The Brain's Asymmetric Frequency Tuning

Total Page:16

File Type:pdf, Size:1020Kb

The Brain's Asymmetric Frequency Tuning S S symmetry Opinion The Brain’s Asymmetric Frequency Tuning: Asymmetric Behavior Originates from Asymmetric Perception Arianna Felisatti 1,*, David Aagten-Murphy 1,2, Jochen Laubrock 1,3, Samuel Shaki 4 and Martin H. Fischer 1 1 Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25 House 14, D-14476 Potsdam OT Golm, Germany; [email protected] (D.A.-M.); [email protected] (J.L.); [email protected] (M.H.F.) 2 Neuraltrain GmbH, Friedrichstr. 68, 10117 Berlin, Germany 3 Department of Psychology, Brandenburg Medical School Theodor Fontane Fehrbelliner Straße 38, 16816 Neuruppin, Germany 4 Department of Behavioral Sciences and Psychology, Ariel University, Ariel 40700, Israel; [email protected] * Correspondence: [email protected]; Tel.: +49-331-977-2895 Received: 11 September 2020; Accepted: 10 December 2020; Published: 15 December 2020 Abstract: To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches. Keywords: asymmetry; global/local; spatial frequencies; temporal frequencies; embodied cognition 1. Introduction “The universe is asymmetric and I am persuaded that life, as it is known to us, is a direct result of the asymmetry of the universe or of its indirect consequences.” —Louis Pasteur Decades of research have revealed that our symmetrical anatomical arrangement of body, eyes, and brain obscures many surprising asymmetries in how our bodies sample the external world and later act upon it. In this review, we aim to address how sensory asymmetries interact with and drive functional changes and—in turn—influence and shape our behaviours, preferences, and even our cultural norms. We begin by describing behavioral, neuropsychological, neuroimaging, and comparative evidence for behavioral asymmetries that result from competition between global and local visual processing. Then, we describe models of processing asymmetries that aim to account for these findings. Based upon these reported results, we then introduce a new theoretical model to account for how brain functional lateralization, spatial frequency tuning, and object location in the external world relative to the observer interact to generate asymmetrical actions. This model is subsequently applied to higher-level cognitive asymmetries to illustrate its broader viability and explanatory power. We end our review by listing a few implications and outstanding questions. Symmetry 2020, 12, 2083; doi:10.3390/sym12122083 www.mdpi.com/journal/symmetry Symmetry 2020, 12, 2083 2 of 25 2. Global vs. Local Perception ASymmetry growing 2020,number 12, x FOR PEER of studies REVIEW suggest that perceptual and behavioral asymmetries originate2 of 26 from hemispheric lateralization. The left hemisphere is more efficient in the selection of fine detail, while the 2. Global vs. Local Perception right hemisphere is predominant in the selection of coarse elements [1–3]. Due to the cross-over of the optic fibres,A growing each number visual hemi-fieldof studies suggest projects that to perceptual the contralateral and behavioral brain hemisphere. asymmetries Here,originate we will specificallyfrom hemispheric review studies lateralization on visuo-spatial. The left hemisphere processing is more to explain efficient how in the this selection organization of fine shapesdetail, the while the right hemisphere is predominant in the selection of coarse elements [1–3]. Due to the cross- development of several cognitive domains. over of the optic fibres, each visual hemi-field projects to the contralateral brain hemisphere. Here, Wewe beginwill specifically our review review by reminding studies on readersvisuo-spatial of a seminal processing behavioral to explain study how conductedthis organization by Navon (1977)shapes [4]. He the presenteddevelopment artificially of several createdcognitive hierarchical domains. stimuli in the centre of participants’ visual field (seeWe Figure begin1, our central review panel). by reminding The stimuli readers were of a letter-shapedseminal behavioral figures study made conducted from manyby Navon smaller letters,(1977) and [4] participants. He presented had artificially to respond created either hierarchical to the stimuli global in or the the centre local of letter participants’ information visual with assignedfield button(see Figure responses. 1, central Importantly, panel). The globalstimuli andwere local letter letters-shaped could figures be made either from response-incongruent many smaller or response-congruentletters, and participa (withoutnts had to necessarily respond either being to identical).the global or Navon the local (1977) letter [4 ]information reported anwith overall processingassigned speed button advantage responses. for Importantly, the global global level, and and local asymmetrical letters could interference,be either response which-incongruent was stronger or response-congruent (without necessarily being identical). Navon (1977) [4] reported an overall from the global to the local level than in the reverse direction. Together, these findings suggested processing speed advantage for the global level, and asymmetrical interference, which was stronger a coarse-to-fine visual processing sequence. An aspect of the stimuli influencing the salience of from the global to the local level than in the reverse direction. Together, these