Populations in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Populations in South Africa © University of Pretoria Prevalence of Babesia species and associated ticks (Acari: Ixodidae) in captive cheetah (Acinonyx jubatus) populations in South Africa By Habib Golezardy Submitted in partial fulfillment of the requirments for the degree of Philosophiae Doctor in the Department of Veterinary Tropical Diseases Faculty of Veterinary Science University of Pretoria 2011 © University of Pretoria This work is dedicated to all those who have laboured before me and to those who endurced my many moods while I composed. Without their wisdom, perseverance, patient, and understanding, this study would not have been possible. I present this work to our peers and students, who continually challanged me to learn, to rethink, and to explain My efforts were inspired by my love of the God; my father, mother and sister and my profession. i © University of Pretoria Declaration Apart from the assistance received that has been reported in the acknowledgements and in the appropriate places in the text, this thesis represents the original work of the author. No part of this thesis has been presented for any other degree at any other university. Candidate …Habib Golezardy………… Date.....February 2012……. ii © University of Pretoria Summary Prevalence of Babesia species and associated ticks (Acari: Ixodidae) in captive cheetah (Acinonyx jubatus) populations in South Africa By Habib Golezardy Supervisors: Prof. B.L. Penzhorn Co-supervisors: Prof. I.G. Horak and Prof. M.C. Oosthuizen Due to prevailing environmental and climatic conditions South Africa hosts one cheetah subspecies (Acinonyx jubatus jubatus) and a wide range of tick-borne protozoa such as Babesia. Blood samples collected from 143 cheetahs at four study sites, namely the Ann van Dyk Cheetah Breeding Center-De Wildt (Brits and Shingwedzi), the Cheetah Outreach and the Hoedspruit Endangered Species Centre, were examined for Babesia infection. The V4 hypervariable region of 18S rRNA gene was amplified and subjected to the Reverse Line Blot (RLB) hybridisation assay. Hybridisation of the parasite DNA with Babesia genus and species-specific probes was evident. The results showed a predominance of Babesia lengau (n=63, 44.1%), followed by Babesia felis (n=3, 2.1%) and Babesia canis rossi (n=7, 4.8%). Unfed ixodid ticks (n=10,432), collected from the vegetation by drag-sampling, represented five species: Amblyomma hebraeum, Amblyomma marmoreum, Haemaphysalis elliptica, Rhipicephalus (Boophilus) decoloratus, Rhipicephalus simus and Rhipicephalus zambeziensis,. The monthly occurrence of ixodid ticks at the De Wildt Cheetah Breeding Centre (Brits) showed a higher activity in the warm months of the year. Recovery of ticks decreased during the warm iii © University of Pretoria hours of the day, suggesting that free-living ticks are humid dependent. The presence of birds, rodents, free-ranging antelopes such as nyalas (Tragelaphus angasii), kudus (Tragelaphus strepsiceros), bushbucks (Tragelaphus scriptus) and impalas (Aepyceros melampus), as well as Burchell’s zebras (Equus burchellii) and leopard tortoises (Geochelone pardalis) can contribute to the availability of various tick species at the breeding centres. Mice as the host for immature instars of ixodid tick species and unfed ixodid ticks were studied for presence of Babesia species. Babesia lengau was detected in 22 (39.2%) mice as well as in Haemaphysalis elliptica larvae, nymphs and adults. The presence of B. lengau in mice suggests a long-term association since the host preference of B. lengau for mice remains unclear. However, the presence of this parasite in unfed imature and adult H. elliptica is indicative of a transstadial transmission suggesting that this tick species may be a potential vector for B. lengau. The correlation between Babesia infection and various parameters such as gender, age, tick