Full Page Photo Print

Total Page:16

File Type:pdf, Size:1020Kb

Full Page Photo Print CONTENTS Section Page STS-124 MISSION OVERVIEW................................................................................................ 1 TIMELINE OVERVIEW.............................................................................................................. 13 MISSION PROFILE................................................................................................................... 17 MISSION PRIORITIES............................................................................................................. 19 MISSION PERSONNEL............................................................................................................. 21 STS-124 DISCOVERY CREW ................................................................................................... 23 PAYLOAD OVERVIEW .............................................................................................................. 33 KIBO’S MAIN EXPERIMENT MODULE AND ROBOTIC ARM FLY TO THE STATION ................................... 33 THE STS-124 MISSION WILL BRING KIBO INTO A FULLY OPERATIONAL STATE................................... 34 KIBO ASSEMBLY MISSION PATCH....................................................................................................... 34 WHY ARE THREE FLIGHTS REQUIRED TO DELIVER THE KIBO ELEMENTS TO THE SPACE STATION?...... 35 KIBO-RELATED MISSIONS WILL CONTINUE......................................................................................... 36 JAPANESE PRESSURIZED MODULE (JPM) OVERVIEW........................................................................... 36 KIBO-SPECIFIC STRUCTURES............................................................................................................. 39 PAYLOAD RACKS ABOARD KIBO.......................................................................................................... 47 KIBO MISSION CONTROL CENTER ....................................................................................................... 51 JAXA FLIGHT CONTROL TEAM .............................................................................................................. 52 JEM ENGINEERING TEAM ..................................................................................................................... 53 TSUKUBA SPACE CENTER.................................................................................................................... 54 SPACE STATION OPERATION FACILITY................................................................................................ 55 RENDEZVOUS AND DOCKING .................................................................................................. 59 UNDOCKING, SEPARATION AND DEPARTURE....................................................................................... 61 SPACEWALKS ......................................................................................................................... 63 EVA-1 .................................................................................................................................................. 66 EVA-2 .................................................................................................................................................. 70 EVA-3.................................................................................................................................................. 71 MAY 2008 CONTENTS i Section Page EXPERIMENTS......................................................................................................................... 73 SHORT-DURATION U.S. INTEGRATED RESEARCH TO BE COMPLETED DURING STS-124/1J (4) ............ 73 SAMPLES RETURNING FROM ISS ON STS-124..................................................................................... 73 EXPERIMENTS AND HARDWARE TO BE DELIVERED TO INTERNATIONAL SPACE STATION .................... 75 EXTERNAL FUEL TANK ET-128 FOR SPACE SHUTTLE MISSION STS-124 .............................. 77 LIQUID HYDROGEN TANK ICE FROST RAMPS....................................................................................... 77 LIQUID OXYGEN FEEDLINE BRACKETS ................................................................................................. 78 OTHER CHANGES TO THE SPACE SHUTTLE EXTERNAL FUEL TANK SINCE RETURN TO FLIGHT .............. 79 SHUTTLE REFERENCE DATA .................................................................................................... 81 LAUNCH AND LANDING ........................................................................................................... 95 LAUNCH............................................................................................................................................... 95 ABORT-TO-ORBIT................................................................................................................................ 