findings suggested a the globalcoarse/-localto-fine level visual is processing the low-pass sequence./high-pass An aspect filter. of Thethe stimuli low-pass influencing filtered the images salience (see of Figure the 1, left panel)global/local retain level the unifyingis the low big-pass global/high- structurepass filter. while The low removing-pass filtered the numerous images (see little Fig details.ure 1, left On the contrary,panel) high-pass retain the filtered unifying images big global (see structure Figure1, while right panel)removing retain the numerous the numerous little littledetails details. On the while removingcontrary, the high unifying-pass filtered big global images structure. (see Figure Since 1, right this panel) seminal retain work,the numerous there havelittle details been numerouswhile behavioural,removing neuropsychological, the unifying big global neuroimaging, structure. Since and this comparative seminal work, studies there of thesehave “globalbeen numerous precedence” and “globalbehavioural/local, interference”neuropsychological, effects. neuroimaging We review this, and research comparative here selectively studies toof illustrate these “global the current understandingprecedence” of and visual “global/local processing interference” asymmetries. effects. We review this research here selectively to illustrate the current understanding of visual processing asymmetries. FigureFigure 1. Example 1. Example of of hierarchical hierarchical stimulus stimulus beforebefore and and after after a alow low-pass-pass/high/high-pass-pass filter. filter. CentralCentral panel: example of hierarchical stimulus with letter “H” at the global level and letter “S” at the local panel: example of hierarchical stimulus with letter “H” at the global level and letter “S” at the local level. Left panel: low-pass filtered stimulus. Right panel: high-pass filtered stimulus. level. Left panel: low-pass filtered stimulus. Right panel: high-pass filtered stimulus. 2.1. Behavioral2.1. Behavioral Evidence Evidence In addition to the Navon task, there are multiple other sources of behavioural evidence for In addition to the Navon task, there are multiple other sources of behavioural evidence for hemispheric lateralization for global/local processing. Neural development is associated with hemisphericprogressive lateralization maturation forof the global corpus/local callosum processing., which is Neural a bundle development of fibres supporting is associated inter- with progressivehemispheric maturation communication. of the corpus Investigation callosum ,of which hemispheric is a bundle asymmetries of fibres in supportinghealthy populations inter-hemispheric relies communication. Investigation of hemispheric asymmetries in healthy populations relies on the use Symmetry 2020, 12, 2083 3 of 25 of lateralized stimulus presentation by means of hemi-field paradigms (consider Reference [5] for meta-analysis and Reference [6] for methodological considerations). Global stimuli are better perceived when briefly shown on the left side of the fixation point. However, local stimuli are better perceived when briefly displayed on the right side of the fixation point [7–11]. In addition, handedness, which is related to hemispheric asymmetry, influences local/global processing. In everyday life, we use our dominant hand to deal with fine-scale and uni-manual tasks [12]. By testing right-handers, Stankovi´cand Neši´c(2018) [13] reported how contraction of the right hand, activating the left hemisphere,
Recommended publications
  • Analysis and Identification of Bite Marks in Forensic Casework
    ORIGINAL | http://dx.doi.org/10.4172/1994-8220.1000102 J Psychiatry 2014;17:475-482 Handedness in schizophrenia and schizoaffective disorder in an afrikaner founder population RH Mataboge¹*, M Joubert¹, JC Jordaan², F Reyneke2, JL Roos1 ¹University of Pretoria, Department of Psychiatry, Pretoria, South Africa ²University of Pretoria, Department of Statistics, Pretoria, South Africa Abstract Objective: An association between the Leucine-rich repeat trans membrane neuronal 1 gene (LRRTM1), schizophrenia/ schizoaffective disorder and handedness was recently claimed to be established. This study aimed to test the hypothesis that Afrikaner patients with schizophrenia/schizoaffective disorder are more non-right handed than their non-affected first- degree relatives and that of two separate control groups. The association between handedness, gender and age at onset of illness in the patients group was also determined. Method: Two cross-sectional studies were carried out, which compared the handedness of a group of 100 (30 females and 70 males) Afrikaner patients with schizophrenia/schizoaffective disorder, their non-affected first-degree relatives, and two separate control groups. Handedness was determined by the Edinburg Handedness Inventory (EHI). Results: Patients were found to be more right-handed than expected with only 17 out of 100 being non-right-handed compared to 11 out of 100 non-affected relatives; 36 out of 100 students and 75 out of 500 non- affected Afrikaner participants. The students were significantly more non-right handed than the patient and family groups but no difference in handedness was found when comparing the patients, family members and 500 participant control group. There was no significant difference between age at onset of illness and handedness.