burdens and location, in two different breeding farms belonging to the De Wildt Cheetah Breeding Centre was analysed using the Fisher’s exact test analysis. The prevalence of Babesia species in cheetahs was associated with tick burden suggesting a strong positive correlation between the prevalence of infection and presence of suspected vector ticks. Regardless of tick burden, age could be related to prevalence of infection, meaning that the fact that older cheetahs had a higher prevalence of infection with Babesia species. These findings were of considerable interest especially since at the time of study the cheetahs in both populations did not show clinical signs of infection with Babesia species. iv © University of Pretoria Table of contents Topics Pages Declaration ii Summary iii Table of contents v List of tables x List of figures xiii List of personal communications xix Acknowledgements xxiii Chapter 1: 1 General introduction 1 1. The Ann Van Dyk Cheetah Breeding Centre - De Wildt/Brits 3 2. The Ann Van Dyk Cheetah Breeding Centre - De Wildt/Shingwedzi 4 3. The Hoedspruit Endangered Species Centre 4 4. The Cheetah Outreach 4 Breeding management and husbandry at the centers 4 References 7 Chapter 2: 10 Literature review 10 1. Cheetah 10 1.1. The cheetah in history 10 1.2. Classification of cheetahs 11 1.3. Distribution of cheetahs 12 1.4. Threats and status 13 v © University of Pretoria 1.5. Diseases in cheetahs 14 2. Babesia 15 2.1. Babesia species 15 2.2. Background of Babesia species in felids 16 2.3. Life cycle of Babesia species 17 2.4. Babesiosis in felids 19 2.5. Epidemiology of feline babesiosis in South Africa 19 2.6. Diagnostic tests 21 2.6.1. Microscopic identification 21 2.6.2. Serological test 23 2.6.3. Nucleic acid detection 23 2.7. Chemotherapy and control of babesiosis in felids 24 3. Vector 24 3.1. Vector-borne diseases 24 3.2. Tick (Acari: Ixodidae) 25 3.2.1. Classification of ticks 26 3.2.2. Life cycle of ticks 26 3.3. Effect of environmental variables on tick populations in a 27 region 3.4. Effect of environmental variables on tick populations on a host 28 3.5. Ixodid ticks as potential vectors for Babesia species 29 References 31 Chapter 3: 42 Species diversity and diurnal and seasonal patterns of activity of questing ticks (Acari: Ixodidae) associated with captive cheetah (Acinonyx jubatus) 42 populations in South Africa Abstract 42 Introduction 43 vi © University of Pretoria Materials and methods 45 1. Survey localities and period 45 2. Tick recovery 45 2.1. Drag sampling 45 2.2. Cheetahs 46 2.3. Murid rodents 47 Results 49 Discussion 69 References 77 Chapter 4: 85 Detection of Babesia species in captive cheetah (Acinonyx jubatus) populations, associated field-collected ticks (Acari: Ixodidae), mice and their 85 related ticks in South Africa Abstract 85 Introduction 86 Materials and Methods 88 1. Survey localities and period 88 2. Samples collection 89 3. Preparation of blood smears 89 4. DNA isolation 90 4.1. Blood samples from cheetahs 90 4.2. Tick specimens 90 4.3. Blood samples from mice 91 4.4. Tick specimens from the trapped mice 92 5. PCR reactions 92 6. Agarose gel electrophoresis 93 7. Reverse line blot (RLB) hybridization assay 93 vii © University of Pretoria 7.1. Babesia species-specific probes 93 7.2. Preparation of the plasmid control 94 7.3. Preparation of the RLB membrane 95 7.4. Hybridization 95 Results 97 Discussion 106 References 110 Chapter 5: 116 Phylogeny of Babesia species detected in captive cheetahs and 116 Haemaphysalis elliptica (Acari: Ixodidae) in South Africa Abstract 116 Introduction 117 Materials and Methods 119 1. DNA samples 119 2. PCR reaction and PCR product purification 120 3. Cloning and plasmid extraction 121 4. Sequence analysis 122 5. Phylogenic tree construction 124 Results 124 Discussion 131 References 133 Chapter 6: 138 Phylogeny of Haemaphysalis elliptica (Acari: Ixodidae) using mitochondrial 138 12S and 16S rRNA gene sequence