöhl Redaktion: Antje Findeklee, Jan Dönges, Dr. Jan Osterkamp where>else>can>aspiring>young>scientists> Ständige Mitarbeiter: Lars Fischer Art Director Digital: Marc Grove meet>the>best>researchers>of>the>world> Layout: Oliver Gabriel Schlussredaktion: Christina Meyberg (Ltg.), casually,>and>discuss>their>research,>or>their> Sigrid Spies, Katharina Werle Bildredaktion: Alice Krüßmann (Ltg.), Anke Lingg, Gabriela Rabe work>–>or>pressing>global>problems?>Or> Verlag: Spektrum der Wissenschaft Verlagsgesellschaft mbH, Slevogtstraße 3–5, 69126 Heidelberg, Tel. 06221 9126-600, simply>discuss>soccer?>Probably>the>best> Fax 06221 9126-751; Amtsgericht Mannheim, HRB 338114, UStd-Id-Nr. DE147514638 occasion>is>the>annual>Lindau>Nobel>Laure- Geschäftsleitung: Markus Bossle, Thomas Bleck Marketing und Vertrieb: Annette Baumbusch (Ltg.) Leser- und Bestellservice: Helga Emmerich, Sabine Häusser, ate>Meeting>in>the>lovely>Bavarian>town>of> Ute Park, Tel. 06221 9126-743, E-Mail: [email protected] Lindau>on>Lake>Constance. Die Spektrum der Wissenschaft Verlagsgesellschaft mbH ist Kooperati- onspartner des Nationalen Instituts für Wissenschaftskommunikation Daniel>Lingenhöhl> GmbH (NaWik). -
Nfap Policy Brief » O C T O B E R 2017
NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» O CTOBER 2017 IMMIGRANTS AND NOBEL PRIZES : 1901- 2017 EXECUTIVE SUMMARY Immigrants have been awarded 39 percent, or 33 of 85, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Reiner Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. These achievements by immigrants point to the gains to America of welcoming talent from across the globe. It does not mean America should welcome only Nobel Prize winners. Such a policy would be impossible to implement, since most immigrant Nobel Prize winners enter the United States many years before being awarded this honor. Most people immigrate to another country in their 20s, particularly employment-based immigrants, who either study in America or come here to work shortly after obtaining a degree abroad. The average of age of Nobel Prize winners at the time of the award is 59.5 years, according to economist Mark J. Perry.1 Table 1 Immigrant Nobel Prize Winners in Chemistry, Medicine and Physics Since 2000 Immigrant Nobel Winners Since 2000 33 of 85 American winners have been immigrants Percentage of Immigrant Winners Since 2000 39% Source: Royal Swedish Academy of Sciences, National Foundation for American Policy, George Mason University Institute for Immigration Research. -
Biography of Carol W. Greider BIOGRAPHY
Biography of Carol W. Greider BIOGRAPHY hen biochemist and mol- in Berkeley, things clicked again. ‘‘I re- ecular biologist Carol ally liked my conversations with Liz, and Greider was a first-year there were a number of other people in graduate student at the the department that would be poten- WUniversity of California, Berkeley, in tially fun to work with, so I went there,’’ 1984, she began to study a topic slightly says Greider. off the beaten path. With her adviser, Elizabeth Blackburn, Greider investi- First Glimpse of Telomerase gated how a certain single-celled pond Throughout the late 1970s and early organism maintained the tens of thou- 1980s, Blackburn and other researchers sands of caps on the ends of its mini- had found that telomeres show unusual chromosomes—specialized structures behavior and structure. The chromosome known as telomeres that protect against caps consist of multiple repeats of a sim- DNA damage. On Christmas Day, 9 ple motif, which in the pond ciliate Tetra- months later, Greider spotted signs of a hymena was six nucleotides long. The new enzyme, telomerase, that appeared mechanism by which these sequence re- to be responsible for this chromosomal peats were added to the ends of telomeres maintenance. The finding helped kick in ciliates and yeast had not yet been off a field of research that would attract identified. Most researchers believed re- the attention of longevity researchers, combination was responsible, but Black- cancer biologists, and the biotechnology burn favored the explanation of specific industry. repeat addition by an as-yet-unknown Today, so many papers are published enzyme. -
A. HM, B. Spa@Al Naviga@On 2. Hippocampus
