Arctic Telecommunications, Gunnar Christiansen 46 the CIO Project, Gabriela Grolms 92

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Telecommunications, Gunnar Christiansen 46 the CIO Project, Gabriela Grolms 92 Contents: FEATURE: Development of telecommunications in the county of Guest editorial, Jan Hassel 1 Murmansk, E N Mesjtsjerjakov 58 Telecommunications in the Arctic, Norwegian Telecom’s efforts in Nort-West Russia – Mathias Bjerrang 3 development of a dedicated network in Murmansk, Atle Andersen 60 Measurements of atmospheric effects on satellite links at very low elevation angle, Odd Gutteberg 8 Norwegian Telecom’s involvement in the Barents region, Svein Martin Pedersen 64 NORSAT – Isfjord – a satellite station in the wilderness, Martin Jarl Lode and John R Veastad 14 Map of Svalbard 66 Satellite navigation and positioning, The first years and messages across, Jan Hassel 67 Ingar Skjønhaug 18 Very Long Baseline Interferometry in the Arctic, Bjørn Ragnvald Pettersen 29 Air pollution monitoring in the Arctic, Geir O Braathen and Elin Dahlin 35 Operation and maintenance of telecommunication STATUS: networks and services in Arctic conditions, Klaus Grimstad 38 International research and standardisation activities in telecommunication: Introduction, Telecommunications’ importance for safety at Svalbard, Tom Handegård 86 Viggo Bj Kristiansen 44 EU’s research programme ACTS, Eliot J Jensen 87 Experiences from Arctic telecommunications, Gunnar Christiansen 46 The CIO project, Gabriela Grolms 92 Telecommunications in Greenland – challenges and Status report from ITU-TSB Study Group 1, solutions, Per Danker 48 Service Definition, Elisabeth Tangvik 98 The INUKSAT system and its alternatives – a de- Future mobile communications, scription of satellite communications in Greenland, Ole Dag Svebak 105 Peter Malmberg 51 UPT – Service concept, standardisation and the The challenge of building a digital radio relay system in Norwegian pilot service, Greenland, Anders Klose Frederiksen 55 Frank Bruarøy and Kjell Randsted 109 Telektronikk Editorial office: Telektronikk Norwegian Telecom Research Volume 90 No. 3 - 1994 P.O. Box 83 RESEARCH ISSN 0085-7130 N-2007 Kjeller, Norway Editor: Editorial board: Ola Espvik Ole P Håkonsen, Senior Executive Vice President Tel. + 47 63 80 98 83 Karl Klingsheim, Vice President, Research Bjørn Løken, Vice President, Market and Product Strategies Status section editor: Tom Handegård Graphic design: Tel. + 47 63 80 98 00 Design Consult AS Editorial assistant: Layout and illustrations: Gunhild Luke Gunhild Luke, Britt Kjus, Åse Aardal Tel. + 47 63 80 91 52 Norwegian Telecom Research Guest editorial BY JAN HASSEL In this issue of Telektronikk the Svalbard is sometimes referred to focus is set on the development as an international part of Nor- and history of telecommunication way. Even though Norwegian in the Arctic. Activities in three laws and regulations apply, the different areas are reported: Svalbard Treaty gives rights to all Greenland, where Greenland Tele- countries who have signed the com serves a very long coastline treaty to operate at Svalbard. For of this enormous island; Svalbard, more than 80 years the policy of with its long tradition of wireless Norwegian Telecom has been to communication covering large offer modern telecommunications parts of the Arctic Ocean; and the to everyone concerned in the Russian–Norwegian project for Svalbard region. reconstruction of the telephone network in the Barents area. In the Arctic, excellent telecom- munications is of the utmost Telecommunications in the Arctic importance. It is provided at Sval- region have a great potential and bard and it can be in other Arctic are increasingly important. Over regions. What to do, and the guts the decades there has been a to do it, still often depends upon growth in capacity and services far-seeing directors and pioneers according to the technological as in former days. The digitization development of telecommunica- of the telephone network at tions and the demands for com- Longyearbyen in 1990 gave a munications in the area. At Sval- very significant rise of quality and bard, we offer high quality performance. This was a result of telecommunication services to all decisions made by today’s pio- nations. This is to continue and be neers. There is, however, still a extended in accordance with demand for NMT or GSM for demands in the region. commercial and safety reasons. The existing infrastructure and the geographical position of The telecommunication technology has become fundamental to Svalbard provide excellent conditions for communication via man. And man is always behind the technology. Usually, people satellites in polar orbits. Satellite passages are frequent and are not mentioned when we report on technology, solutions, observation times long. Large amounts of data can be inter- progress, development, and milestones. In this issue of Telek- changed and transferred on-line for processing anywhere in the tronikk we also try to highlight the daily life of those who have world. The satellite connection up to 80 degrees latitude, which served in Arctic telecommunications through the decades. was established in 1969, was a technological