Hindawi Publishing Corporation Journal of Electrical and Computer Engineering Volume 2012, Article ID 802606, 14 pages doi:10.1155/2012/802606 Research Article Design of a Computationally Efficient Dynamic System-Level Simulator for Enterprise LTE Femtocell Scenarios J. M. Ruiz-Aviles,´ S. Luna-Ramırez,M.Toril,F.Ruiz,I.delaBandera,P.Mu´ noz,˜ R. Barco, P. Lazaro,´ and V. Buenestado Communications Engineering Department, University of Malaga,´ 29071 Malaga,´ Spain Correspondence should be addressed to J. M. Ruiz-Aviles,´
[email protected] Received 9 March 2012; Accepted 26 October 2012 Academic Editor: Dharma Agrawal Copyright © 2012 J. M. Ruiz-Aviles´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the context of Long-Term Evolution (LTE), the next generation mobile telecommunication network, femtocells are low- powerbasestationsthatefficiently provide coverage and capacity indoors. This paper presents a computationally efficient dynamic system-level LTE simulator for enterprise femtocell scenarios. The simulator includes specific mobility and trafficand propagation models for indoor environments. A physical layer abstraction is performed to predict link-layer performance with low computational cost. At link layer, two important functions are included to increase network capacity: Link Adaptation and Dynamic Scheduling. At network layer, other Radio Resource Management functionalities, such as Admission Control and Mobility Management, are also included. The resulting tool can be used to test and validate optimization algorithms in the context of Self-Organizing Networks (SON). 1. Introduction is applied to those networks including self-configuration, self-optimization, and self-healing [3].