analysis Abstract 138 Introduction 139 Materials and Methods 141 1. Sample collection and localities 141 viii © University of Pretoria 2. Genomic DNA extraction 141 3. PCR amplification and PCR product purification 141 4. Sequencing and alignment 143 5. Phylogenetic analysis 145 Results 146 Discussion 162 References 164 Chapter 7: 168 Risk factors for infection with Babesia species at various cheetah breeding 168 centres in South Africa Abstract 168 Introduction 171 Materials and methods 171 1. Study localities and period 171 2. Tick sampling 171 3. Blood sampling and molecular analysis 171 4. Data analysis 172 Results 173 Discussion 180 References 183 Chapter 8: 187 General discussion 187 Conclusion 189 References 191 ix © University of Pretoria List of tables Tables Pages 2.1. Classification of the cheetah 11 2.2. Classification of Babesia 15 3.1. Diversity and numbers of all the ixodid tick species collected throughout the study by drag-sampling the vegetation at two cheetah 51 breeding centres in South Africa 3.2. Seasonality of the mean numbers of all stages of development combined of three ixodid tick species questing from vegetation at the 51 Ann van Dyk Cheetah Breeding Centre _ De Wildt/Brits 3.3. Combined number (and standard deviation) of all stages of development of all ixodid ticks collected per drag-sample in each month from March 2008 to February 2009 at the Ann van Dyk Cheetah 52 Breeding Center – De Wildt/Brits 3.4. The hourly number of immature ixodid ticks collected per drag-sample from vegetation at the Ann van Dyk Cheetah Breeding Centre – De 53 Wildt/Brits (June 2008) 3.5. The hourly number of immature ixodid ticks collected per drag-sample from vegetation at the Ann van Dyk Cheetah Breeding Center – De 54 Wildt/Brits (December 2008) 3.6. Ixodid ticks collected from vegetation at the Hoedspruit Endangered Species Centre (July 2008) 55 3.7. Ixodid ticks collected from vegetation at the Hoedspruit Endangered Species Centre (November 2008) 55 3.8. Ixodid tick species associated with cheetahs at the Ann van Dyk Cheetah Breeding Centre - De Wildt/Brits 56 3.9.
Recommended publications
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • Genus Boophilus Curtice Genus Rhipicentor Nuttall & Warburton
    3 CONTENTS General remarks 4 Genus Amblyomma Koch 5 Genus Anomalohimalaya Hoogstraal, Kaiser & Mitchell 46 Genus Aponomma Neumann 47 Genus Boophilus Curtice 58 Genus Hyalomma Koch. 63 Genus Margaropus Karsch 82 Genus Palpoboophilus Minning 84 Genus Rhipicentor Nuttall & Warburton 84 Genus Uroboophilus Minning. 84 References 86 SUMMARI A list of species and subspecies currently included in the tick genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus is given in this paper. The published synonymies and authors of each spécifie or subspecific name are also included. Remaining tick genera have been reviewed in part in a previous paper of this series, and will be finished in a future third part. Key-words: Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, species, synonymies. RESUMEN Se proporciona una lista de las especies y subespecies actualmente incluidas en los géneros Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus y Rhipicentor, asi como en los géneros no aceptados Palpoboophilus and Uroboophilus. Se incluyen también las sinonimias publicadas y los autores de cada nombre especifico o subespecifico. Los restantes géneros de garrapatas han sido revisados en parte en un volumen previo de esta serie, y serân terminados en una futura tercera parte. Palabras claves Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, especies, sinonimias. 4 GENERAL REMARKS Following is a list of species and subspecies of ticks d~e scribed in the genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalorma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus. The first volume (Estrada- Pena, 1991) included data for Haemaphysalis, Anocentor, Dermacentor, and Cosmiomma.