breakthrough for geostationary satellites – moving the limits of what was thought The Arctic is still a challenge to expeditions and loners. Thanks feasible at the time. to the development of telecommunications, today’s expeditions are far from being as risky and lonesome as in those early days Telecommunications to Svalbard started in 1911, when the when the first pioneers were travelling. A recent one-man walk wireless telegraph service was established and offered to all to the North Pole, supported by Norwegian Telecom, is reported nations operating at Svalbard and the surrounding areas of the here. Pioneers still exist. Arctic Ocean. The coastal radio service is still of importance for communication and safety to ships, trawlers, explorers and oth- ers who travel and trade in the area. 1 Telecommunications in the Arctic BY MATHIAS BJERRANG When Roald Amundsen reached First radio contact bard Radio and Harstad Radio. This the South Pole on December 14, finally included Svalbard in the Norwe- 1911, he had to wait until he had re- Svalbard – Norway 1911 gian national telephone network. turned to Hobart, Australia, on Telecommunication with radio waves In 1978 communication by satellite to the March 7, 1912, before he could started in the early 1900s. Norway had mainland was established and finally, in telegraph that the South Pole had the second radio telegraph connection in 1981, Svalbard was connected to the been reached nearly three months the world; that was the connection national and international subscriber previously. between Røst and Sørvågen opened on dialling telephone system. May 1, 1906. It was the important fish- When Børge Ousland reached the eries in the area which prompted the The offer of telecommunication services North Pole on April 22, 1994, after opening. Not long after, radio telegraphy at Svalbard today is the same as on the 52 days of walking across the ice to ships in the open seas was started. mainland, with the exception of mobile from Kapp Arktichesky in Siberia, telephone – that will probably never be he could immediately inform of his On May 3, 1911, the Storting (Parlia- developed at Svalbard. The telecommu- achievement via the ARGOS satel- ment) instructed Norwegian Telecom to nication services have been made possi- lite transmitter. build a radio station at Svalbard. Already ble via a satellite in a geostationary orbit on November 22 the same year the first During the 80 odd years separating keeping it over the same point (some radio telegraphy signals from Spitsber- these two events, telecommunica- 36,000 km over the equator) on earth all gen Radio were received at Ingøy Radio tions have advanced tremendously the time (ref. Figure 2). near Hammerfest, and the first telecom- and have been of great importance munications between Svalbard and the to both shipping and aviation, as mainland were established. The station Radio wave distribution well as for the development of played a vital role when Norwegian communications in Arctic regions and northern lights industry and habitation made headway in as well as everywhere else in the When the radio technique came into pub- the years to follow, and particularly in world. lic use in the inter-war years, it was soon the great polar years of the 1920s. That experienced that radio communication at was when the radio station was in the latitudes in the extreme north was very focus of the entire world press. The fact Telecommunications difficult during bursts of northern lights. that Norwegian Telecom and the Post Radio communication over distances before 1911 Office were already established at Sval- greater than 300 km are based on the At the beginning of this century there bard was one of the most important argu- atmosphere’s ability to reflect radio was much exploration activity in the Arc- ments for Norway obtaining custody of waves from areas where there are free tic regions. Journeys were undertaken to the whole archipelago at the peace con- electrons in sufficient amounts, the iono- the North Pole on skis, by plane and by ference in Paris in 1920. sphere. air ship, as well as commercial expedi- Ships to and from the mining communi- tions searching for profits in whatever Figure 2 shows the earth in relation to ties, fishing and hunting vessels, polar the Arctic had to offer. The company AS satellite orbits and the atmosphere which expeditions, cruise liners, weather obser- Spitsbergen of Tønsberg was established we assume is some 400 – 500 km in vations, post office; these were the most with a whaling station at Finneset at thickness and which only makes up the important jobs of Norwegian Telecom at Green Harbour, Svalbard in 1905. thickness of the line in the circle illustrat- Green Harbour radio station, in addition Tourism and coal industry were in their ing the earth. Figure 3 shows a small to contact with the mainland. infancy. Vesteraalens Dampskibsselskap detail of the atmosphere with reflecting (steam ship company) built their own layers. hotel at Hotellneset in the Advent Valley Development to The atmosphere receives enormous in 1896, while the American Arctic Coal the present day amounts of energy from space and from Company started extracting coal in 1906.