    [Show full text]
  • In Search of the Biological Roots of Typical and Atypical Human Brain Asymmetry
    Accepted Manuscript In search of the biological roots of typical and atypical human brain asymmetry Clyde Francks PII: S1571-0645(19)30099-5 DOI: https://doi.org/10.1016/j.plrev.2019.07.004 Reference: PLREV 1124 To appear in: Physics of Life Reviews Received date: 9 July 2019 Accepted date: 12 July 2019 Please cite this article in press as: Francks C. In search of the biological roots of typical and atypical human brain asymmetry. Phys Life Rev (2019), https://doi.org/10.1016/j.plrev.2019.07.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. In search of the biological roots of typical and atypical human brain asymmetry. Comment on “Phenotypes in hemispheric functional segregation? Perspectives and challenges” by Guy Vingerhoets. Clyde Francks1,2 1Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands 2Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands Email address: [email protected] Keywords: Brain asymmetry; brain functions; laterality; human genetics; left-right axis; brain hemispheres. In this comprehensive and insightful review, Vingerhoets [1] discusses the multi-dimensional nature of inter-individual variation in functional brain asymmetry, and its potential relevance to behavioural variation and psychopathology.
    [Show full text]
  • Algid Ma. 33S~3
    3~?<? Algid Ma. 33S~3 DIFFERENTIAL EFFECTS OF BIOFEEDBACK INPUT ON LOWERING FRONTALIS ELECTROMYOGRAPHIC LEVELS IN RIGHT AND LEFT HANDERS DISSERTATION Presented to the Graduate Council of the University of North Texas in Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY By Kenneth N. Walker, B.S., M.Ed, Denton, Texas August, 1990 Walker, Kenneth N. Differential Effects of Biofeedback Input on Lowering Frontalis Electromyographic Levels In Right and Left Handers. Doctor of Philosophy (Health Psychology/Behavioral Medicine), August 1990, 70 pages, 3 tables, 6 figures, references, 73 titles. This investigation was an attempt to replicate and expand previous research which suggested that laterality of electromyographic biofeedback input had a significant effect in lowering frontalis muscle activity. In 1984 Ginn and Harrell conducted a study in which they reported that subjects receiving left ear only audio biofeedback had significantly greater reductions in frontalis muscle activity than those receiving right ear only or both ear feedback. This study was limited to one biofeedback session and subjects were selected based on demonstration of right hand/ear dominance. The purpose of the present study was to determine whether the left ear effect reported by Ginn and Harrell could be replicated. Furthermore, the current investigation sought to extend the previous finding to left handed subjects and explore the stability of the effect, if found, by adding a second biofeedback session. Subjects were 96 students recruited from undergraduate psychology classes. They were screened for handedness by the Edinburgh Handedness Inventory which resulted in identification of 48 right handers and 48 left handers.
    [Show full text]
  • The Hands to Say It
    Issue 91, February 2008 www.proteinspotlight.org The hands to say it Vivienne Baillie Gerritsen When I was a little girl, I thought that my left-handed classmates were special. I envied their difference. And I used to marvel at the way they crouched over their desk, embracing something invisible as they did their best to avoid smudging ink all over their sheet of paper. Left-handedness is special. But so is right-handedness. Humans are not the only animals to make use of their hands – or claws, or paws, or hooves - but they are the only ones who show a marked preference for either the left one, or the right one. If this is so, there must be a reason for it. And not only must there be a reason but it must translate a certain structure of our brain: an asymmetry somewhere. Indeed, our brain is divided into two hemispheres which are dedicated to processing different activities. One side looks after our dreams, while the other is far more down to earth. LRRTM1 is the first protein to have been discovered which seems to be directly involved in this brain asymmetry. Consequently, it influences the handedness of a human-being and, more astonishingly, may also predispose individuals to psychotic troubles such as schizophrenia. don’t have a distinct preference for one hand over the other. The passing of roles from hand to mind expresses a particular brain structure. In turn, the progressive use of speech has continued to mould our brain into a shape peculiar to the human species.