Outline 1. What does Hippocampus do? A. HM, B. Spaal navigaon 2. Hippocampus anatomy and connec;vity CA1, CA3 diagram etc. Connec;vity to other regions. 3. Place fields in Hippocampus – show examples + the O'Keefe effect 4. Plas;city of place fields + NMDA blocker + Morris water maze 5. Replay of sequences 6. Entorhinal grid cells What does the Hippocampus do? 1. Memory 2. Spaal representaon Henry Gustav Molaison (February 26, 1926 – December 2, 2008), beger known as HM “AYer operaon this young man could no longer recognize the hospital staff nor find his way to the bathroom, and he seemed to recall nothing of the day-to-day events of his hospital life. There was also a par;al retrograde amnesia, inasmuch as he did not remember the death of a favorite uncle three years previously, nor anything of the period in the hospital, yet could recall some trivial events that had occurred just before his admission to the hospital. His early memories were apparently vivid and intact. This paent’s memory defect has persisted without improvement to the present ;me, and numerous illustraons of its severity could be given. Ten months ago the family moved from their old house to a new one a few blocks away on the same street; he s;ll has not learned the new address, though remembering the old one perfectly, nor can he be trusted to find his way home alone.” “Moreover, he does not know where objects in con;nual use are kept; for example, his mother s;ll has to tell him where to find the lawn mower, even though he may have been using it only the day before. -
Retrohippocampal Cortical Neurons During Hippocampal Sharp Waves in the Behaving Rat
The Journal of Neuroscience, October 1994, 74(10): 6160-6170 Selective Activation of Deep Layer (V-VI) Retrohippocampal Cortical Neurons during Hippocampal Sharp Waves in the Behaving Rat J. J. Chrobak and G. Buzsaki Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 The coordinated activity of hippocampal neurons is reflected feet on their postsynaptic neocortical targets and may rep- by macroscopic patterns, theta and sharp waves (SPW), ev- resent a physiological mechanism for memory trace transfer ident in extracellular field recordings. The importance of these from the hippocampus to the neocortex. patterns is underscored by the ordered relation of specific [Key words: hippocampus, entorhinal cortex, theta, sharp neuronal populations to each pattern as well as the relation waves, oscillations, memory, temporal lobe epilepsy, Ab- of each pattern to distinct behavioral states. During awake heimer’s disease] immobility, consummatory behavior, and slow wave sleep, CA3 and CA1 neurons participate in organized population Retrohippocampal structures [entorhinal cortex (EC), parasub- bursts during SPW. In contrast, during theta-associated ex- iculum, presubiculum, and subiculum] process and transmit ploratory activity, the majority of principle cells are silent. information between the neocortex and the hippocampus. The Considerably less is known about the discharge properties electrophysiology of thesestructures has received scant attention of retrohippocampal neurons during theta, and particularly despite their importance as a substrate for memory (Amaral, during SPW. These retrohippocampal neurons (entorhinal 1987; Zola-Morgan et al., 1989; Squire, 1992)and asfocal point cortical, parasubicular, presubicular, and subicular) process for the pathophysiology of dementia (Hyman et al., 1984; Van and transmit information between the neocortex and the hip- Hoesenet al., 1991) and temporal lobe epilepsy (Rutecki et al., pocampus. -
Lettre Parrain 2010
Paris, February 2012 We are pleased to launch the Call for Nominations for the 2013 L’ORÉAL-UNESCO Awards For Women in Science dedicated to the Physical Sciences. Dear Professor, You are invited to submit candidates for the 2013 L’ORÉAL-UNESCO Awards in Physical Sciences. You can propose outstanding women scientists from any continent. The five US$100,000 Awards will be presented in March 2013 at UNESCO Headquarters in Paris, France to five women scientists who have made an outstanding contribution to scientific advancement. You will find enclosed The Call for Nominations describing the procedures, the official nomination form (one per geographic region), and a brochure of the Award Laureates from 1998 through 2011. THE DEADLINE FOR SUBMITTING NOMINATIONS IS MAY 30th 2012 The L’ORÉAL-UNESCO Awards Jury in Physical Sciences is presided by Professor Ahmed Zewail, Nobel Prize in Chemistry 1999, in the presence of Professor Christian de Duve, Nobel Prize in Medicine 1974 and Founding President of the Awards. In 2011, the Jury designated the following Laureates in Physical Sciences: Professor Faiza Al-Kharafi (Kuwait) for AFRICA & the ARAB STATES Professor Vivian Wing-Wah Yam (Hong Kong) for ASIA-PACIFIC Professor Anne L’Huillier (Sweden) for EUROPE Professor Silvia Torres-Peimbert (Mexico) for LATIN AMERICA Professor Jillian Banfield (USA) for NORTH AMERICA Fondation d’entreprise régie par la loi n°87-571 du 23 juillet 1987 modifiée 41 rue Martre – 92117 Clichy Cedex – Tél. + 33 (0) 1 47 56 72 74 – Fax : + 33 (0) 1 47 56 42 59 - E-Mail : [email protected] Siège Social : 14 rue Royale – 75008 Paris Since its inception in 1998, the For Women in Science partnership expands each year. -