Recommended publications
  • Arctic Expedition12° 16° 20° 24° 28° 32° Spitsbergen U Svalbard Archipelago 80° 80°
    distinguished travel for more than 35 years Voyage UNDER THE Midnight Sun Arctic Expedition12° 16° 20° 24° 28° 32° Spitsbergen u Svalbard Archipelago 80° 80° 80° Raudfjorden Nordaustlandet Woodfjorden Smeerenburg Monaco Glacier The Arctic’s 79° 79° 79° Kongsfjorden Svalbard King’s Glacier Archipelago Ny-Ålesund Spitsbergen Longyearbyen Canada 78° 78° 78° i Greenland tic C rcle rc Sea Camp Millar A U.S. North Pole Russia Bellsund Calypsobyen Svalbard Archipelago Norway Copenhagen Burgerbukta 77° 77° 77° Cruise Itinerary Denmark Air Routing Samarin Glacier Hornsund Barents Sea June 20 to 30, 2022 4° 8° Spitsbergen12° u Samarin16° Glacier20° u Calypsobyen24° 76° 28° 32° 36° 76° Voyage across the Arctic Circle on this unique 11-day Monaco Glacier u Smeerenburg u Ny-Ålesund itinerary featuring a seven-night cruise round trip Copenhagen 1 Depart the U.S. or Canada aboard the Five-Star Le Boréal. Visit during the most 2 Arrive in Copenhagen, Denmark enchanting season, when the region is bathed in the magical 3 Copenhagen/Fly to Longyearbyen, Spitsbergen, light of the Midnight Sun. Cruise the shores of secluded Norway’s Svalbard Archipelago/Embark Le Boréal 4 Hornsund for Burgerbukta/Samarin Glacier Spitsbergen—the jewel of Norway’s rarely visited Svalbard 5 Bellsund for Calypsobyen/Camp Millar archipelago enjoy expert-led Zodiac excursions through 6 Cruising the Arctic Ice Pack sandstone mountain ranges, verdant tundra and awe-inspiring 7 MåkeØyane/Woodfjorden/Monaco Glacier ice formations. See glaciers calve in luminous blues and search 8 Raudfjorden for Smeerenburg for Arctic wildlife, including the “King of the Arctic,” the 9 Ny-Ålesund/Kongsfjorden for King’s Glacier polar bear, whales, walruses and Svalbard reindeer.
    [Show full text]
  • Classic VHF Sound Broadcasting at Its Very Best
    Articles Solid-state VHF FM Transmitters SR6..E1 ured or integrated, even using standard equipment, to fulfill specific customer requirements. Classic VHF sound broadcasting The VHF FM transmitters can be used as stand-alones, in passive (1+1) or (n+1) at its very best standby configurations and with exciter standby. All modules and units are accommodated in a 19-inch rack for Despite digital audio and video broadcasting, forecasts still anticipate an attrac- ease of access. The main modules can tive market ahead for analog FM transmitter technology over the next 15 to be replaced without disconnecting 20 years. Rohde & Schwarz responded to these prospects and revised its highly cables. So a transmitter can be set successful, tried and tested generation of solid-state transmitters. The result is up very quickly and, in the unlikely even more compact transmitters for an excellent price/performance ratio. event of a module failing, it can be exchanged in practically no time. Solid-state VHF FM Transmitter pact design with easy access to major Design and function NR410T1 [1] was thoroughly rede- components, higher MTBF and opera- signed to create the new transmitters tion up to a VSWR of 3. They also inte- 10 kW VHF FM Transmitter SR610E1 SR610E1 for 10 kW, SR605E1 for grate new remote control standards (FIG 1) is taken as an example to 5 kW and SR602E1 for 2.5 kW. and feature high flexibility in terms of explain transmitter design and func- Compared to their predecessors they system integration. tion. It comprises the following main are superior in efficiency, in their com- modules (FIG 2): • VHF FM Transmitter SU135 (exciter), Characteristics • four VHF Amplifiers VU320, • 4-way splitter, These VHF transmitters for FM sound • 4:1 combiner, broadcasting operate in the frequency • high-power supply unit with two band 87.5 MHz to 108 MHz and gen- transformers, rectifier block, filtering erate a nominal output power of 10 kW, and four DC converters of 3 kW 5 kW or 2.5 kW into 50 Ω at an each, efficiency of over 60 %.