    [Show full text]
  • Toxins-67579-Rd 1 Proofed-Supplementary
    Supplementary Information Table S1. Reviewed entries of transcriptome data based on salivary and venom gland samples available for venomous arthropod species. Public database of NCBI (SRA archive, TSA archive, dbEST and GenBank) were screened for venom gland derived EST or NGS data transcripts. Operated search-terms were “salivary gland”, “venom gland”, “poison gland”, “venom”, “poison sack”. Database Study Sample Total Species name Systematic status Experiment Title Study Title Instrument Submitter source Accession Accession Size, Mb Crustacea The First Venomous Crustacean Revealed by Transcriptomics and Functional Xibalbanus (former Remipedia, 454 GS FLX SRX282054 454 Venom gland Transcriptome Speleonectes Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail vReumont, NHM London SRP026153 SRR857228 639 Speleonectes ) tulumensis Speleonectidae Titanium Dominated by Enzymes and a Neurotoxin, MBE 2014, 31 (1) Hexapoda Diptera Total RNA isolated from Aedes aegypti salivary gland Normalized cDNA Instituto de Quimica - Aedes aegypti Culicidae dbEST Verjovski-Almeida,S., Eiglmeier,K., El-Dorry,H. etal, unpublished , 2005 Sanger dideoxy dbEST: 21107 Sequences library Universidade de Sao Paulo Centro de Investigacion Anopheles albimanus Culicidae dbEST Adult female Anopheles albimanus salivary gland cDNA library EST survey of the Anopheles albimanus transcriptome, 2007, unpublished Sanger dideoxy Sobre Enfermedades dbEST: 801 Sequences Infeccionsas, Mexico The salivary gland transcriptome of the neotropical malaria vector National Institute of Allergy Anopheles darlingii Culicidae dbEST Anopheles darlingi reveals accelerated evolution o genes relevant to BMC Genomics 10 (1): 57 2009 Sanger dideoxy dbEST: 2576 Sequences and Infectious Diseases hematophagyf An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. Illumina HiSeq Anopheles dirus Culicidae SRX309996 Adult female Anopheles dirus salivary glands NIAID SRP026153 SRS448457 9453.44 freeborni 2000 An insight into the sialomes of Psorophora albipes, Anopheles dirus and An.
    [Show full text]
  • Zecche E Sanità Pubblica
    “Focus sulla conoscenza” Zecche e Sanità Pubblica Roma, 19 maggio 2021 Giulia Barlozzari, DVM, PhD Direzione Operativa Sierologia [email protected] TASSONOMIA ZECCHE Phylum Arthropoda (dal greco piedi articolati) Subphylum Chelicerata presenza cheliceri, paio di appendici preorali terminanti a pinza o con un uncino. Classe Arachnida (4 paia di zampe) Ordine Acarina Sottordine Ixodida 4 Famiglie: Ixodidae Argasidae Nuttalliellidae Deinocrotonidae "zecche dure", "zecche molli", pseudo-scudo unica specie, presenza di assenza dello ondulato e estinte uno scudo scudo dorsale fenestrato, dorsale chitinoso in tutti unica specie: X chitinoso in gli di sviluppo Nuttalliella tutti gli stadi di namaqua sviluppo (Tanzania, Namibia, Sud Africa) RILEVANZA SANITARIA Filipe Dantas-Torres, Domenico Otranto. Ixodid and Argasid Ticks.Reference Module in Biomedical Sciences, Elsevier, 2020. ISBN 9780128012383,https://doi.org/10.1016/B978-0-12-818731-9.00013-6. ZECCHE ectoparassiti ematofagi obbligati necessitano di pasti di sangue per completare il proprio sviluppo e il ciclo riproduttivo Nel mondo: Ixodidae 750 specie Argasidae 218 specie In Italia: 36 specie di zecche, 7 generi Ixodes, Rhipicephalus, Hyalomma, Haemaphysalis, Dermacentor, Boophilus (zecche dure) Argas e Ornithodoros (zecche molli) Le specie più diffuse e rilevanti da un punto di vista sanitario sia in Italia che in Europa sono Ixodes ricinus (la zecca dei boschi), Rhipicephalus sanguineus (la zecca del cane), Hyalomma marginatum e Dermacentor reticulatus Specie più diffuse e rilevanti da un punto di vista sanitario in Italia ed Europa Ixodes ricinus (la zecca dei boschi) Rhipicephalus sanguineus (la zecca del cane) Hyalomma marginatum (zecca degli uccelli) Dermacentor reticulatus Caratteristica zecche di importanza sanitaria elevata capacità di adattarsi che le rende non selettive rispetto all’ospite da parassitare.