95 TRANSATLANTIC ABORT LANDING (TAL)............................................................................................. 95 RETURN-TO-LAUNCH-SITE................................................................................................................... 95 ABORT ONCE AROUND......................................................................................................................... 95 LANDING ............................................................................................................................................. 95 ACRONYMS AND ABBREVIATIONS ......................................................................................... 97 MEDIA ASSISTANCE ............................................................................................................... 111 PUBLIC AFFAIRS CONTACTS.................................................................................................. 113 ii CONTENTS MAY 2008 STS-124 MISSION OVERVIEW Astronauts Greg Chamitoff (left), Expedition 17 flight engineer; JAXA’s Akihiko Hoshide, Ron Garan, Mike Fossum, Karen Nyberg, all STS‐124 mission specialists; Mark Kelly and Ken Ham, STS‐124 commander and pilot, respectively, pose for a group photo before a training session in the Space Vehicle Mockup Facility at JSC. The third space shuttle mission of the year will Harmony connecting node, opposite the deliver the Kibo pressurized science laboratory European Columbus science lab that was to the International Space Station (ISS), further installed in February. expanding the Japanese segment of the orbital outpost. This is Kelly’s third flight into space, having served as pilot on STS‐108 and STS‐121. He will Led by Navy Cmdr. Mark Kelly, 44, space be joined on Discovery by pilot and Navy shuttle Discovery is set to blast off at Cmdr. Ken Ham, 43. Mission specialists 5:02 p.m. EDT on May 31 and arrive at the include Karen Nyberg (NYE‐berg), 38, Air space station two days later. The shuttle and Force Col. Ron Garan (GAH‐run), 46, Air Force station crews will install the 37‐foot, 32,000‐ Reserve Col. Mike Fossum (FAH‐sum), 50, and pound Kibo science lab, or JPM, for Japanese Japanese Aerospace Exploration Agency Pressurized Module, to the left side of the (JAXA) astronaut Akihiko Hoshide MAY 2008 MISSION OVERVIEW 1 (Ah‐kee‐HEE‐koh Hoh‐SHEE‐day), 39. Fossum spacecraft seatliners. With that exchange, flew as a mission specialist with Kelly on Chamitoff will become a part of the STS‐121, and joins Kelly as the only crew Expedition 17 space station crew and Reisman members with previous spaceflight experience. will become part of Discovery’s crew. Chamitoff will join expedition commander and Greg Chamitoff (SHAM‐eh‐tawf), 45, will Russian Air Force Lt. Col. Sergei Volkov replace Garrett Reisman (REEZ‐muhn), 40, who (SIR‐gay VOLE‐koff), 35, and Flight Engineer arrived on the station in March and is Oleg Kononenko (AH‐leg Ko‐no‐NEHN‐ko), completing three months as a station flight 43, who were launched to the complex in the engineer. Reisman will return to Earth aboard Soyuz TMA‐12 spacecraft on April 8 from the Discovery. Baikonur Cosmodrome in Kazakhstan. A few hours after Discovery’s docking on the Chamitoff will return to Earth in the fall on third day of the flight, Chamitoff and Reisman shuttle mission STS‐126, while Volkov and will exchange custom‐made Russian Soyuz Kononenko will return in the Soyuz in October. Astronauts Greg Chamitoff (left), Expedition 17 flight engineer; JAXA Akihiko Hoshide and Mike Fossum, both STS‐124 mission specialists, participate in a training session in one of the full‐scale trainers in the Space Vehicle Mockup Facility at JSC. 2 MISSION OVERVIEW MAY 2008 This graphic depicts the location of the STS‐124 payload hardware. Kibo is 14 feet longer than Columbus and 9 feet materials production, biotechnology and longer than the U.S. Destiny laboratory. It joins communications. the first component of the Japanese segment of the station, the Experiment Logistics Module‐ The new pressurized module also is equipped Pressurized Section (ELM‐PS), that was with its own robotic manipulator system and an launched on the last shuttle flight, STS‐123, in airlock. The Japanese robotic device will be March. The logistics module will be robotically comprised of two separate six‐jointed arms, the detached from the top port of Harmony during main arm that measures 32.5 feet and can the mission and reattached to the top port of handle up to seven tons of hardware, and a Kibo to serve as a storage depot. small fine arm, a 6.2 foot extension that will be used for delicate payload operations. The small The ELM‐PS was launched
Recommended publications
  • Presentation71.Pdf