    [Show full text]
  • Handbok07.Pdf
    - . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? ....
    [Show full text]
  • Through the North Atlantic - from Scotland to Svalbard
    THROUGH THE NORTH ATLANTIC - FROM SCOTLAND TO SVALBARD There are few wilder, more magnificent and untouched places than the Arctic Islands of the North Atlantic! And no ships more suited than Ocean Atlantic for such a voyage. Join us for an early summer's cruise from Aberdeen to the lush green Shetland isles, the Faroe Islands small capital Tórshavn and the North Atlantic to the Arctic islands of Jan Mayen and Svalbard. We will travel north along with the migrating birds, and hopefully spot the polar bears hunting from the sea ice in the 24-hour daylight. The cruise starts in Aberdeen on the Scottish East Coast. Here we embark Albatros Expedition's vessel, the comfortable Ocean Atlantic, which is our home for the next 11 days. Our first stop is Smeerenburg and hopefully as far as Yttre Norskøya in the far cozy Lerwick on “main” Shetland, then we venture further north North west corner of Spitsbergen Island. Weather and ice to Tórshavn on the Faroe Islands. After a day at sea spotting for conditions will often dictate the course, but each landing with seabirds and whales we reach the enigmatic and isolated island Zodiac-boats will still be unique and adventurous. of Jan Mayen with its looming 2,200-meter high volcano of Beerenberg. We travel north with the spring and 24-hour The cruise does not have any special requirements for you as a daylight until we reach the snow-covered mountains of participant, but it is assumed that you are in good shape, agile Svalbard. Sea ice will still cover many fjords, but with an ice and good on your legs.
    [Show full text]
  • Air Ambulance Services in the Arctic 1999-2009: a Norwegian Study Jan Norum1,2,3*, Trond M Elsbak3
    Norum and Elsbak International Journal of Emergency Medicine 2011, 4:1 http://www.intjem.com/content/4/1/1 ORIGINALRESEARCH Open Access Air ambulance services in the Arctic 1999-2009: a Norwegian study Jan Norum1,2,3*, Trond M Elsbak3 Abstract Background: Air ambulance services in the Arctic have to deal with remote locations, long distances, rough weather conditions and seasonable darkness. Despite these challenges, the people living in the area expect a high quality of specialist health care. Aims: The objective of this study was to analyse the air ambulance operations performed in the Norwegian Arctic and study variations in diagnoses and flight patterns around the year. Methods: A retrospective analysis. All air ambulance operations performed during the time 1999 – 2009 period were analysed. The subjects were patients transported and flights performed. The primary outcome measures were patients’ diagnoses and task patterns around the year. Results: A total of 345 patients were transported and 321 flights performed. Coronary heart and vascular disease, bone fractures and infections were the most common diagnoses. Most patients (85%) had NACA score 3 or 4. Half of all fractures occurred in April and August. Most patients were males (66%), and one fourth was not Norwegian. The median flying time (one way) was 3 h 33 m. Ten percent of the flights were delayed, and only 14% were performed between midnight and 8.00 AM. The period April to August was the busiest one (58% of operations). Conclusions: Norway has run a safe air ambulance service in the Arctic for the last 11 years. In the future more shipping and polar adventure operations may influence the need for air ambulances, especially during summer and autumn.
    [Show full text]
  • Petroleum, Coal and Research Drilling Onshore Svalbard: a Historical Perspective
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 3 https://dx.doi.org/10.17850/njg99-3-1 Petroleum, coal and research drilling onshore Svalbard: a historical perspective Kim Senger1,2, Peter Brugmans3, Sten-Andreas Grundvåg2,4, Malte Jochmann1,5, Arvid Nøttvedt6, Snorre Olaussen1, Asbjørn Skotte7 & Aleksandra Smyrak-Sikora1,8 1Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 2Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 3The Norwegian Directorate of Mining with the Commissioner of Mines at Svalbard, P.O. Box 520, 9171 Longyearbyen, Norway. 4Department of Geosciences, University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 5Store Norske Spitsbergen Kulkompani AS, P.O. Box 613, 9171 Longyearbyen, Norway. 6NORCE Norwegian Research Centre AS, Fantoftvegen 38, 5072 Bergen, Norway. 7Skotte & Co. AS, Hatlevegen 1, 6240 Ørskog, Norway. 8Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway. E-mail corresponding author (Kim Senger): [email protected] The beginning of the Norwegian oil industry is often attributed to the first exploration drilling in the North Sea in 1966, the first discovery in 1967 and the discovery of the supergiant Ekofisk field in 1969. However, petroleum exploration already started onshore Svalbard in 1960 with three mapping groups from Caltex and exploration efforts by the Dutch company Bataaffse (Shell) and the Norwegian private company Norsk Polar Navigasjon AS (NPN). NPN was the first company to spud a well at Kvadehuken near Ny-Ålesund in 1961.