Creating a Web-Based 3D Interactive Resource to Teach the Anatomy of the Human Hippocampus
Morphology of Memory: Creating a web-based 3D interactive resource to teach the anatomy of the human hippocampus by Alisa M. Brandt A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Arts Baltimore, Maryland March, 2019 © 2019 Alisa Brandt All Rights Reserved ABSTRACT The hippocampus is a critical region of the brain involved in memory and learning. It has been widely researched in animals and humans due to its role in consolidating new experiences into long-term declarative memories and its vulnerability in neurodegenerative diseases. The hippocampus is a complex, curved structure containing many interconnected regions that consist of distinct cell types. Despite the importance of understanding the normal state of hippocampal anatomy for studying its functions and the disease processes that affect it, didactic educational resources are severely limited. The literature on the hippocampus is expansive and detailed, but a communication gap exists between researchers presenting hippocampal data and those seeking to improve their understanding of this part of the brain. The hippocampus is typically viewed in a two-dimensional fashion; students and scientists have diffculty visualizing its three-dimensional anatomy and its structural relationships in space. To improve understanding of the hippocampus, an interactive, web-based educational resource was created containing a pre-rendered 3D animation and manipulable 3D models of hippocampal regions. Segmentations of magnetic resonance imaging data were modifed and sculpted to build idealized anatomical models suitable for teaching purposes. These models were animated in combination with illustrations and narration to introduce the viewer to the subject, and the completed animation was uploaded online and embedded into the interactive. -
Traumatic Early Life Stress in the Developing Hippocampus: a Meta-Analysis of MRI Studies
Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2020 Traumatic Early Life Stress in the Developing Hippocampus: A Meta-Analysis of MRI Studies Sharon Johnson Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Psychology Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Social and Behavioral Sciences This is to certify that the doctoral dissertation by Sharon Lee Johnson has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Scott Wowra, Committee Chairperson, Psychology Faculty Dr. Patricia Costello, Committee Member, Psychology Faculty Dr. Kimberley Cox, University Reviewer, Psychology Faculty Chief Academic Officer and Provost Sue Subocz, Ph.D. Walden University 2020 Abstract Traumatic Early Life Stress in the Developing Hippocampus: A Meta-Analysis of MRI Studies by Sharon Lee Johnson MPhil, Walden University, 2019 M.Ed., Youngstown State University, 1994 BA, Kent State University, 1979 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Health Psychology Walden University August 2020 Abstract Advancements in neuroimaging techniques afford researchers the opportunity to examine the actual brains of living persons, which exponentially contributes to new insights regarding brain and behavior phenomena. However, empirical studies investigating stress and the hippocampus attend primarily to adult populations - less on children and adolescents. -
Laudatio Jack W. Szostak