    [Show full text]
  • Vorkommen Von Anaplasma Phagocytophilum Und Babesia Spp
    Inaugural-Dissertation zur Erlangung der Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Vorkommen von Anaplasma phagocytophilum und Babesia spp. in Rehwild (Capreolus capreolus), Damwild (Dama dama) und Muffelwild (Ovis musimon) in Deutschland von Melanie Christin König, geb. Kauffmann aus Gräfelfing München 2017 Aus dem Veterinärwissenschaftlichen Departement der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Vergleichende Tropenmedizin und Parasitologie Arbeit angefertigt unter der Leitung von Priv.-Doz. Dr. Cornelia Silaghi Gedruckt mit der Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, PhD Berichterstatter: Priv.-Doz. Dr. Cornelia Silaghi Korreferent: Priv.-Doz. Dr. Bianka Schulz Tag der Promotion: 29. Juli 2017 Für Andreas Inhaltsverzeichnis V INHALTSVERZEICHNIS I. EINLEITUNG ..................................................................................... 1 II. LITERATURÜBERSICHT ............................................................... 4 1. Pathogene ............................................................................................. 4 1.1. Anaplasma phagocytophilum ................................................................ 4 1.1.1. Taxonomie ............................................................................................. 4 1.1.2. Vektor .................................................................................................... 5
    [Show full text]
  • Are Ticks Venomous Animals? Alejandro Cabezas-Cruz1,2 and James J Valdés3*
    Cabezas-Cruz and Valdés Frontiers in Zoology 2014, 11:47 http://www.frontiersinzoology.com/content/11/1/47 RESEARCH Open Access Are ticks venomous animals? Alejandro Cabezas-Cruz1,2 and James J Valdés3* Abstract Introduction: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results: Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Wednesday Slide Conference 2008-2009
    PROCEEDINGS DEPARTMENT OF VETERINARY PATHOLOGY WEDNESDAY SLIDE CONFERENCE 2008-2009 ARMED FORCES INSTITUTE OF PATHOLOGY WASHINGTON, D.C. 20306-6000 2009 ML2009 Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2008-2009 100 Cases 100 Histopathology Slides 249 Images PROCEEDINGS PREPARED BY: Todd Bell, DVM Chief Editor: Todd O. Johnson, DVM, Diplomate ACVP Copy Editor: Sean Hahn Layout and Copy Editor: Fran Card WSC Online Management and Design Scott Shaffer ARMED FORCES INSTITUTE OF PATHOLOGY Washington, D.C. 20306-6000 2009 ML2009 i PREFACE The Armed Forces Institute of Pathology, Department of Veterinary Pathology has conducted a weekly slide conference during the resident training year since 12 November 1953. This ever- changing educational endeavor has evolved into the annual Wednesday Slide Conference program in which cases are presented on 25 Wednesdays throughout the academic year and distributed to 135 contributing military and civilian institutions from around the world. Many of these institutions provide structured veterinary pathology resident training programs. During the course of the training year, histopathology slides, digital images, and histories from selected cases are distributed to the participating institutions and to the Department of Veterinary Pathology at the AFIP. Following the conferences, the case diagnoses, comments, and reference listings are posted online to all participants. This study set has been assembled in an effort to make Wednesday Slide Conference materials available to a wider circle of interested pathologists and scientists, and to further the education of veterinary pathologists and residents-in-training. The number of histopathology slides that can be reproduced from smaller lesions requires us to limit the number of participating institutions.