    [Show full text]
  • Cetiie B Tia Nature Red Acted
    Probabilistic Methods for Systems Engineering with Application to Nanosatellite Laser Communications by Emily B. Clements Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 Massachusetts Institute of Technology 2018. All rights reserved. Autholr Signature redacted (J Department of Aeronautics and Astronautics May 24,2018 Cetiie b tianature red acted Kerri L. Cahoy Associate Professor of Aeronautics and Astronautics red acted Thesis Supervisor Certified by ... Signatu re ........................ David 0. Caplan Senior Staff, MIT Lincoln Laboratory Certified by, S ignature redacted Jeffrey A. Mendenhall Lincoln Laboratory C ignature red acted Senior Staff, MIT Certified by. ................................... David W. Miller Jerome Hunsaker Professor of Aeronauticq and Astronautics Accepted by......... .................. Signature redacted MASSACHUSETTS INSTITUTE Hamsa Balakrishnan OF TECHNOLOGY Associate Professor of Aeronautics and Astronautics JUN 28 2018 Chair, Graduate Program Committee LIBRARIES ARCHIVES 2 Probabilistic Methods for Systems Engineering with Application to Nanosatellite Laser Communications by Emily B. Clements Submitted to the Department of Aeronautics and Astronautics on May 24, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Risk-tolerant platforms such as nanosatellites may be able to accept moderate perfor- mance uncertainty
    [Show full text]
  • Climate in Svalbard 2100
    M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard.
    [Show full text]
  • Icepeople Stormy Sendoff
    FREE Weather summary Cloudy and partly cloudy with occasional snow and temperatures near -10C through next week. icepeople Full forecast page 3 The world's northernmost alternative newspaper Vol. 9, Issue 1 January 3, 2017 www.icepeople.net 'Longyearbyen at its best:' Modern SVALBARD'S 10 STRANGEST STORIES OF 2016 tragedies, triumphs part of traditional tributes during Syttende Mai celebration Page 7 “ To believe that the governor can rescue people out, regardless of circumstances, is wrong. There is no guarantee for that. - Per Andreassen, police lieutenant Svalbard governor's office ” Late update: 12 apartments vacated again due to building, infrastructure damage. icepeople.net GREENPEACE BRITISH ANTARCTIC SURVEY MARK SABBATINI / ICEPEOPLE A pianist on a glacier, a research vessel suffering from an identity crisis and a gigantic mailbox belonging to the outlaw Santa kept things weird in 2016. WIGGINGWIGGING OUTOUT See DOCK, page 12 Boaty McBoatface, Aquaman, Pokémon among stars in Svalbard's version of the year of surreality By MARK SABBATINI will of the people. A political ad where an in- yet again. Nuclear armageddon, yet again. Editor nocent little girl was obliterated by a weapon When it came to the ways we were weird, A travesty of an election that ignored the of mass destruction. Battling alien invaders, See SURREAL, page 6 Related coverage: • Letters to the Future: grope and change...7 Stormy sendoff • Fleeing Svalbard is easy – sort of……....11 Blizzard buries cars and homes, exposes kindness and resolve By MARK SABBATINI fatal avalanche a year ago. But it didn't cause Editor any tragedies and, while many experienced has- ROLF STANGE MAKSYM BOREIKO Of course, 2016 had to screw us over one sles and minor damage, it was also indiciative A tourist is dwarfed by a drift near Spitsbergen last time with a storm resembling that from the See STORM, page 4 Hotel after a major snowstorm last week.
