JAXA's Examples of International Mechanisms for Cooperation in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Researcher's Guide to Earth Observations
National Aeronautics and Space Administration A Researcher’s Guide to: Earth Observations This International Space Station (ISS) Researcher’s Guide is published by the NASA ISS Program Science Office. Authors: William L. Stefanov, Ph.D. Lindsey A. Jones Atalanda K. Cameron Lisa A. Vanderbloemen, Ph.D Cynthia A. Evans, Ph.D. Executive Editor: Bryan Dansberry Technical Editor: Carrie Gilder Designer: Cory Duke Published: June 11, 2013 Revision: January 2020 Cover and back cover: a. Photograph of the Japanese Experiment Module Exposed Facility (JEM-EF). This photo was taken using External High Definition Camera (EHDC) 1 during Expedition 56 on June 4, 2018. b. Photograph of the Momotombo Volcano taken on July 10, 2018. This active stratovolcano is located in western Nicaragua and was described as “the smoking terror” in 1902. The geothermal field that surrounds this volcano creates ideal conditions to produce thermal renewable energy. c. Photograph of the Betsiboka River Delta in Madagascar taken on June 29, 2018. This river is comprised of interwoven channels carrying sediment from the mountains into Bombetoka Bay and the Mozambique Channel. The heavy islands of built-up sediment were formed as a result of heavy deforestation on Madagascar since the 1950s. 2 The Lab is Open Orbiting the Earth at almost 5 miles per second, a structure exists that is nearly the size of a football field and weighs almost a million pounds. The International Space Station (ISS) is a testament to international cooperation and significant achievements in engineering. Beyond all of this, the ISS is a truly unique research platform. The possibilities of what can be discovered by conducting research on the ISS are endless and have the potential to contribute to the greater good of life on Earth and inspire generations of researchers to come. -
Constraining Gas Motions in the Intra-Cluster Medium
Noname manuscript No. (will be inserted by the editor) Constraining Gas Motions in the Intra-Cluster Medium Aurora Simionescu · John ZuHone · Irina Zhuravleva · Eugene Churazov · Massimo Gaspari · Daisuke Nagai · Norbert Werner · Elke Roediger · Rebecca Canning · Dominique Eckert · Liyi Gu · Frits Paerels Received: date / Accepted: date Aurora Simionescu SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands; E-mail: [email protected] Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan John ZuHone Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Irina Zhuravleva Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4085, USA Eugene Churazov Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia Massimo Gaspari Einstein and Spitzer Fellow, Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA Daisuke Nagai Department of Physics, Yale University, PO Box 208101, New Haven, CT, USA Yale Center for Astronomy and Astrophysics, PO Box 208101, New Haven, CT, USA Norbert Werner MTA-E¨otv¨osLor´andUniversity Lend¨uletHot Universe Research Group, H-1117 P´azm´any P´eters´eta´ny1/A, Budapest, Hungary Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk Univer- sity, Kotl´arsk´a2, Brno, 61137, Czech Republic School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, arXiv:1902.00024v1 [astro-ph.CO] 31 Jan 2019 Japan 2 Aurora Simionescu et al. -
(JEM), KIBO for the International Space Station