    [Show full text]
  • Ticks and Tick-Borne Pathogens at the Interplay of Game and Livestock
    University of Neuchâtel Faculty of Sciences Institute of Biology Laboratory of Eco-Epidemiology Ticks and tick-borne pathogens at the interplay of game and livestock animals in South Africa Thesis presented to the Faculty of Sciences of the University of Neuchâtel for the Degree of Doctor of Sciences by Mirko Berggoetz Members of the Jury: Prof. Lise Gern (Thesis Director); Prof. Patrick Guerin (University of Neuchâtel); Prof. Lorenza Beati (Southern University, Georgia); Prof. Kurt Pfister (University of Munich); Dr Heinz Sager (Novartis Saint-Aubin) Index 1 Abstract .............................................................................................................................. 9 2 Introduction ...................................................................................................................... 13 2.1 Tick biology ................................................................................................................ 13 2.1.1 Rhipicephalus species ......................................................................................... 16 2.1.2 Amblyomma species........................................................................................... 18 2.1.3 Hyalomma species ............................................................................................. 19 2.1.4 Haemaphysalis species ....................................................................................... 19 2.1.5 Ixodes species ....................................................................................................
    [Show full text]
  • Microbial Communities Associated with the Camel Tick, Hyalomma Dromedarii
    www.nature.com/scientificreports OPEN Microbial communities associated with the camel tick, Hyalomma dromedarii: 16S rRNA gene‑based analysis Nighat Perveen, Sabir Bin Muzafar, Ranjit Vijayan & Mohammad Ali Al‑Deeb* Hyalomma dromedarii is an important blood‑feeding ectoparasite that afects the health of camels. We assessed the profle of bacterial communities associated with H. dromedarii collected from camels in the eastern part of the UAE in 2010 and 2019. A total of 100 partially engorged female ticks were taken from tick samples collected from camels (n = 100; 50/year) and subjected to DNA extraction and sequencing. The 16S rRNA gene was amplifed from genomic DNA and sequenced using Illumina MiSeq platform to elucidate the bacterial communities. Principle Coordinates Analysis (PCoA) was conducted to determine patterns of diversity in bacterial communities. In 2010 and 2019, we obtained 899,574 and 781,452 read counts and these formed 371 and 191 operational taxonomic units (OTUs, clustered at 97% similarity), respectively. In both years, twenty‑fve bacterial families with high relative abundance were detected and the following were the most common: Moraxellaceae, Enterobacteriaceae, Staphylococcaceae, Bacillaceae, Corynebacteriaceae, Flavobacteriaceae, Francisellaceae, Muribaculaceae, Neisseriaceae, and Pseudomonadaceae. Francisellaceae and Enterobacteriaceae coexist in H. dromedarii and we suggest that they thrive under similar conditions and microbial interactions inside the host. Comparisons of diversity indicated that microbial communities difered in terms of richness and evenness between 2010 and 2019, with higher richness but lower evenness in communities in 2010. Principle coordinates analyses showed clear clusters separating microbial communities in 2010 and 2019. The diferences in communities suggested that the repertoire of microbial communities have shifted.