Laudatio Jack W. Szostak Your Royal Highness, Your Excellencies, Members of the Board of the Heineken Foundation and the Alfred Heineken Fondsen Foundation, in particular their Chair, Mrs. De Carvalho, Ladies and gentlemen, Dear professor Szostak, The oldest of the Heineken Prizes, the one for Biochemistry and Biophysics, has often been awarded for a single outstanding discovery. This year, however, the prize will be awarded to Professor Jack Szostak for a range of highly original contributions to our understanding of the processes of life. Born in 1952, Jack Szostak’s career has been quite remarkable. He was only 19 years old when he started his PhD programme. He obtained his degree at Cornell University in 1977. He has been a professor at Harvard Medical School for most of his professional life, and now combines this position with an appointment as the Alex Rich Distinguished Investigator at Massachusetts General Hospital. Many of his discoveries were initially controversial, but they often opened up new fields of research. Let me describe a few of his major findings. In the early 1980s, Szostak and Rothstein discovered that the end of a linear double-stranded DNA triggers recombination in yeast in a manner similar to recombination events during meiosis (meiosis is the process of cell division that generates the germ cells in sexual reproduction). Szostak then made the unorthodox proposal that double strand breaks in fact could be the initiating event in normal meiotic recombination. This discovery had major practical implications for yeast genetics and biochemistry, as it became easy to transform yeast cells with DNA fragments of choice. -
California State Physician and Surgeon License
Curriculum Vitae MANOJ TIMOTHY ABRAHAM, M.D., F.A.C.S. 845-454-8025 – Office 845-454-8026 – Fax [email protected] www.NYfaceMD.com OFFICE LOCATIONS Facial Plastic, Reconstructive & Laser Surgery / Oasis Medispa 82 North Water Street Poughkeepsie, NY 12601 ENT Faculty Practice 1055 Saw Mill River Road Ardsley, NY 10502 New York Eye & Ear Infirmary 310 East 14th Street New York, NY 10006 EDUCATION UNDERGRADUATE 1989-1993 Bachelor of Science Brown University, Providence, RI Biology with Honors GRADUATE 1993-1997 Doctor of Medicine Cornell University Medical College, New York, NY INTERNSHIP 1997-1998 General Surgery Lenox Hill Hospital, New York, NY RESIDENCY 1998-1999 Otolaryngology Manhattan Eye, Ear & Throat Hospital, New York, NY Head & Neck Surgery 1999-2002 Otolaryngology- New York University Medical Center, New York, NY Head & Neck Surgery FELLOWSHIP 2002-2003 Facial Plastic Surgery University of California, Los Angeles Medical Center and Micro-vascular Los Angeles, California Reconstruction LICENSURE & CERTIFICATION LICENSURE 1997 - New York State Medicine and Surgery License 1997 - Drug Enforcement Agency Registration 2002 - California State Physician and Surgeon License Manoj Timothy Abraham, M.D., F.A.C.S. Curriculum Vitae, July 6, 2018 CERTIFICATION 1997 - National Board of Medical Examiners 2003 - American Board of Otolaryngology – Head & Neck Surgery, MOC expires 2023 2005 - American Board of Facial Plastic and Reconstructive Surgery, MOC expires 2025 APPOINTMENTS & EMPLOYMENT ACADEMIC POSITIONS 2014 – present Attending Faculty, -
Findings, September 2002
INDINGS FNational Institutes of Health September 2002 National Institute of General Medical Sciences inside Baldomero Olivera Secrets of the Killer Snails 2 Elaine Bearer Cells in Motion 8 Edited by Alison Davis under contract 263-MD-20519 Produced by the Office of Communications and Public Liaison National Institute of General Medical Sciences National Institutes of Health On the Cover Photo of Baldomero Olivera: Kerry Matz Photo of Elaine Bearer: John Forasté Editor’s Note Getting together. More than ever, that’s what science is all about. If you think being a scientist means being lonely, you’re wrong! Researchers spend most of their days working with other people. Biomedical scientists at colleges and universities spend up to half of their time teaching some area of biology or chemistry to undergraduate and graduate students. And scientists continually work with students to help turn neat ideas into testable research projects and to sort through the results of an experiment. But biomedical researchers also do a lot of talking to other scientists, and not just biologists. As biology research broadens to include new fields like computer science, physics, and engineering, thinking together about how to attack a problem in an unconventional way can be the most fertile ground for discovery. In assembling the materials for this issue of Findings, the importance of cooperation between scientists became undeniably apparent. Upon asking researchers to review the words about their work, these hard-working women and men insisted on giving credit wherever possible to their students and coworkers—all the people who sit at the benches in their labs and do experiments day in and out.