FyyyyRuuyyGyyUxy RGU"SQDWyQyuuauwyau Cvuw !"!#! $ ! %!$% # &'&% #! ( !)! ! #!*+,$ ! ! #%! - !"!# !./ % (!$&! %# ( !! 0 ' . 0 % &! 1' &! /!## !. #2 %! " !)! ! !" %! ! ! . #&! -2 ( !$ & !$!&$ ! ! ! (! 0 ' # & "! # & "! # &. !"!#! !% !%!$!3 !'& (!/ ! %! !"!#0 ! !3 ! ! ! !) ( %! !"!# ! !% #( ! '& % ( ! ! 3 !#& !!!% #( !- !! ! ! ! ! 450 % ! #!$ ! $ (" 0 %!!)! !- Syx *,+! #%! *+.2. ' 67 " ) *+ $ ,-# . # / # 0 # *112 3!**- $ " ' !!" . . - % # # " -$ .-4- . % $ $ 5 .5#678 . R $ $ $% # & # ' . 3!!1 ' ( $ ' % ' .5 $ $ % $ 2 8! #%! - (-8)! ! #!* ,+- ...919:#-;-8<4=88000000058 FyyyyRuuyyGyyUxyRGU"SQDWyQyuuauwy au .5 % $ % $ $: ; 5 ;5# % < <#% = $ 5 ; ) $ =5;#% = $ 5 $ % =5#/ 5 $ /5 0 0 - $ >0 $ 0 / 5 # ' !" # $ .50 ; $ $ .5# % .58 0 0 .5 0 .-4-6 ' 60 0 60 >-- 'B # ' 0 . " .-4-A / A/# 6 0 0 ; 5 0;5#= .50 ; .0; $ 0% < .5) " $ 3 # 0<# ; 3 / $ /< .5 $' $ $ & , $ .0; ' " $ 0 ' ' .5; ! " 5 .3!!2 # " ' ' 0 $ $ A/ *11!R' : ?3 00 #' ( $ #*35 -
Presentation71.Pdf
The KiboCUBE Programme December 14, 2017 United Nations / South Africa Symposium on Basic Space Technology “Small satellite missions for scientific and technological advancement” Masanobu TSUJI Japan Aerospace Exploration Agency (JAXA) 1 Credit : JAXA/NASA ISS: Japan’s Capabilities and Contributions ISS Kibo (International Space Station) (Japanese Experiment Module) HTV (H-II Transfer Vehicle) ▪ ISS is a huge manned construction located about 400km above the Earth. ▪ 15 countries participate in the ISS program ▪ Japan strives to make concrete international contributions through extensive utilization of Kibo and HTV. H-IIB Credit : JAXA/NASA 2 ISS: Japan’s Capabilities and Contributions Kibo: Japanese Experiment Module Kibo has a unique Exposed Facility (EF) with an Airlock (AL) and a Remote Manipulator System (JEMRMS), and has a high capacity to exchange experimental equipment. Robotic Arm (JEM-Remote Manipulator System) Airlock Credit : JAXA/NASA 3 “Kibo” is Unique! – Exposed Facility Small Satellite Deployment platform using J-SSOD AtIn present,recent years, satellite a growing deployers numberother ofthan universities J-SSOD andthat companiesuse Kibo include around the world have beenthe NanoRacks developing CubeSat the DeployerMicro/Nano (NRCSD)-satellite and (under 100kg, mainlyCyclops CubeSat). (Space Station Integrated Kinetic Launcher for Orbital Payload Systems). Credit : JAXA/NASA J-SSOD#2 NRCSD#1 Cyclops#1 J-SSOD Microsat#1 J-SSOD#1 J-SSOD Upgrade#1 4 Ref: Prof. 2017 Nano/Microsatellite Market Forecast (SpaceWorks Enterprises -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace
Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Joseph, Christine and Danielle Wood. "Understanding Socio- Technical Issues Affecting the Current Microgravity Research Marketplace." 2019 IEEE Aerospace Conference, March 2019, Big Sky, Montana, USA, Institute of Electrical and Electronics Engineers, June 2019. © 2019 IEEE As Published http://dx.doi.org/10.1109/aero.2019.8742202 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/131219 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace Christine Joseph Danielle Wood Massachusetts Institute of Technology Massachusetts Institute of Technology 77 Massachusetts Ave 77 Massachusetts Ave Cambridge, MA 02139 Cambridge, MA 02139 [email protected] [email protected] Abstract— For decades, the International Space Station (ISS) 1. INTRODUCTION has operated as a bastion of international cooperation and a unique testbed for microgravity research. Beyond enabling For anyone who is a teenager in October 2019, the insights into human physiology in space, the ISS has served as a International Space Station has been in operation and hosted microgravity platform for numerous science experiments. In humans for the entirety of that person’s life. The platform has recent years, private industry has also been affiliating with hosted a diverse spectrum of microgravity, human space NASA and international partners to offer transportation, exploration, technology demonstration, and education related logistics management, and payload demands. -
Kibo HANDBOOK
Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................ -
Overview of the H-IIA Launch Vehicle Flight No. 11 (H-IIA F11)
Overview of the H-IIA Launch Vehicle Flight No. 11 (H-IIA F11) Launch of H-IIA Launch Vehicle No.4 H-IIA Launch Vehicle Liquid oxygen and hydrogen are used as propellant for both the first and second stages. Based on technology acquired by the development of the H-II, high reliability is maintained while cost reduction was achieved and the H-IIA family was formed with variations by attaching solid rocket boosters and solid strap-on boosters onto the standard H- IIA. Various launch needs can be met by choosing an appropriate type of payload fairing and payload attach fitting (PAF) according to the number and size of (a) satellite(s). Since its maiden flight in Aug. 2001, JAXA has successfully launched five H-IIA launch vehicles. However, in Nov. 2003, the sixth flight failed. In February 2005, the H-IIA F7, the return-to- flight mission, was successfully launched, and three consecutive launches since then have also been successful. 1 H-IIA Launch Vehicle Family <Launch History> Flight 1 H2A202 Flight 2 H2A2024 Flight 3 H2A2024 Flight 4 H2A202 Flight 5 H2A2024 Flight 6 H2A2024 Flight 7 H2A2022 Flight 8 H2A2022 Flight 9 H2A2024 Flight10 H2A202 Flight11 H2A204 ・First 204 type flight Type H2A202 H2A2022 H2A2024 H2A204 ・With Flight 11, all H-IIA Launch About 3.8 tons About 4.2 tons About 4.7 tons About 5.8 tons variations will have been Capability launched. (to GTO) 4S Fairing 5S Fairing 2 Types of Payload Fairing and Payload Attach Fitting (PAF) Flight 11 Payload Fairing 4S type 5S-H type 5S type 4/4D-LS type 4/4D-LC type 5/4D type unit:mm PAF 937M-Spin-type 937M-Spin-A type 937M type 937MH type 1194M type Flight 11 unit:mm 1666M type 1666MA type 1666S type 2360SA type 3470S type 3 Objective of H-IIA F11 Launch ●Mission To inject the Engineering Test Satellite VIII (ETS-VIII) into Geostationary Transfer Orbit ●Scheduled launch day and time Day: December 16 (Saturday), 2006 Time: 15:32 thru 15:44 ●Injection orbit Altitude: Perigee approx. -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology -
The MAXI Mission on the ISS: Science and Instruments for Monitoring All
PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. The MAXI Mission on the ISS: Science and Instruments for Monitoring All Sky X-Ray Images Masaru Matsuoka, 1 Kazuyoshi Kawasaki, 1 Shiro Ueno, 1 Hiroshi Tomida, 1 Mitsuhiro Kohama, 1,2 Motoko Suzuki, 1 Yasuki Adachi, 1 Masaki Ishikawa, 1 Tatehiro Mihara, 2 Mutsumi Sugizaki, 2 Naoki Isobe, 2 Yujin Nakagawa, 2 Hiroshi Tsunemi, 3 Emi Miyata, 3 Nobuyuki Kawai, 4 Jun Kataoka, 4∗ Mikio Morii, 4 Atsumasa Yoshida, 5 Hitoshi Negoro, 6 Motoki Nakajima, 6 Yoshihiro Ueda, 7 Hirotaka Chujo, 2 Kazutaka Yamaoka, 5 Osamu Yamazaki, 5 Satoshi Nakahira, 5 Tetsuya You, 5 Ryoji Ishiwata, 6 Sho Miyoshi, 6 Satoshi Eguchi, 7 Kazuo Hiroi, 7 Haruyoshi Katayama, 8 and Ken Ebisawa, 9 1ISS Science Project Office, ISAS, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (MM) [email protected] 2Cosmic Radiation Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351–198 3Department of Earth and Space Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 4Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 5Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 6Department of Physics, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 7Department of Astronomy, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502 8Earth Observation Research Center, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 9ISAS, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Received 2009 March 9; accepted 2009 May 28) Abstract The Monitor of All Sky X-ray Image (MAXI) mission is the first astronomical payload to be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF or Kibo-EF) on the International Space Station (ISS). -