    The KiboCUBE Programme December 14, 2017 United Nations / South Africa Symposium on Basic Space Technology “Small satellite missions for scientific and technological advancement” Masanobu TSUJI Japan Aerospace Exploration Agency (JAXA) 1 Credit : JAXA/NASA ISS: Japan’s Capabilities and Contributions ISS Kibo (International Space Station) (Japanese Experiment Module) HTV (H-II Transfer Vehicle) ▪ ISS is a huge manned construction located about 400km above the Earth. ▪ 15 countries participate in the ISS program ▪ Japan strives to make concrete international contributions through extensive utilization of Kibo and HTV. H-IIB Credit : JAXA/NASA 2 ISS: Japan’s Capabilities and Contributions Kibo: Japanese Experiment Module Kibo has a unique Exposed Facility (EF) with an Airlock (AL) and a Remote Manipulator System (JEMRMS), and has a high capacity to exchange experimental equipment. Robotic Arm (JEM-Remote Manipulator System) Airlock Credit : JAXA/NASA 3 “Kibo” is Unique! – Exposed Facility Small Satellite Deployment platform using J-SSOD AtIn present,recent years, satellite a growing deployers numberother ofthan universities J-SSOD andthat companiesuse Kibo include around the world have beenthe NanoRacks developing CubeSat the DeployerMicro/Nano (NRCSD)-satellite and (under 100kg, mainlyCyclops CubeSat). (Space Station Integrated Kinetic Launcher for Orbital Payload Systems). Credit : JAXA/NASA J-SSOD#2 NRCSD#1 Cyclops#1 J-SSOD Microsat#1 J-SSOD#1 J-SSOD Upgrade#1 4 Ref: Prof. 2017 Nano/Microsatellite Market Forecast (SpaceWorks Enterprises
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Kibo HANDBOOK
    Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • The MAXI Mission on the ISS: Science and Instruments for Monitoring All
    PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. The MAXI Mission on the ISS: Science and Instruments for Monitoring All Sky X-Ray Images Masaru Matsuoka, 1 Kazuyoshi Kawasaki, 1 Shiro Ueno, 1 Hiroshi Tomida, 1 Mitsuhiro Kohama, 1,2 Motoko Suzuki, 1 Yasuki Adachi, 1 Masaki Ishikawa, 1 Tatehiro Mihara, 2 Mutsumi Sugizaki, 2 Naoki Isobe, 2 Yujin Nakagawa, 2 Hiroshi Tsunemi, 3 Emi Miyata, 3 Nobuyuki Kawai, 4 Jun Kataoka, 4∗ Mikio Morii, 4 Atsumasa Yoshida, 5 Hitoshi Negoro, 6 Motoki Nakajima, 6 Yoshihiro Ueda, 7 Hirotaka Chujo, 2 Kazutaka Yamaoka, 5 Osamu Yamazaki, 5 Satoshi Nakahira, 5 Tetsuya You, 5 Ryoji Ishiwata, 6 Sho Miyoshi, 6 Satoshi Eguchi, 7 Kazuo Hiroi, 7 Haruyoshi Katayama, 8 and Ken Ebisawa, 9 1ISS Science Project Office, ISAS, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (MM) [email protected] 2Cosmic Radiation Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351–198 3Department of Earth and Space Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 4Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 5Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 6Department of Physics, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 7Department of Astronomy, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502 8Earth Observation Research Center, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 9ISAS, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Received 2009 March 9; accepted 2009 May 28) Abstract The Monitor of All Sky X-ray Image (MAXI) mission is the first astronomical payload to be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF or Kibo-EF) on the International Space Station (ISS).
    [Show full text]
  • Japan's Technical Prowess International Cooperation
    Japan Aerospace Exploration Agency April 2016 No. 10 Special Features Japan’s Technical Prowess Technical excellence and team spirit are manifested in such activities as the space station capture of the HTV5 spacecraft, development of the H3 Launch Vehicle, and reduction of sonic boom in supersonic transport International Cooperation JAXA plays a central role in international society and contributes through diverse joint programs, including planetary exploration, and the utilization of Earth observation satellites in the environmental and disaster management fields Japan’s Technical Prowess Contents No. 10 Japan Aerospace Exploration Agency Special Feature 1: Japan’s Technical Prowess 1−3 Welcome to JAXA TODAY Activities of “Team Japan” Connecting the Earth and Space The Japan Aerospace Exploration Agency (JAXA) is positioned as We review some of the activities of “Team the pivotal organization supporting the Japanese government’s Japan,” including the successful capture of H-II Transfer Vehicle 5 (HTV5), which brought overall space development and utilization program with world- together JAXA, NASA and the International Space Station (ISS). leading technology. JAXA undertakes a full spectrum of activities, from basic research through development and utilization. 4–7 In 2013, to coincide with the 10th anniversary of its estab- 2020: The H3 Launch Vehicle Vision JAXA is currently pursuing the development lishment, JAXA defined its management philosophy as “utilizing of the H3 Launch Vehicle, which is expected space and the sky to achieve a safe and affluent society” and to become the backbone of Japan’s space development program and build strong adopted the new corporate slogan “Explore to Realize.” Under- international competitiveness.