    [Show full text]
  • Psichologijos Žodynas Dictionary of Psychology
    ANGLŲ–LIETUVIŲ KALBŲ PSICHOLOGIJOS ŽODYNAS ENGLISH–LITHUANIAN DICTIONARY OF PSYCHOLOGY VILNIAUS UNIVERSITETAS Albinas Bagdonas Eglė Rimkutė ANGLŲ–LIETUVIŲ KALBŲ PSICHOLOGIJOS ŽODYNAS Apie 17 000 žodžių ENGLISH–LITHUANIAN DICTIONARY OF PSYCHOLOGY About 17 000 words VILNIAUS UNIVERSITETO LEIDYKLA VILNIUS 2013 UDK 159.9(038) Ba-119 Apsvarstė ir rekomendavo išleisti Vilniaus universiteto Filosofijos fakulteto taryba (2013 m. kovo 6 d.; protokolas Nr. 2) RECENZENTAI: prof. Audronė LINIAUSKAITĖ Klaipėdos universitetas doc. Dalia NASVYTIENĖ Lietuvos edukologijos universitetas TERMINOLOGIJOS KONSULTANTĖ dr. Palmira ZEMLEVIČIŪTĖ REDAKCINĖ KOMISIJA: Albinas BAGDONAS Vida JAKUTIENĖ Birutė POCIŪTĖ Gintautas VALICKAS Žodynas parengtas įgyvendinant Europos socialinio fondo remiamą projektą „Pripažįstamos kvalifikacijos neturinčių psichologų tikslinis perkvalifikavimas pagal Vilniaus universiteto bakalauro ir magistro studijų programas – VUPSIS“ (2011 m. rugsėjo 29 d. sutartis Nr. VP1-2.3.- ŠMM-04-V-02-001/Pars-13700-2068). Pirminis žodyno variantas (1999–2010 m.) rengtas Vilniaus universiteto Specialiosios psichologijos laboratorijos lėšomis. ISBN 978-609-459-226-3 © Albinas Bagdonas, 2013 © Eglė Rimkutė, 2013 © VU Specialiosios psichologijos laboratorija, 2013 © Vilniaus universitetas, 2013 PRATARMĖ Sparčiai plėtojantis globalizacijos proce- atvejus, kai jų vertimas į lietuvių kalbą gali sams, informacinėms technologijoms, ne- kelti sunkumų), tik tam tikroms socialinėms išvengiamai didėja ir anglų kalbos, kaip ir etninėms grupėms būdingų žodžių, slengo,
    [Show full text]
  • Hemispheric Brain Asymmetry Differences in Youths with Attention
    NeuroImage: Clinical 18 (2018) 744–752 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Hemispheric brain asymmetry differences in youths with attention-deficit/ T hyperactivity disorder ⁎ P.K. Douglasa,b, , Boris Gutmanc, Ariana Andersonb, C. Lariosa, Katherine E. Lawrenced, Katherine Narrd, Biswa Senguptae, Gerald Cooraye, David B. Douglasf, Paul M. Thompsonc, James J. McGoughb, Susan Y. Bookheimerb a University of Central Florida, IST, Modeling and Simulation Department, FL, USA b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA c Imaging Genetics Center, USC Keck School of Medicine, Marina del Rey, CA, USA d Laboratory of Neuroimaging, UCLA, CA, USA e Wellcome Trust Centre for Neuroimaging, 12 Queen Square, UCL, London, UK f Nuclear Medicine and Molecular Imaging, Stanford University School of Medicine, Palo Alto, CA, USA ABSTRACT Introduction: Attention-deficit hyperactive disorder (ADHD) is the most common neurodevelopmental disorder in children. Diagnosis is currently based on behavioral criteria, but magnetic resonance imaging (MRI) of the brain is increasingly used in ADHD research. To date however, MRI studies have provided mixed results in ADHD patients, particularly with respect to the laterality of findings. Methods: We studied 849 children and adolescents (ages 6–21 y.o.) diagnosed with ADHD (n = 341) and age- matched typically developing (TD) controls with structural brain MRI. We calculated volumetric measures from 34 cortical and 14 non-cortical brain regions per hemisphere, and detailed shape morphometry of subcortical nuclei. Diffusion tensor imaging (DTI) data were collected for a subset of 104 subjects; from these, we calculated mean diffusivity and fractional anisotropy of white matter tracts.