This Was the Year That Was HE PROGRESS of (Astrophysics in 1997) Science Is Not Generally Tmuch Like That of a Kangaroo
THE UNIVERSE AT LARGE by VIRGINIA TRIMBLE This Was the Year That Was HE PROGRESS of (Astrophysics in 1997) science is not generally Tmuch like that of a kangaroo. Rather, we tend to advance amoeba-like, cautiously extending pseudopods in some directions and retracting them in others. 1997 witnessed at least its share of advances and retreats, with perhaps a leap or two. The following sections are meant to be logically independent and readable (or at least no less readable) in any order. MICRO- AND MACRO-MARS: WATER, WATER, EVERYWHERE Readers my age may remember when “I don’t think so” was an expression of genuine doubt. Last year’s announcement of possible microfossils in a meteorite that had come to us (or anyhow to Antarctica) from Mars provided an opportunity to try out the X- generation meaning of the phrase. Our curmudgeonly pessimism has been justified. After several months of rat-like gnawings on the edges of the evidence by other experts, the original proponents have essentially with- drawn the suggestion. Tactfully, they switched from Science to Nature for the recantation. 22 SPRING 1998 Meanwhile, a number of Martians have acquired personal names. But it’s no use calling them, because, like cats and Victor Borge’s children, they don’t come anyhow. In fact, they all seem to be rocks. And while reports from the Sagan Memorial Station indicate that the said rocks have carefully washed their hands for dinner, there doesn’t seem to be anything to eat. Continued analysis of Pathfinder data will proba- bly yield additional information on Martian geology,* but more advanced probes will be needed to dig below the surface and look for possible relics of early pre-biological Mars Pathfinder. -
Japan's Technical Prowess International Cooperation
Japan Aerospace Exploration Agency April 2016 No. 10 Special Features Japan’s Technical Prowess Technical excellence and team spirit are manifested in such activities as the space station capture of the HTV5 spacecraft, development of the H3 Launch Vehicle, and reduction of sonic boom in supersonic transport International Cooperation JAXA plays a central role in international society and contributes through diverse joint programs, including planetary exploration, and the utilization of Earth observation satellites in the environmental and disaster management fields Japan’s Technical Prowess Contents No. 10 Japan Aerospace Exploration Agency Special Feature 1: Japan’s Technical Prowess 1−3 Welcome to JAXA TODAY Activities of “Team Japan” Connecting the Earth and Space The Japan Aerospace Exploration Agency (JAXA) is positioned as We review some of the activities of “Team the pivotal organization supporting the Japanese government’s Japan,” including the successful capture of H-II Transfer Vehicle 5 (HTV5), which brought overall space development and utilization program with world- together JAXA, NASA and the International Space Station (ISS). leading technology. JAXA undertakes a full spectrum of activities, from basic research through development and utilization. 4–7 In 2013, to coincide with the 10th anniversary of its estab- 2020: The H3 Launch Vehicle Vision JAXA is currently pursuing the development lishment, JAXA defined its management philosophy as “utilizing of the H3 Launch Vehicle, which is expected space and the sky to achieve a safe and affluent society” and to become the backbone of Japan’s space development program and build strong adopted the new corporate slogan “Explore to Realize.” Under- international competitiveness.