    [Show full text]
  • Acari: Ixodidae) Türlerinin Incelenmesi Ve Bu Kenelerde Babesia Varliğinin Araştirilmasi
    T.C. HİTİT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇORUM YÖRESİNDE İNSANLAR ÜZERİNDE PARAZİTLENEN SERT KENE (ACARI: IXODIDAE) TÜRLERİNİN İNCELENMESİ VE BU KENELERDE BABESIA VARLIĞININ ARAŞTIRILMASI Tuncay GÖKÇE YÜKSEK LİSANS TEZİ BİYOLOJİ ANABİLİM DALI DANIŞMAN Prof. Dr. Aydın ÖZLÜK MART 2017 ÇORUM Tuncay GÖKÇE tarafından hazırlanan “Çorum Yöresinde İnsanlar Üzerinde Parazitlenen Sert Kene (Acari: Ixodidae) Türlerinin İncelenmesi ve Bu Kenelerde Babesia Varlığının Araştırılması” adlı tez çalışması 17/03/2017 tarihinde jüri üyeleri tarafından oy birliği ile Hitit Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı’nda Yüksek Lisans tezi olarak kabul edilmiştir. Prof. Dr. Aydın öZLüK Prof. Dr. Menderes SUİÇMEZ Prof. Dr. Ayşegül TAYLAN ÖZKAN Doç. Dr. Özcan ÖZKAN Doç. Dr. Demet CANSARAN DUMAN Hitit Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun 28/03/2017 tarih ve 2017/80 kararı ile Tuncay GÖKÇE'nin Biyoloji Anabilim Dalı'nda Yüksek Lisans derecesi alması onanmıştır. Prof. Dr. Ali KILIÇARSLAN Fen Bilimleri Enstitüsü Müdürü iii iv ÇORUM YÖRESİNDE İNSANLAR ÜZERİNDE PARAZİTLENEN SERT KENE (ACARI: IXODIDAE) TÜRLERİNİN İNCELENMESİ VE BU KENELERDE BABESIA VARLIĞININ ARAŞTIRILMASI Tuncay GÖKÇE HİTİT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Mart 2017 ÖZET Parazit canlılar arasında en iyi bilinen gruplardan olan keneler, tarih boyunca medikal ve veteriner açıdan büyük öneme sahip olmuştur. Keneler parazitlendikleri canlılar üzerinde tutunduğu bölgede lezyon oluşturmaları, ağız sekresyonlarıyla toksik etki yapmaları ve kene felcine neden olmaları gibi etkilerin yanı sıra Lyme, kene kaynaklı ensefalit (TBE), Kırım Kongo Kanamalı Ateşi (KKKA), riketsiosis, babesiosis, theileriosis gibi çeşitli hastalıkların etkenlerinin insanlara ve hayvanlara nakledilmesinde önemli rol oynamaktadır. Bu çalışmada, Mayıs-Kasım 2014 tarihleri arasında Çorum yöresinde insanlar üzerinde parazitlenen kene türlerinin, mevsimsel dağılımları ve bu kenelerde Babesia cinsine ait türlerin, varlığının ve yaygınlığının belirlenmesi amaçlanmıştır.
    [Show full text]
  • Mites and Endosymbionts – Towards Improved Biological Control
    Mites and endosymbionts – towards improved biological control Thèse de doctorat présentée par Renate Zindel Université de Neuchâtel, Suisse, 16.12.2012 Cover photo: Hypoaspis miles (Stratiolaelaps scimitus) • FACULTE DES SCIENCES • Secrétariat-Décanat de la faculté U11 Rue Emile-Argand 11 CH-2000 NeuchAtel UNIVERSIT~ DE NEUCHÂTEL IMPRIMATUR POUR LA THESE Mites and endosymbionts- towards improved biological control Renate ZINDEL UNIVERSITE DE NEUCHATEL FACULTE DES SCIENCES La Faculté des sciences de l'Université de Neuchâtel autorise l'impression de la présente thèse sur le rapport des membres du jury: Prof. Ted Turlings, Université de Neuchâtel, directeur de thèse Dr Alexandre Aebi (co-directeur de thèse), Université de Neuchâtel Prof. Pilar Junier (Université de Neuchâtel) Prof. Christoph Vorburger (ETH Zürich, EAWAG, Dübendorf) Le doyen Prof. Peter Kropf Neuchâtel, le 18 décembre 2012 Téléphone : +41 32 718 21 00 E-mail : [email protected] www.unine.ch/sciences Index Foreword ..................................................................................................................................... 1 Summary ..................................................................................................................................... 3 Zusammenfassung ........................................................................................................................ 5 Résumé .......................................................................................................................................
    [Show full text]