    [Show full text]
  • Ny-Ålesund Research Station
    Ny-Ålesund Research Station Research Strategy Applicable from 2019 DEL XX / SEKSJONSTITTEL Preface Svalbard research is characterised by a high degree of interna- tional collaboration. In Ny-Ålesund more than 20 research About the Research Council of Norway institutes have long-term research and monitoring activities. The station is one of four research localities in Svalbard (Ny-Ålesund, Longyearbyen, Barentsburg and Hornsund). The Research Council of Norway is a national strategic and research community, trade and industry and the public Close cooperation between these communities is essential funding agency for research activities. The Council serves as administration. It is the task of the Research Council to identify for the further development of Ny-Ålesund. the key advisor on research policy issues to the Norwegian Norway’s research needs and recommend national priorities Photo: John-Arne Røttingen Government, the government ministries, and other central and to use different funding schemes to help to translate In 2016, the Norwegian Government announced (Meld.St.32 institutions and groups involved in research and development national research policy goals into action. The Research Council (2015-2016)) the development of a research strategy for the (R&D). The Research Council also works to increase financial provides a central meeting place for those who fund, carry out Ny-Ålesund research station. Guidelines and principles for investment in, and raise the quality of, Norwegian R&D and and utilise research and works actively to promote the research activity were established by the government in 2018 to promote innovation in a collaborative effort between the internationalisation of Norwegian research.
    [Show full text]
  • Limits of Acceptable Change Caused by Local Activities in Ny-Ålesund
    Limits of acceptable change caused by local activities in Ny-Ålesund Report from a pre-project, containing a proposal for a main project Gunnar Sander, Norwegian Polar Institute 1 Preface Ny-Ålesund has been established as a research town on the assumption that this is an ideal area to study an environment shaped only by natural forces. Consequently the need to keep the environ- mental impacts resulting from local human activities at a low level has been emphasized in many policy statements from the Norwegian government and the actors in Ny-Ålesund. Following up on such policy objectives and recommendations from earlier Environmental Impact Assessments (EIAs) prepared for Ny-Ålesund, Kings Bay initiated a project to operationalize the environmental limits of the operations. During the work, it was clear that it would not be possible to do this without better information about environmental conditions in Ny-Ålesund. New fieldwork would be required to collect data and conduct detailed assessment as to which degree observed changes can be attributed to local activities. The steering group therefore decided to prepare a pre- project, planning a main project that will allow for better definitions of environmental limits. It decided to focus on three areas that according to the EIAs are likely to be most negatively affected by station activities: air quality, vegetation and birds. This report consists of a general part containing an update on the EIAs from Ny-Ålesund with recom- mendations on the general environmental work, and a framework for a main project. Detailed project descriptions of sub-projects on air quality, vegetation and birds are found in annexes.
    [Show full text]
  • First Record of Vulgarogamasus Immanis (Acari, Mesostigmata) in Svalbard
    vol. 33, no. 1, pp. 35–39, 2012 doi: 10.2478/v10183−012−0001−8 First record of Vulgarogamasus immanis (Acari, Mesostigmata) in Svalbard Dariusz J. GWIAZDOWICZ 1, Torstein SOLHØY 2, Stephen J. COULSON 3, Natalia V. LEBEDEVA4 and Elena N. MELEKHINA5 1 Uniwersytet Przyrodniczy w Poznaniu, Zakład Ochrony Lasu, ul. Wojska Polskiego 71c, 60−625 Poznań, Poland <e−mail: [email protected]> 2 Department of Biology, University of Bergen, Box 7800, 5200 Bergen, Norway 3 University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway 4 Russian Academy of Sciences, Southern Scientific Center, Chekhov str., 344006 Rostov on Don, Russia 5Russian Academy of Science, Institute of Biology, Komi Science Center, Kommunisticheskaya str., 28, 167928 Syktyvkar, Russia Abstract: The mesostigmatid mite Vulgarogamasus immanis (Berlese, 1904) is reported in Svalbard for the first time. The gamasid mite community of Svalbard is amongst the best known of invertebrate groups of the archipelago due to recent revisions based on fresh sam− pling campaigns. Nonetheless, a hitherto unrecorded species of gamasid mite was recently found along the strandline in Barentsburg. This record brings the total gamasid mite inven− tory of Svalbard to 23 species. The current inventory of Svalbard is bedeviled with syn− onyms and misidentifications. Nevertheless, resolving these confusions and maintaining an accurate and updated species inventory is of prime importance in understanding the ecology of this region. Especially in a period of rapid environmental change. Key words: Arctic, Spitsbergen, Barentsburg, mite, Gamasida. Introduction Svalbard lies in the high Arctic between latitudes 74° N and 81° N and longi− tudes 10° E and 35° E, some 700 km north of the Norwegian mainland.
    [Show full text]