    [Show full text]
  • + STS-123 Press
    CONTENTS Section Page STS-123 MISSION OVERVIEW................................................................................................ 1 TIMELINE OVERVIEW.............................................................................................................. 11 MISSION PROFILE................................................................................................................... 15 MISSION PRIORITIES............................................................................................................. 17 MISSION PERSONNEL............................................................................................................. 19 STS-123 ENDEAVOUR CREW .................................................................................................. 21 PAYLOAD OVERVIEW .............................................................................................................. 31 KIBO OVERVIEW.................................................................................................................................. 31 KIBO MISSION CONTROL CENTER ....................................................................................................... 39 TSUKUBA SPACE CENTER.................................................................................................................... 43 SPACE STATION INTEGRATION AND PROMOTION CENTER .................................................................. 47 JAXA’S EXPERIMENTS DURING THE 1J/A STAGE.................................................................................
    [Show full text]
  • External Multipurpose Facilities
    External Multipurpose Facilities This section gives an overview of existing External Facilities that are mul- tidisciplinary in nature, providing access to multiple sites that are exposed to the space environment and which include structural attachment points and utility interface. Exposed Experiment Handrail Attachment Mechanism (ExHAM) [JAXA] enables space investigations in an exposed environment by provid- ing attachment onto the JEM Kibo’s Exposed Facility, taking advantage of Kibo’s unique function having both airlock and robotic arm among mod- ules on the ISS. ExHAM is a cuboid mechanism equipped with a grapple fixture for the Kibo’s robotic arm, JEM Remote Manipulator System (JEMRMS) Small Fine Arm (SFA). The number of loadable investigation samples is 7 on the upper surface and 13 on the side surfaces. External Multipurpose Facilities View of the JEM Exposed Facility. The Hyperspectral Imager for the Coastal Ocean (HICO)/Remote Atmospheric and Ionospheric Detection System (RAIDS) Experiment Payload (HREP), NanoRacks External Platform (NREP), ExHAM, and Space Environment Data Acquisition equipment - Attached Payload (SEDA-AP) are in view. (ISS048E057068). 36 37 Expedite the Processing of Experiments to the Space Station Columbus-External Payload Facility (Columbus-EPF) [ESA] provides (EXPRESS) Logistics Carrier (ELC) [NASA] is a pallet designed to sup- 4 powered external attachment site locations for scientific payloads or port external research hardware and store external spares (called Orbital facilities, and has to date been used by ESA and NASA. Each of the 4 Replacement Units) needed over the life of the ISS. Currently, 4 ELCs attachment sites may hold a mass of up to 290 kg, and are provided utility are mounted to ISS trusses, providing unique vantage points for space, connections for power and data.
    [Show full text]
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement! Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-124: Space Station Assembly Flight 1J Written and Edited By William G. Harwood Aerospace Writer/Consultant [email protected] CBS News!!! 7/4/11 Page 2 ! CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 05/28/08 Initial STS-124 release Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place. The STS-124 version of the CBS News Space Reporter's Handbook was compiled from NASA news releases, JSC flight plans, the Shuttle Flight Data and In-Flight Anomaly List, NASA Public Affairs and the Flight Dynamics office (abort boundaries) at the Johnson Space Center in Houston.