    [Show full text]
  • The Neurobiology of Reading Differs for Deaf and Hearing Adults Karen
    The Neurobiology of Reading Differs for Deaf and Hearing Adults Karen Emmorey Please cite as: Emmorey, K. (2020). The neurobiology of reading differs for deaf and hearing adults. In M. Marschark and H. Knoors (Eds). Oxford Handbook of Deaf Studies in Learning and Cognition, pp. 347–359, Oxford University Press. Running head: The neurobiology of reading Karen Emmorey Laboratory for Language and Cognitive Neuroscience 6495 Alvarado Road, Suite 200 San Diego, CA 92120 USA [email protected] Acknowledgements This work was supported by a grant from the National Institutes of Health (DC014246) and grants from the National Science Foundation (BCS-1651372; BCS-1756403). The neurobiology of reading 2 Abstract Recent neuroimaging and electrophysiological evidence reveal how the reading system successfully adapts when phonological codes are relatively coarse-grained due to reduced auditory input during development. New evidence suggests that the optimal end-state for the reading system may differ for deaf versus hearing adults and indicates that certain neural patterns that are maladaptive for hearing readers may be beneficial for deaf readers. This chapter focuses on deaf adults who are signers and have achieved reading success. Although the left-hemisphere dominant reading circuit is largely similar, skilled deaf readers exhibit a more bilateral neural response to written words and sentences compared to their hearing peers, as measured by event- related potentials and functional magnetic resonance imaging. Skilled deaf readers may also rely more on neural regions involved in semantic processing compared to hearing readers. Overall, emerging evidence indicates that the neural markers for reading skill may differ for deaf and hearing adults.
    [Show full text]
  • A Cinch for the Brain
    A Cinch for the Brain Our bodies, our behavior and even our brains are anything but symmetrical. And this seems to be an important factor in the seamless functioning of our thought, speech and motor faculties. Researchers at the Max Planck Institute for Psycholinguistics in Nijmegen are currently searching for genetic clues to this phenomenon. They want to decode the fundamental molecular biological mechanisms that contribute to asymmetry in the brain, and to identify possible causes for neurological disorders. TEXT STEFANIE REINBERGER t first glance, the human ture. It’s divided into two halves, both A strong left: Rafael Nadal, for body appears to be com- of which are equal in size and whose many years the world’s number pletely symmetrical: two furrows and bulges follow a similar pat- one men’s tennis player, is right-handed but holds the arms, two legs, two eyes, tern. But the functional centers are ex- racket in his left hand most of two ears. Even features tremely unevenly distributed. The right the time. Researchers are likeA the nose and mouth appear to be and left hemispheres specialize in dif- studying how the brains of left- evenly positioned in both halves of ferent cognitive functions. They essen- and right-handed people differ. the face in most people. On closer in- tially divide up the work between them, spection, though, we see that one leg possibly to expand the total range of is longer than the other, one hand is tasks performed. stronger, or maybe the left ear is posi- “Lateralization is a very distinct phe- tioned lower than the right one.
    [Show full text]
  • Handedness and White Matter Networks
    NROXXX10.1177/1073858420937657The NeuroscientistBudisavljevic et al. 937657review-article2020 Review The Neuroscientist 2021, Vol. 27(1) 88 –103 Handedness and White Matter Networks © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI:https://doi.org/10.1177/1073858420937657 10.1177/1073858420937657 journals.sagepub.com/home/nro Sanja Budisavljevic1,2, Umberto Castiello1 , and Chiara Begliomini1 Abstract The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research. Keywords handedness, white matter, diffusion imaging, tractography, corpus callosum, corticospinal tract, superior longitudinal fasciculus Introduction dominant for hand control.
    [Show full text]
  • Handedness and Laterality: Relations to General and Creative Intelligences
    Handedness and Laterality: Relations to General and Creative Intelligences. Meghan Tuohy 10339410 Submitted in partial fulfilment of the requirements of the Higher Diploma in Arts in Psychology (HDPSYAG) at DBS School of Arts, Dublin. Supervisor: Dr Lucie Corcoran Head of Department: Dr S. Eccles March 2018 Department of Psychology DBS School of Arts 2 Table of Contents Acknowledgements…………………………………………………………………………4 Abstract……………………………………………………………………………………..5 Chapter: 1. Introduction……………………………………………………………….......6 1.1 General Introduction…………………………………………………………...6 1.2 Right and Left Handedness…..………………………………………………..8 1.3 Strength of Handedness.....……………………………………………………12 1.4 Intelligence………………………………….……………………………….....12 1.5 Rationale of the Study…………………………………………………………13 1.6 Hypotheses………………………………..……………………………………16 Chapter 2: Methods……………………………………………………………………… 17 2.1 Participants…………………………………………………………………... 17 2.2 Design………………………………………………………………………… 17 2.3 Materials……………………………………………………………………… 19 2.3.1 New Non-Reading Intelligence Test (NNRIT)………………….19 2.3.2 Laterality Preference Questionnaire (LPQ)…………………..20 2.3.3 Wallas and Kogans’s Assessment of Creativity………………21 2.4 Procedure…………………………………………………………………… 22 2.5 Data Analysis………………………………………………………………. 23 Chapter 3: Results……………………………………………………………………... 24 3 3.1 Hypotheses 1 and 2 …………………………………………………….… 24 3.2 Hypothesis 3 ……………………………………………………………… 25 3.3 Hypothesis 4………………………………………………………………. 27 3.4 Other Relevant Findings………………………………………………… 30 Chapter 4: Discussion……………………………………………………………….
    [Show full text]
  • Left -Handedness Laterality Characteristics and Their
    LEFT -HANDEDNESS LATERALITY CHARACTERISTICS AND THEIR EDUCATIONAL IMPLICATIONS by Margaret MacDonald Clark, M.A., Ed.B. Submitted in fulfilment of the requirements for the degree Doctor of Philosophy University of Glasgow 1953 ProQuest Number: 13838552 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13838552 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ii PREFACE Lack of knowledge concerning left-handedness springs from the multiplicity of studies and contradictory nature of the findings on the various aspects of laterality, father than any insufficiency of material on the subject. The absence of any single authoritative work and extensiveness of existing material make necessary for a full appreciation of the problem a study more prolonged than the average interested person is willing or able to make. The present work, presenting as it does both an attempt at critical evaluation of previous investigations and an original study of laterality characteristics in a group of normal children, will it is hoped satisfy a need for a comprehensive report on the subject. The practical problems confronting teachers and parents dealing with left-handed children have been kept in the forefront through­ out, in the hope that the information contained herein may make some contribution towards a better understanding of left-handedness and may even lead to a more tolerant attitude towards the * sinister minority*, to which the author herself belongs.
    [Show full text]
  • Subtle Left-Right Asymmetry of Gene Expression Profiles in Embryonic
    bioRxiv preprint doi: https://doi.org/10.1101/263111; this version posted February 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Subtle left-right asymmetry of gene 2 expression profiles in embryonic and 3 foetal human brains 4 5 Carolien G.F. de Kovel1, Steven N. Lisgo2, Simon E. Fisher1,3, Clyde Francks1,3* 6 7 1 Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The 8 Netherlands 9 2 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom 10 3 Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands 11 12 13 Contact information: 14 Clyde Francks 15 Dept Language & Genetics, Max Planck Institute for Psycholinguistics 16 P.O. Box 310 17 6500 AH Nijmegen 18 The Netherlands 19 E: [email protected] 20 T: +31 24 3521929 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/263111; this version posted February 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Abstract 25 Left-right laterality is an important aspect of human brain organization for which the genetic basis is 26 poorly understood. Using RNA sequencing data we contrasted gene expression in left- and right-sided 27 samples from several structures of the anterior central nervous systems of post mortem human 28 embryos and fetuses.
    [Show full text]