    [Show full text]
  • JAXA's Examples of International Mechanisms for Cooperation in The
    JAXA’s examples of International Mechanisms for Cooperation in the Peaceful Exploration and Use of Outer Space Japan Aerospace Exploration Agency (JAXA) UNCOPUOS, Legal Subcommittee 54 th Session Vienna, 20 April 2015 Contents 1. “Hayabusa2” Project 2. Sentinel Asia 3. Cooperation on the high-quality protein crystal growth experiment on board the Japanese Experiment Module “KIBO” 4. Cooperative project between JAXA and the Asian Development Bank (ADB) 1 1. “Hayabusa2” Project 2 2 Mission Outline Asteroid (1999JU3) Arrival Earth Swing-by June. 2018 Dec. 2015 impactor Launch •asteroid remote sensing release Dec, 2014 •small rovers and lander release crater •multiple samplings forming Departure Earth Return Dec. 2019 Dec. 2020 sampling from artificial crater 3 3 JAXA-NASA Cooperation • NASA provides support for Hayabusa2 including the NASA Deep Space Network which enables advanced and reliable mission operations. • Asteroid sample exchange and joint participation during key mission phases with NASA’ s asteroid explorer OSIRIS-REx , JAXA and NASA will mutually maximize their missions’ results. 4 4 Japan-US Cooperative Framework Hayabusa-2 Cooperation Exchange of Exchange of Notes (E/N) Notes (E/N) Government of Cross-Waiver concerning the for revision of Agreement US - Japan cooperation Annex of (1995) on Hayabusa2 Cross-Waiver Project Agreement Annex MOU for Cooperation on NASA – JAXA the Hayabusa2 Mission and the OSIRIS-REx Mission Diet Approval Treaty Administrative Arrangement Implementing Arrangement 5 Characteristics • In the case of long-term projects with huge costs and unpredictable R&D risks, there may be some risks of cancelation of project, owing to domestic political change, budgetary problems, technical difficulties, and so on.
    [Show full text]
  • + STS-124 Press Kit (PDF 7
    CONTENTS Section Page STS-124 MISSION OVERVIEW................................................................................................ 1 TIMELINE OVERVIEW.............................................................................................................. 11 MISSION PROFILE................................................................................................................... 15 MISSION PRIORITIES............................................................................................................. 17 MISSION PERSONNEL............................................................................................................. 19 STS-124 DISCOVERY CREW ................................................................................................... 21 PAYLOAD OVERVIEW .............................................................................................................. 31 KIBO’S MAIN EXPERIMENT MODULE AND ROBOTIC ARM FLY TO THE STATION ................................... 31 THE STS-124 MISSION WILL BRING KIBO INTO A FULLY OPERATIONAL STATE................................... 32 KIBO ASSEMBLY MISSION PATCH....................................................................................................... 32 WHY ARE THREE FLIGHTS REQUIRED TO DELIVER THE KIBO ELEMENTS TO THE SPACE STATION? ..... 33 KIBO-RELATED MISSIONS WILL CONTINUE......................................................................................... 34 JAPANESE PRESSURIZED MODULE (JPM) OVERVIEW..........................................................................
    [Show full text]
  • Space Weather Research and Operation Proposed by Space Weather Expert Group in UNCOPUOS Takahiro Obara (Graduate School of Sci., Tohoku University)
    May 15, 2021 Guidelines for Space Weather Research and Operation proposed by Space Weather Expert Group in UNCOPUOS Takahiro Obara (Graduate School of Sci., Tohoku University) ©NOAA 1 Takahiro Obara, Prof. Dr. Graduate School of Science, Tohoku University ・Chair of COSPAR Space Weather Panel 2006-2008 ・Vice-chair of COSPAR Space Weather Panel 2002-2006 and 2008-2016 ・Co-chair of expert group on space weather (EG C) Long-term sustainability in outer space (LTS) WG UNCOPUOS, 2011-2015 2 Outline of the presentation 1.Risks of Space Weather 2.Space Weather Guideline 3.Space Weather Forecast 4.Monitoring of Space Weather 3 Space Weather - Harmful Space Environment © NOAA Space is not empty. Solar wind travels through space and the magnetosphere is formed in the vicinity of the Earth. 4 © NASA © NASA/ESA When the solar flare occurs, a large amount of corona gases are emitted from the Sun. They are called CME (coronal mass ejection) and some of them reach the Earth, causing magnetic storms. 5 Solar Energetic Particle Access to Earth Free Access Limited Access © NASA/ESA Free Access Highly energetic particles are produced in the active Geosynchronous Orbit region and/or CME front. 6 © NOAA When a magnetic storm occurs, radiation belts are filled with plenty of highly energetic electrons especially in the outer belt region Storms create risks not only for satellites but also for astronauts. 7 IncreasingIncreasing Vulnerabilities Vulnerabilities to to Space Space Weather Weather – Satellite-based applications: Navigation and communication Environmental monitoring and research Broadcast television and radio Business and finance – HF communication – wireless technology – Electric power grid – Airline safety Navigation and communication Radiation ©NOAA – Marine applications 8 Space Weather Impacts on Space Sustainability 1.
    [Show full text]